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Abstract

We show that the minimal 3-3-1 model cannot accommodate the neutrino masses at tree level

using present experimental data. Nevertheless, a modified Zee and the Zee-Babu mechanisms for

generating neutrino masses at 1-loop and 2-loop, respectively, are automatically implemented in

the minimal 3-3-1 model, without introducing new degrees of freedom to the model. We also

present a systematic method for finding solutions to the leptonic sector masses and mixing. As a

case study, we accommodate the charged and neutral leptons masses and the PMNS matrix in the

1-loop modified Zee mechanism contained in the minimal 3-3-1 model.
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I. INTRODUCTION

At least two neutrinos are massive particles and present data provides reasonable

knowledge to the leptonic mixing matrix, the so-called Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [1]. Since neutrinos are massive neutral fermions, they could be either Ma-

jorana or Dirac particles. At present many different mechanisms for generating neutrino

masses are known but most of them are implemented making ad hoc modifications of the

particle content of a given model.

For instance, the type I seesaw mechanism [2], includes both types of mass terms Dirac

and Majorana. In these cases the mass eigenstates are Majorana fields and, the smallness of

the neutrino masses is naturally explained. However, in this case, the PMNS matrix is just

only approximately unitary and, if future data confirm that this matrix is unitary within

the experimental error, the coexistence of both mass term will be ruled out.

Things are different if neutrinos are strictly Dirac or Majorana fields: The PMNS matrix

may be exactly unitary. Strictly Dirac neutrinos are obtained in left-right symmetric mod-

els [3] and strictly Majorana neutrinos are obtained in type II seesaw mechanism [4] or also

in left-right symmetric model with triplet scalars [5].

Other interesting mechanisms that generate neutrino masses at 1-loop level [6–8] and

2-loop level [6, 9, 10] and neutrinos are also strictly Majorana fields. In the latter cases, the

smallness of the neutrino masses is explained because they are generated at the loop level.

These mechanisms are usually implemented as simple extensions of the standard model

(SM) by ad hoc inclusion of new fields aimed for generating the neutrino masses and are not

naturally accommodated in the models.

This is particularly the situation in the mechanism in Refs. [8, 10, 11]. Nevertheless, it

is interesting to study the implementation of such mechanisms into self-contained models

by the use of its particle content proposed for other theoretical reasons. Firstly because

realistic models may contain not only one but several mass mechanisms within it. And

secondly, because it is not obvious the possible correlations that may arise between neutrino

mass mixing, matrices, and the other physical parameters. Hence, these are interesting

benchmark scenarios to look for a rationale in physics beyond the standard model. That is,

we can look at which models, proposed for other reasons, these mechanisms are implemented

without introducing new particles to the model.
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Here we will show that in the minimal 3-3-1 model (m331 for short) [12] neutrino masses

can be implemented at tree level, but cannot be accommodated in present data. Never-

theless, the Zee and Zee-Babu mechanisms are natural consequences of the representation

content of the model and we will show that these can accommodate all the leptonic sec-

tor masses and mixing by presenting a systematic method of finding solutions of Majorana

neutrino masses and mixing.

II. LEPTONS AND SCALARS IN THE M331

In the m331 model, the three lepton generations are all in triplets ΨaL = (νa la l
c
a)
T
L ∼

(3, 0), where a, la = e, µ, τ . In the scalar sector we have three triplets: η = (η0 − η−1 η+2 )T ∼

(3, 0), ρ = (ρ+ ρ0 ρ++)T ∼ (3, 1), χ = (χ− χ−− χ0)T ∼ (3,−1). Only the triplet η and the

anti-sextet S

S =


√

2s01 −s+1
s−2√
2

−s+1 −
√

2S++
1

s02√
2

s−2√
2

s02√
2

S−−2

 , (1)

couple to the leptons through the Yukawa interactions (ΨL)cGSΨLS and (ΨL)cGηΨLη, with

GS(Gη) a symmetric (antisymmetric) matrix in the flavor space.

