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Abstract

Flavor physics experiments allow to probe the accuracy of the Standard Model
(SM) description at low energies, and are sensitive to new heavy gauge bosons
that couple to quarks and leptons in a relevant way. The apparent anomaly in
the ratios of the decay of B-mesons into D-mesons and different lepton flavors,
RD(∗) = B(B → D(∗)τν)/B(B → D(∗)`ν) is particularly intriguing, since these decay
processes occur at tree-level in the SM. Recently, it has been suggested that this
anomaly may be explained by new gauge bosons coupled to right-handed currents of
quarks and leptons, involving light right-handed neutrinos. In this work we present
a well-motivated ultraviolet complete realization of this idea, embedding the SM in
a warped space with an SU(2)L⊗SU(2)R⊗U(1)B−L bulk gauge symmetry. Besides
providing a solution to the hierarchy problem, we show that this model, which has
an explicit custodial symmetry, can explain the RD(∗) anomaly and at the same time
allow for a solution to the RK(∗) anomalies, related to the decay of B-mesons into
K-mesons and leptons, RK(∗) = B(B → K(∗)µµ)/B(B → K(∗)ee). In addition, a
model prediction is an anomalous value of the forward-backward asymmetry AbFB,
driven by the Zb̄RbR coupling, in agreement with LEP data.
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1 Introduction

The Standard Model (SM) of particle physics provides an excellent description of all
observables measured at collider experiments. The discovery of the Higgs boson [1, 2] is
an evidence of the realization of the simplest electroweak symmetry breaking mechanism,
based on the vacuum expectation value (VEV) of a Higgs doublet. This mechanism
provides a moderate breakdown of the custodial SU(2)R symmetry that affects the gauge
bosons only at the loop level. The predictions of the SM are also in agreement with
precision electroweak observables, which show only loop-size departures from the tree-
level gauge predictions [3].

Flavor physics experiments allow to further probe the accuracy of the SM predictions.
While studying SM rare processes, these experiments become sensitive to heavy new
physics coupled in a relevant way to quarks and leptons. Recently, the BABAR [4, 5],
BELLE [6–10] and LHCb [11] experiments have measured the ratio of the decay of B-
mesons into D-mesons and different lepton flavors,

RD(∗) =
B(B → D(∗)τν)

B(B → D(∗)`ν)
, ` = µ, e. (1.1)

These decay processes occur at tree-level in the SM, and therefore can only be affected
in a relevant way by either light charged gauge bosons, or heavy ones strongly coupled to
the SM fermion fields. Currently, the measurements of these experiments seem to suggest
a deviation of a few tens of percent from the SM predictions, a somewhat surprising result
in view of the absence of any clear LHC new physics signatures, or other similar deviations
in other flavor physics experiment.

In particular, the presence of new SU(2) gauge interactions affecting the left-handed
neutrinos, which could provide an explanation of the new RD(∗) anomaly, is strongly
restricted by the measurement of the branching ratio of the decay of B-mesons into
K-mesons plus invisible signatures by the BELLE collaboration B(B → Kνν) [12–14].
Recently, it was proposed that a possible way of avoiding these constraints was to assume
that the new gauge interactions were coupled to right-handed currents and the neutrinos
are therefore right handed neutrinos [15, 16]. The right-handed neutral currents are then
affected by right-handed quark mixing angles that are not restricted by current measure-
ments, and provide the freedom to adjust the invisible decays to values consistent with
current measurements.

In this work, we propose a well-motivated, ultraviolet complete, realization of the
new gauge interactions coupled to the right handed currents, by embedding the SM in
warped space, with a bulk gauge symmetry SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [17–20]. This
symmetry is broken to SU(2)L ⊗ U(1)Y in the ultraviolet brane, implying the absence
of charged, W±

R , and neutral, ZR, gauge boson zero modes. Third generation quark and
leptons are localized in the infrared-brane, where a Higgs bi-doublet provides the necessary
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breakdown of the SM gauge symmetry, giving masses to quarks and leptons. Although
there have been previous works on the flavor structure of warped extra dimensions with
a SU(2)L ⊗ SU(2)R × U(1)X bulk gauge symmetry (see, for example, Refs. [21, 22]),
those works put emphasis on rare Kaon and B-meson decays unrelated to RD(∗) , that
will also be analyzed in our work whenever relevant. Moreover, in the context of warped
extra-dimensions, there has also been a recent analysis in Ref. [23] where lepto-quarks are
introduced, and general results in composite Higgs models in Ref. [24].