Under the SU(2) ⊗ U(1)Y group the scalar fields transform as Φη = (η0 − η−1 )T ,

Φρ = (ρ+ ρ0)T , Φχ = (χ− χ−−)T , and Φs = (s−2 s
0∗
2 )T , where these are doublets with weak

hypercharge Y = −1,+1,−3,+1, and the triplet

T = iτ2~τ · ~t =

 √2s01 −s+1
−s+1 −

√
2S++

1

 , (2)

is a triplet with Y = 2. The SU(2) singlets η+2 , ρ
++, χ0, S−−2 have Y = +2,+4, 0,+4,

respectively.

The total lepton number assignment in the scalar sector is

L(T ∗, η−2 ,Φχ, ρ
−−, S−−2 ) = +2, L(Φη,ρ,s, χ

0) = 0. (3)

Notice that the only scalar doublet carrying lepton number is Φχ and both members of the

doublet have electric charge, for this reason, always 〈Φχ〉 = 0. The existence of scalars

carrying lepton number implies the possibility of explicit breaking of this quantum number

in the scalar potential.
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In the lepton sector the Yukawa interactions at the SU(3)⊗ U(1) level are given by

− LleptonsY = −1

2
εijk (Ψia)cG

η
abΨjbηk + (Ψia)cG

s
abΨjbSij +H.c., (4)

where a, b are generations indices and Gη (GS) is an anti-symmetric (symmetric) matrix.

Defining the multiplet according to the SU(2)I,U,V ⊗U(1)I,U,V , subgroups of SU(3)×U(1)X ,

transformations

La =

 νaL

laL

 ∼ (2I ,−1), ΩaL =

 laL

(lc)aL

 ∼ (2∗U , 0), ΣaL =

 νaL

(lc)aL

 ∼ (2∗V , 2)

(5)

with the definition Q = I3 + Y/2, QU = 2Ū3 and QV = V̄3 + Y/2.

The interactions in (4) can be written in terms of the SU(2)L⊗U(1)Y quantum numbers

of the triplets and the sextet:

2LlY = −(ΣL)claG
η
abεpq(ΣL)kbη

−
1 + (ΩL)claG

η
abεlk(ΩL)kbη

0 + l̄aRG
S
abΦ

T
s Lb

+ LciaG
S
abTijLjb + (L)ciaεijG

η
abLbjη

+
2 + l̄aRG

S
ab(l

c)bLS
−−
2 +H.c. (6)

The full scalar potential has been consider in Ref. [13], here we only include the L violating

interaction:

f3

[
ΦT
η TΦη +

1√
2

(ΦT
η Φs + ΦT

s Φη)η
+
2 + η+2 η

+
2 S
−−
2

]
+ f4s

0
2s
−
2 s

+
1 +H.c., (7)

where f3 have dimension of mass. The interactions proportional to f3 and f4 come from the

trilinear interactions f3η
TS∗η and f4εijkεmnlS

∗
imS

∗
jnS

∗
kl/3!, respectively. It is clear from the

Yukawa interaction with η+2 in (6), and the trilinear interaction f3η
0s−2 η

+
2 , that the Zee’s

mechanism [8] for generating neutrino masses at 1-loop is automatically implemented in this

model. Notice that the implementation is not the original Zee mechanism, since there are

also another contribution to the 1-loop mechanism coming from the interaction with the

triplet in (6) f3Φ
T
η TΦη given by the trilinear f3η

0s+1 η
−
1 . The term with f4 in Eq. (7) involves

the interactions of the doublet Φs and the triplet T and will generate a 1-loop diagram

involving the symmetrix matrix GS. Moreover, the interaction in Eq. (6) with the doubly

charged S−−2 and the trilinear f3η
+
2 η

+
2 S
−−
2 imply that the 2-loop mechanism in [10] is also

implemented.

We write here only the constraint equation for vs1 . It reads [13]:

ts1 = vs1 [2(e1+e2)v
2
s1

+2e1v
2
s2

+(c1+d3+d4)v
2
η+d5v

2
ρ+d1v

2
χ+µ2

S]+
1√
2
f3v

2
η−2
√

2f4v
2
s2
, (8)
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from which wee see that ts1 = 0 implies vs1 = 0 only if f3 = f4 = 0. This is not the case here

and we see that allowing L violating terms implies a non-vanishing vs1 . In fact, the diagrams

inducing a neutrino mass at 1- and 2- loop, imply divergent contribution to the tadpole vs1 .