In this work, similarly to the previous proposal by the authors of Refs. [15,16], the new
SU(2)R gauge bosons provide an explanation of the RD(∗) anomaly, and the freedom in
the right-handed mixing angles allows to avoid the invisible B decay and B-meson mixing
constraints. On the other hand, our model depicts unique, attractive special features such
as having an explicit custodial symmetry that protects it from large deviations in precision
electroweak observables, and providing a solution of the hierarchy problem through the
usual warped space embedding. Finally, although it is not the main aim of this article,
the left-handed KK gauge bosons may be used to provide an explanation of the RK∗

anomalies in the way proposed in Refs. [25–27].

Our study is organized as follows. In Sec. 2 we present the model in some detail. In
Sec. 3 we explain the solution to the RD(∗) anomaly. In Sec. 4 we discuss the existing
experimental constraints on this model. In Sec. 5 we study the predictions of our model,
including the forward-backward bottom asymmetry, the invisible decay of B mesons into
K mesons, and the b → sµµ observables, including RK(∗) . Finally we reserve Sec. 6 for
our conclusions and App. A for some technical details on the KK modes.

2 The model

Our setup will be a five dimensional (5D) model with metric (with the mostly minus
signs convention) gµν = exp(−ky)ηµν , g55 = −1, in proper coordinates, and two branes,
at the ultraviolet (UV) y = 0, and infrared (IR) y = y1, regions, respectively [28]. The
parameter k, close to the Planck scale, is related to the Anti de Sitter (AdS5) curvature,
and ky1 has to be fixed by the stabilizing Goldberger-Wise (GW) mechanism [29] to a
value of O(35), in order to solve the hierarchy problem.

The custodial model is based on the bulk gauge group [17–20]

SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X , (2.1)

whereX ≡ B−L, with 5D gauge bosons (G,WL,WR, X), and 5D couplings (gc, gL, gR, gX) 1,
respectively.

The breaking SU(2)R ⊗ U(1)X → U(1)Y , where Y is the SM hypercharge with gauge
boson B and coupling gY , is done in the UV brane by boundary conditions. Therefore the

1The 5D (g5) and 4D (g4) couplings are related by g4 = g5/
√
y1.
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gauge fields (W a
L,W

a
R, X) define (W a

L,W
1,2
R , B, ZR), with (UV, IR) boundary conditions,

as

W a
L (a = 1, 2, 3), (+,+) (2.2)

B =
gXW

3
R + gRX√
g2
R + g2

X

, (+,+) (2.3)

W 1,2
R , (−,+) (2.4)

ZR =
gRW

3
R − gXX√
g2
R + g2

X

. (−,+) (2.5)

The SU(2)L⊗SU(2)R symmetry is unbroken in the IR brane, where all composite states
are localized, such that the custodial symmetry is exact. In App. A we present some
technical details leading to the wave function, mass and coupling of the n th KK modes for
both (+,+) and (−,+) boundary conditions. It is shown there that the difference for the
KK mode masses mn, and couplings, is tiny for the different boundary conditions, (+,+)
and (−,+), and different electroweak symmetry breaking masses, and we will neglect it
throughout this paper. In particular we will use the notation m1 for the first KK mode
mass of the different 5D gauge bosons after electroweak breaking: (W±

L ,W
±
R , ZR, ZL, A).

The covariant derivative for fermions is

/D = /∂ − i

[
gL

3∑
a=1

/W
a
LT

a
L + gR

2∑
b=1

/W
b
RT

b
R + gY /B Y + gZR /ZRQZR ,

]
(2.6)

where gY and gZR are defined in terms of gR and gX as

gY =
gRgX√
g2
R + g2

X

, gZR =
√
g2
R + g2

X , (2.7)

and the hypercharge Y and the charge QZR are defined by

Y = T 3
R +QX , QZR =

g2
RT

3
R − g2

XQX

g2
R + g2

X

(2.8)

with QX = (B − L)/2.

Electroweak symmetry breaking is triggered in the IR brane by the bulk Higgs bi-
doublet

H =

(
H0

2 H+
1

H−2 H0
1

)
, QX = 0 (2.9)

where the rows transform under SU(2)L and the columns under SU(2)R. We will denote
their VEVs as 〈H0

2 〉 ≡ v2/
√

2 and 〈H0
1 〉 ≡ v1/

√
2, so that we will introduce the angle β
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as, cos β = v1/vH and sin β = v2/vH , with vH =
√
v2

1 + v2
2. We will find it useful to add

an extra Higgs bi-doublet

Σ =

(
Σ−/
√

2 Σ0

Σ−− −Σ−/
√

2

)
, QX = −1 (2.10)

with 〈Σ0〉 = vΣ/
√

2, whose usefulness will be justified later on in this paper.

After electroweak breaking, and rotating to the gauge boson mass eigenstates, one can
re-write the covariant derivative as

/D =/∂ − igL
[

1√
2
/W
±
LT
±
L +

1

cos θL
/ZL

(
T 3
L − sin2 θLQ

)]
− i gL sin θL /AQ

−igR
[

1√
2
/W
±
RT
±
R +

1

cos θR
/ZR

(
T 3
R − sin2 θRY

)]
(2.11)

where θL ≡ θW is the usual weak mixing angle, the gauge boson Zµ
L ≡ Zµ, and θR is

defined as
cos θR =

gR√
g2
R + g2

X

, sin θR =
gX√
g2
R + g2

X

(2.12)

with T±L,R ≡ T 1
L,R± iT 2

L,R. Using gR and gY , with gR > gY , as independent parameters we
can write

gX =
gY gR√
g2
R − g2

Y

, sin θR =
gY
gR
, cos θR =

√
g2
R − g2

Y

gR
(2.13)

As for fermions, left-handed (LH) ones are in SU(2)L bulk doublets as in the SM

Qi
L =

(
uL
dL

)i
, LiL =

(
νL
eL

)i
(2.14)

where the index i runs over the three generations. On the other hand, as SU(2)R is a
symmetry of the bulk, right-handed (RH) fermions should appear in doublets of SU(2)R.
However, as SU(2)R is broken by the orbifold conditions on the UV brane it means, for
bulk right-handed fermions, that one component of the doublet must be even, under the
orbifold Z2 parity, and has a zero mode, while the other component of the doublet must
be odd, and thus without any zero mode. We thus have to double the SM right-handed
fermions in the bulk.

The natural assignment is to assume in the bulk first and second (light) generation
fermions:

U I
R =

(
uR
d ′R

)I
, DI

R =

(
u′R
dR

)I
, EI

R =

(
ν ′R
eR

)I
, (I = 1, 2) (2.15)

where only the unprimed fermions have zero modes, while third generation (heavy)
fermions are localized on the IR brane and thus are in SU(2)R doublets as

Q3
R =

(
tR
bR

)
, L3

R =

(
νR
τR

)
(2.16)
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Then only the third generation RH fermions interact in a significant way with the field
WR, and can give rise to a sizable RD(∗) , as we will see.

We define the KK modes for gauge bosons as

Aµ(x, y) =
∞∑
n=0

fnA(y)
√
y1

Aµ(x) (2.17)

normalized as ∫ y1

0

fnAf
m
A dy = y1δnm (2.18)

and such that the factor 1/
√
y1 in Eq. (2.17) is absorbed by the 5D gauge coupling in

Eq. (2.11) to become the corresponding 4D gauge coupling. Similar definitions hold for
KK modes of ZL(x, y) and WL(x, y), while for KK modes of ZR(x, y) and WR(x, y) the
sum extends from n = 1.