Hence a counter-term is necessary to be added in the Lagrangian which implies that vs1 6=

0 [14]. However, we want to have a rather small vs1 i.e., one which does not give a relevant

contribution to the neutrino masses. It means that we can impose (vs1 + δnvs1)/vs2 � 1 at

the n-loop order. Anyway, vs1 is small at the tree level: vs1 ≈ −(f3vη/d1v
2
χ)vη, if f3 < 0, but

|f3| � f4 or, vs1 ≈ 2
√

2(f4vs2/d1v
2
χ)vs2 if f4 � |f3| , and 0 < d1 ≈ 1.

Notice that, since the SU(2) doublets carry a label according to the triplet of SU(3) to

which they belong, it is not possible to choose a different weak basis [13].

We see that, at the level of SU(2)L⊗U(1)Y , the antisymmetrical character of the matrix

Gη
ab = −Gη

ba and the symmetric of GS
ab(=G

S
ba) have not to be imposed by hand, and the Zee’s

mechanism with a singly charged scalar [8] and the triplet of the type-II seesaw mechanism [4]

appear naturally in this model since there are two Higgs doublets which couple to leptons,

Φη and Φs and the singly charged singlet η−2 . The Zee-Babu mechanism is also implemented

by the doublets, the singlets η−2 and S−−2 with the trilinear in Eq. (7).

III. LEPTON MASSES AT TREE LEVEL

Using the representation in Eq. (5) in Eq. (6) the lepton mass matrices are given by

M ν =
vs1√

2
GS
ab, M l

ab =
vη√

2
Gη
ab +

vs2
2
GS
ab. (9)

Active neutrinos are Majorana fields and there is flavor changing neutral interactions in

the scalar sector. Notice that if vs1 = 0 at tree level the neutrino are massless and have no

connection to the charged lepton masses. However, this is not possible if L violating terms

do exist in the scalar potential inducing a tadpole diagram at the 1-loop level since it is

necessary to add a counterterm 〈s01〉 6= 0 even at three level [14].

We will show that at tree level even if 〈s01〉 6= 0 it is not possible from Eqs. (9) to fit the

observed charged lepton and neutrino masses at the same time.

From Eq. (9) we can write

GS =

√
2

vs1
M ν , M l =

vη√
2
Gη +

vs2
vs1

M ν , (10)
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parameter value error

∆m2
21/10−5 7.56 eV2 (19)

∆m2
31/10−3 2.55 eV2 (4)

sin2 θ12 0.321 (18)

sin2 θ13 0.02155 (90)

sin2 θ23 0.430 (20)

δCP/π 1.40 (31)

me 0.5109989461 MeV (31)

mµ 105.6583745 MeV (24)

mτ 1776.86 MeV (12)

Table I: Current best fit values of Standard-3ν as given by [15] and [16].

Notice that we are assuming that vs1 is different from zero, i.e., that there is a tree level

contribution to the neutrino masses. Notice also that since the charged lepton masses have

two contributions, the model predicts flavor changing neutral currents in the lepton sector

through neutral scalars. If Gη = 0 both M ν and M l are proportional to the matrix GS and

the PMNS matrix is just th unit matrix.

For shortness, we will write M
a

= Ma.(Ma)†, a = l, ν. In any basis, the invariants of M
a

are,

Ia1 = Tr[M
a
] = m2

1 +m2
2 +m2

3,

Ia2 = Tr[(M
a
)2] = m4

1 +m4
2 +m4

3,

Ia3 = Det[M
a
] = m2

1m
2
2m

2
3 (11)

where mi are the masses of the particles described by matrix Ma. Those equations can

be used to find all the eigen-values and all other invariantes (for example, Tr[(M)3] =

1
2
(I1I2 − I31 ) + I3) and must be obeyed by all the free parameters. Now, using the Iν,l1

invariants defined in Eq. (11) and the matrix M l in Eq. (10) the first invariant requires that,

v2η(|G
η
12|2 + |Gη

13|2 + |Gη
23|2) +

(
vs2
vs1

)2

Iν1 = I l1, (12)

where the first term on the left side arises from TrGηGη†. This equation tightly bounds the

maximum values of all the modulus of the free parameters to be no greater than
√
I l1. In
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special, we can think of them as a 4-dimensional sphere of radious R described by a four

dimensional vector on an Euclidian space of the form,

~x = (vηG
η
12, vηG

η
13, vηG

η
23,

vs2
vs1

√
Iν1 ) = R(eiδ1sφsθcω, e

iδ2cφsθcω, e
iδ3cθcω, sω), (13)

with cx = cos x and sx = sin x and δi are the complex phases of the parameters Gη
ij. Thus,

we can write Eq. (12) as

|~x|2 = R2 = I l1, (14)

Eq. (13) allows us to find the relevant parameters that constrains the charged lepton masses

in therms of the radius R and the angles φ, θ and ω. This parametrization is useful in many

ways. Firstly, it straightforwardly solves the constraint of the invariant I l1 by defining one

single mass scale R. Secondly, the ω parameter is defined in such a way that it regulates

the relative contribution of each matrix, Gη and M ν(or
√
Iν1 ) to the charged lepton mass:

Gη ∝ cosω, M ν ∝ sinω. (15)

That means a ω → 0 corresponds to the lepton masses completely anti-symmetric (Gη

dominated) or
vs2
vs1
M ν << vη√

2
Gη while ω → π/2 is the other extreme (M ν dominates)

where the charged lepton matrix and the neutrino matrix are proportional to each other,

vη√
2
Gη <<

vs2
vs1
M ν .

Now, using the parametrization in Eq, (13), that is vηG
η
12 → Reiδ1sφsθcw, etc and GS

ij =

sinωm̂iδij with m̂i = mν
i /
√
Iν1 in the invariants I l2 given in Eq. (11) we obtain:

(I l1)
2h
(
θ, φ, ω,m2

i /I
ν
1 , δi

)
= I l2, (16)

where h is given by

h = s4ω
Iν2

(Iν1 )2
+

1

2
c4ω − s2ωc2ω

{
s2θ[m̂

2
1 + (m̂2

3 − m̂2
2)c2φ + 2c2θ(m̂

2
3 + m̂2

2)]

+ 2m̂1s
2
θ(m̂2s

2
φc2δ1 + 2m̂3c

2
φc2δ2) + m̂2m̂3c

2
θc2δ3

}
(17)

i.e., it depends on the neutrino mass square, the three angles, and three phases. From

Eq. (16) we see that it is possible to fit the charged lepton and neutrino masses at the

same time only if h = I l2/(I
l
1)

2. In fact, inserting current values of lepton masses we get

I l2/(I
l
1)

2 ≈ 1, because lepton masses are very hierarchical. On Fig. 1 we show the maximum

value of h by fixing ω for Normal Hierarchy (red sinuous line) and Inverted Hierarchy (blue

7



bottom line), the Black-Dashed upper line corresponds to the value that fits the invariant

I l2.

As we said above, the function h that correctly fits the charged lepton masses corresponds

to the intersection point between a colored curve and the black-dashed line. The blue

bottom curve is constant with value 0.5hmax and the red curve approaches the line but has

its maximum value at ω/π = 0.5 below the dashed line, even if one takes into account

lepton and neutrino mass errors. Thus, Eq. (9) cannot provide a solution to the parameters

of Table I. This happens because the Eigenvalues of M ν and M l are related, see for example

Eq. (12). This means that the hierarchy between the neutrino masses controls the maximum

hierarchy reachable by the lepton masses. As charged lepton masses are more hierarchical

than the neutrino masses, ∆m2
τµ/∆m

2
τe = 0.99646 while ∆m2

21/|∆m2
31| = 0.0296, where

∆m2
ab = m2

a −m2
b , that means we cannot fit both at the same time. In order to find such

solution, one needs Iν2 /(I
ν
1 )2 ≥ I l2/(I

l
1)

2, which cannot be accomplished with the values

presented in Table I. Notice that

1. If ω = 0, or GS � Gη, h(ω = 0) = 1/2.

2. ω = π/2, or Gη � GS, h(ω = π/2) = Iν2 /(I
ν
1 )2.

3. h(ω = 0) ≤ h(ω) ≤ h(ω = π/2), it means that we can fit I l2 only if

1

2
≤ I l2

(I l1)
2
≤ Iν2

(Iν1 )2
, (18)

which is not compatible with the data.

Hence, we have shown that in the m331 model, neutrinos cannot obtain realistic masses

at tree level. Loop corrections have to be taken into account.
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I2/I1
2

Figure 1: Possible maximum values of the h function by fixing the ω variable. The Red

line is assuming Normal Hierarchy, blue line is Inverted Hierarchy and black-dashed line is

the fraction I l2/(I
l
1)

2.

IV. NEUTRINO MASSES AT ONE AND TWO LOOPS

Having demonstrated that at tree level the model can not generate the correct charged

lepton masses this also implies that the leptonic mixing PMNS matrix cannot be obtained.

A possibility is to add sterile (under the 3-3-1 symmetry) right-handed neutrinos and imple-

ment the type I seesaw as in Ref. [17]. However, one can wonder if the own model content

provides a solution to this issue. The answer is yes if not only the tree level contribution

is taken into account, but also 1- and/or 2-loop corrections, through the Zee and Zee-Babu

mechanism, respectively, which are both naturally implemented with the minimal repre-

sentation content of the model, it means without introducing new degrees of freedom. As

can be seen from Eq. (6) the model has the charged scalar singlet of SU(2)L, η+2 as in the

Zee model [8] and also the doubly charged singlet scalar S−−2 of the 2-loop mechanism of

Refs. [6, 9, 10]. Since the model also has the respective trilinear interactions in Eq. (7),

both mechanisms for generating neutrino masses are naturally implemented in this model.

However, we stress that it is necessary to have a tree level contribution too.
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A. Neutrino masses with 1-loop contributions

We first start by a defining the normalized the mass matrices as follows:

M̂ l =
M l√
I l1
, M̂ ν =

M ν√
Iν1
, ĜS =

vs2√
2

GS√
I l1
, Ĝη =

vη√
2

Gη√
I l1

(19)

defining Ia1 as in Eq. (11). This is usefull because we can get rid of mass scale and treat all

the parameters as adimensional.

Using the definitions in Eq. (19), the tree level charged lepton masses and the tree level

plus a 1-loop contributions to the neutrino masses are written:

M̂ l = Ĝη + ĜS,

M̂ ν = a0Ĝ
s + a1Ĝ

s(ĜS)†Ĝs + a2

[
Ĝη(Ĝη + ĜS)†ĜS + Transpose

]
(20)

where a0 denotes the tree level mass, and

a0 =
vs1
√
I l1

vs2
√
Iν1
, a1 = a0

(
4f4I

l
1

m2
s−1
vs2

)
ln

(
m2
s−2

m2
s−2

)
, a2 = a0

(
2f3I

l
1vs2

m2
η−2
v2s1

)
ln

(
m2
η−2

m2
s−2

)
, (21)

In fact, we have verified that if vs1 = 0, i.e., no neutrino masses at tree level, the 1-loop only

does not generated the correct masses for neutrinos. Hence, using the parametrization in

Eq. (21) we have already assumed that vs1 6= 0.

Notice that the free parameters are the VEVs vs1,s2 , f3, f4 and the masses of the charged

scalars, ms−1
,ms−2

,mη−2
. All of them will appear in other places of the Lagrangian but, for

the leptonic masses only the ratios in a0, a1 and a2 matters. Notice that the term with a1

is the contribution of the triplet T which does not exist in the Zee model, the latter model

contains only one scalar with anti-symmetric coupling, this model has an extra scalar that

couples symmetrically with the fermions see Eq. (7).

Hence, given a0, a1 and a2 will allow us to adjust both charged lepton and neutrino mass

which creates an opportunity to find a solution. The existence of those new parameters

implies that one can start with a general lepton matrix M̂ l constituting of a sum of an

anti-symmetric matrix Ĝη and a symmetric matrix ĜS and later adjust the neutrino mass

matrices.

We show that in this case Eqs. (20), which add the 1-loop correction to the tree level

mass matrix, has a possible solution which accommodate the measured mixing parameters

10



of Table I at less than 1-σ. Using vη = 240 GeV and vs2 = 1 GeV, and
√
I l1 = 1.78 GeV

(using the central values of ml), we obtain

Gη =


0 1.750− 0.23i 1.755− 0.383i

−1.750 + 0.23i 0 0.376− 0.027i

−1.755 + 0.383i −0.376 + 0.027i 0

× 10−3

GS =


0.499 + 1.719i 0.690 + 0.518i 0.426 + 0.320i

0.416 0.256

0.158

 (22)

with a0 = 0.202478, a1 = 0.5 and a2 = 1.90921.

Thus, the matrices that rotate the leptonic mass matrix and the neutrino mass matrix

can be obtained and we write them explicitly,

V l
L =


−0.044 + 0.147i 0.282− 0.627i 0.0260 + 0.709i

−0.286− 0.134i 0.4614 + 0.454i 0.664 + 0.204i

0.786− 0.508i 0.315− 0.0988i 0.1049− 0.0621i



V ν =


−0.148 + 0.0576i −0.164− 0.200i 0.822− 0.483i

0.695− 0.110i 0.523 + 0.386i 0.237− 0.160i

−0.613 + 0.321i 0.672 + 0.243i 0.00136− 0.101i

 (23)

This predicts a normal hierarchy solution with mlightest = 0, ∆m2
21/10−5 = 7.56 eV2 and

∆m2
31/10−3 = 2.55 eV2. The mixing angles can be obtained by the equation,

UPMNS = V l†

L V
ν (24)

Notice that the numerical solution gives a UPMNS containing all its possible phases, some of

them are physical and some of them can be absorbed by a rotation in the charged leptonic

sector. In the PDG [1] notation we can sepparate the PMNS matrix into three sub-matrices,

UPMNS = P †l .VPMNS.P (25)

where VPMNS contains the 3 mixing angles and the Dirac CP phase. P contains the majorana

phases and can be written as P = Diag[1, eα21i/2, eα31i/2] while Pl is a diagonal matrix with

the unphysical phases that are absorbed by a redefinition of the cherged lepton basis. In

11



this notation, we can identify the mixing angles as sin2 θ12 = 0.318, sin2 θ13 = 0.02043,

sin2 θ23 = 0.373, and δCP = 1.29π, which are inside the 1σ range of Table I, and produces

the matrix,

VPMNS =


0.8193 0.5552 0.14293e−1.29πi

0.4032e3i 0.6868e0.0560i 0.60479

0.4076e0.1812i 0.4691e3.0353i 0.7834

 . (26)

Since the neutrinos are majorana, the majorana phases could be important in some physical

process, thus, for completeness, we present them here: α21 = 1.15π and α31 = 0.862π.

B. 2-loop neutrino masses

The m331 model also allows one to give mass to neutrinos at 2-loop using the Babu

mechanism. In this mechanism, worked in more details for Babu [10], it is necessary to have

the Zee’s singly charged scalar, here η+2 , and a singlet doubly charged scalar, here S−−2 . Both

are singlet of SU(2). See the Yukawa interactions in Eq. (6) and the scalar interactions in

Eq. (7) with the loops obtained by two η+2 a one S−−2 , assuming m2
S−−2

> m2
η−2

, it follows [10]

M ν
ab '

Gη
acG

S
cd

32π2

mcmd

m2
S−−2

Gη†
db

[
ln

(
m2
η−2

+m2
S−−2

m2
η−−2

)]2
f3, (27)

where mc,md are the charged lepton masses in the internal line. When obtaining (27) it

was assumed that mS−−2
> mη−2

. Detalis of the contributions to the neutrino masses by the

Zee-Babu mechanism will be shown elsewhere.

V. NEUTRINO MASSES WITH 1-LOOP CONTRIBUTIONS

Now, we can redo the analysis of the previous section to show that Eq. (20) have solutions

which are compatible with the observed values for the lepton masses. We will denote by

a subscript 2 the basis where the matrix GS is diagonal (see the Appendix), this GS
2 =

Diag[g1, g2, g3] where its eigenvalues are gi, i = 1, 2, 3. Since these are free parameters the

matrix GS is not bounded by the neutrino masses as M ν .

We will show that, with the same methodology as in the previous section, neutrino masses

and the PMNS matrix can be accommodated as it was shown in Sec. IV A. The first charged

12



lepton mass invariant gives

2(|(Ĝη
2)12|2 + |(Ĝη

2)13|2 + |(Ĝη
2)23|2) +

∑
i

g2i = 1 (28)

This equation is equal to 1 because of the normalization ( Tr( ˆ̄M) = 1). We can now define

a 4-dimensional sphere, but now its radius is R = 1 and the four dimensional vector on an

Euclidean space of the form,

~x = (
√

2(Ĝη
2)12,
√

2(Ĝη
2)13,
√

2(Ĝη
2)23,

∑
i

g2i ) = (eiδ1sφsθcω, e
iδ2cφsθcω, e

iδ3cθcω, sω) (29)

with cx = cos x and sx = sin x and δi are the complex phases of the parameters Ĝij
η2. Now,

ω controls the symmetry proportion of M̂ l. If ω → 0 it is anti-symmetric and if ω → π/2 it

is symmetric. Next, one needs to find a solution to the equation

I l2 ≡ Tr[(M̂ lM̂ l†)2] = (I l1)
2h
(
θ, φ, ω, δi, ĝ

2
i

)
. (30)

We will not write h explicitly but notice that now, since the parameters gi are free, we

can find a solution for all letpton masses. The plot of the maximum possible values h is

presented on Fig 2.

0.3 0.4 0.5 0.6 0.7
0.90

0.95

1.00

1.05

1.10

ω/π

h
M
A
X

331+1-Loop

Allowed Region

Figure 2: Possible maximum values of the h function by fixing the ω variable (black) and

black-dashed line is the fraction I l2/(I
l
1)

2.

Notice that this form of equation restrains the value of ω to ω ∈ [69◦, 110◦]. Where

ω = π/2 imply Gη
2 = 0.

Also, because of the high hierarchy of the lepton masses, gi will also be hierarchical.

There are several solutions to this equations and one can solve the invariants I l2 and I l3 as a

function of the variables gi, ω, φ, θ and the δi phases.
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Going back to the 1-loop Eq. (20) the strategy to find the general solution is:

(i) Use one gi and two out of three angles ω, θ and φ to satisfy the other two charged

lepton invariants I li , i = 2, 3.

(ii) Use the free parameters ai, i = 0, 1, 2, mlightest and two remaining gi to find the

solutions to the neutrino invariants Iνi , i = 1, 2, 3.

(iii) Now one can write Gη
2 and GS

2 in the auxiliary basis and find U2 and VL2.

(iv) Now go back to the general basis where GS is not diagonal by the use of a unitary

matrix A, GS = AT .GS.A. Now, the free parameters of A and the previously found

U2 and VL2 can be used to fit the PMNS matrix through Eq. (A8). One can use

the phases δi to better fit the parameters. Notice, however that only 1 of those are

physical. Thus, one can set δ2 = δ3 = 0.

The particular solution found above was obtained by this method. In there we settled:

g1 = g2 = 0 and φ = π/4. In this case, the invariants Tr[M lM l†)2] and Det[M lM l†] imply

θ = 1.41◦ and ω = 69.91◦ and the lightest neutrino mass to be equal to zero. This means

that the method of finding charged lepton masses and mixing here described are general to

any model that does not restrain the lepton matrix and we found a set of conditions that

any charged lepton matrix should obey in order to fit the invariants I li , i = 1, 2, 3 defined

in Eq. (11).

VI. CONCLUSIONS

Here we have shown that in the m331 model active neutrinos may be pure Majorana

particles and the PMNS matrix truly unitary. The Majorana mass term has three contribu-

tions: i) the tree level one induced by a non-zero VEV, vs1 , the 1-loop contribution arisen

from the Zee mechanism, and the 2-loop contributions by the Zee-Babu mechanism. Each

of these contributions may be more or less important. We showed that the tree level-only

cannot fit current neutrino oscillation data, but 1-loop can.

No right-handed (sterile under the 331 gauge symmetry) neutrinos are needed. This

sort of neutrinos may be introduced just to explain the dark matter relic density or, if in

the future right-handed neutrinos are found [18, 19] or, if the PMNS matrix becomes not

14



exactly unitary, we will have to introduce right-handed neutrinos singlets of SU(3)L⊗U(1)X .

However, even in this case, an important part of the neutrino masses may arise from the

mechanisms analyzed in this work. If this were the case, it is interesting that right-handed

neutrinos do not need to be very heavy because they will not be needed to implement

the seesaw type I mechanism. They could be light enough to explain any anomaly (dark

matter?) if it existed and need to be solved by light right-handed neutrinos.

The m331 model in intrinsically a multi-Higgs model and at least with the actual data, the

existence of extra scalars, besides that observed one with a mass of about 125 GeV, cannot be

excluded. The m331 model has all the scalar multiplets that have been introduced by hand

in the context of the SM model and all of them are needed to break the gauge symmetries

and/or to generate all fermion masses. This includes several doublets, and neutral, singly

charged and doubly charged singlet and triplet scalars. Notice that, as in any multi-Higgs

model, the properties of the Higgs boson with a mass of 125 GeV are different from those

in the SM model. Moreover, since the measurements of properties of the would-be the

SM Higgs scalar do still allow the considerable non-standard behavior of the 125 Higgs

boson [20]. The extra scalar fields have interesting phenomenological consequences, for

instance pp→ X++X−− → l+l+l
′−l
′−, where l, l′ = e, µ and X++ may be a doubly charged

scalar or vector field [21–23].

Acknowledgments

VP thanks to CNPq for partial financial support. All authors are thankful for the support

of FAPESP funding Grant No. 2014/19164-6. P. P. thanks the support of FAPESP-CAPES

funding grant 2014/05133-1 and 2015/16809-9, also the partial support from FAEPEX fund-

ing grant, No 2391/17, Fermilab NPC fellowship and APS-SBF fellowship.

Appendix A: Systmatic for finding solutions fitting lepton masses and the PMNS

matrix

The two basis that will be relevant in order to present a systematic way of finding solutions

are described below.
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1. General mass matrix :

This is the general basis with both M̂ ν and M̂ l, defined in Eq. (19), are as general as

possible. To go from flavor eigenstates to the mass eigenstes, one can by an unitary

matrix V ν rotate M ν , and M l by two matrix V l
L and V l

R: The matrices M̂ ν M̂ l below

are diagonal

M̂ ν = V νTM νV ν , M̂ l = V l
LM

lV l†
R (A1)

and M ν and M l are given in Eq. (20) without the hat. notice also that

(M ν)M ν† = V ν(M̂ ν)2V ν†, M l(M l)† = V l†
L (M̂ l)2V l

L, M l†(M l) = V l†

R (M̂ l)2V l
R

(A2)

and that the PMNS matrix is defined as

VPMNS = V l†
L V

ν . (A3)

The matrices V ν , V l
L, V

l
R will appear in some interactions and, for this reason, none of

them can be transformed away as it happens in the SM.

l′L,R = V l
L,RlL,R, ν ′L = V ννL (A4)

primed fields denote symmetry eigenstates, unprimed fields are mass eigenstates.

2. Auxiliar basis: GS diagonal:

This basis is defined where ĜS is diagonal. We denote this basis by a subscript 2. As

ĜS is symmetric, it can be accomplished by a auxiliar matrix A that obeys,

ATGSA = GS
2 = Diag[g1, g2, g3] (A5)

The mass matrix in this basis are related to the general basis as

(M ν
2 ) = AT (M ν)A, M l

2(M
l
2)
† = ATM l(M l)†A∗ (A6)

while in the diagonal basis as,

M ν
2 = U∗2 (M ν)V l†

2L, M l
2(M

l
2)
† = V †L2(M̂

l)2VL2 (A7)

Where U2 = A†V ν and V †L2 = ATV l†
L . Thus, one can find the PMNS matrix in this

basis by

VPMNS = A∗V †L2AU2. (A8)
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