From the covariant derivative (2.11) it is clear that the charged bosons W±
L only

interact with left-handed fermions, while W±
R only interact with right handed fermions.

The corresponding 4D Lagrangian can be written as

gL√
2

∑
fL,f

′
L

Gn
fLf
′
L
f̄L /W

n
Lf
′
L +

gR√
2

∑
fR,f

′
R

Gn
fRf

′
R
f̄R /W

n
Rf
′
R (2.19)

where, from now on, we are switching to the notation where gL and gR are the 4D
couplings, and Gn

fL,Rf
′
L,R

are the overlapping integrals of the fermion zero-mode profiles,

fL,R(y)f ′L,R(y), with the gauge boson KK mode ones, W n
L,R(y). On the other hand, the

neutral gauge bosons A, ZL and ZR interact with both chiralities, and we can thus define
the 4D neutral current Lagrangian for KK modes as

Ln =
gL

cos θL

∑
f

Gn
f f̄(gZLff /Z

n
L + gAff /A

n
)f +

gR
cos θR

∑
f

gZRffG
n
f f̄ /Z

n
Rf (2.20)

where for simplicity we have omitted the chirality indeces and Gn
f is the overlapping

integral of zero modes fermion profiles, f 2
L,R(y), with the one of the (neutral) gauge boson

KK modes. The 4D coupling of photons with fermions is defined as gAff = sin θL cos θLQ,
the couplings of fermions with ZR are given by

gZRuRuR =
1

2
− 2

3
sin2 θR gZRuLuL = −1

6
sin2 θR

gZRdRdR = −1

2
+

1

3
sin2 θR gZRdLdL = −1

6
sin2 θR

gZRνRνR =
1

2
gZRνLνL =

1

2
sin2 θR

gZReReR = −1

2
+ sin2 θR gZReLeL =

1

2
sin2 θR , (2.21)
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and with ZL by

gZLuRuR = −2

3
sin2 θL gZLuLuL =

1

2
− 2

3
sin2 θL

gZLdRdR =
1

3
sin2 θL gZLdLdL = −1

2
+

1

3
sin2 θL

gZLνRνR = 0 gZLνLνL =
1

2

gZLeReR = sin2 θL gZLeLeL = −1

2
+ sin2 θL . (2.22)

The 5D Yukawa couplings for RH quarks localized on the IR brane are

Y i3
Q Q̄L iHQR 3 + Ỹ i3

Q Q̄L iH̃QR 3 + h.c. (2.23)

where H̃ = iσ2H∗iσ2, and for the bulk RH quarks

Y iI
Q Q̄L iHURI + Ŷ iI

Q Q̄L iHDRI + Ỹ iI
Q Q̄L iH̃URI +

ˆ̃
Y iI
Q Q̄L iH̃DRI + h.c. (2.24)

so that the 4D Yukawa matrices are given by

Y u
iI =

(
sin β YQ − cos β ỸQ

)
iI
F (cuiL , cuIR),

Y u
i3 =

(
sin β YQ − cos β ỸQ

)
i3
F3(cuiL), (2.25)

and

Y d
iI =

(
cos β ŶQ − sin β

ˆ̃
YQ

)
iI
F (cdiL , cdIR)

Y d
i3 =

(
cos β YQ − sin β ỸQ

)
i3
F3(cdiL) . (2.26)

In the previous expressions the 4D Yukawa matrices Y u,d
ij contain the 5D Yukawa ma-

trices YQ, ỸQ, ŶQ,
ˆ̃
YQ times the integrals overlapping the 5D profiles of the corresponding

fermions with the profile of the Higgs acquiring vacuum expectation value, h(y) ∝ eαky.

F (cL, cR) =

√
2(α− 1)(1− 2cL)(1− 2cR)

α− cL − cR
e(α−cL−cR)ky1 − 1√

[e2(α−1)ky1 − 1] [e(1−2cL)ky1 − 1] [e(1−2cR)ky1 − 1]

F3(cL) =
√

2(α− 1)(1− 2cL)
e(α−1/2−cL)ky1√

[e2(α−1)ky1 − 1] [e(1−2cL)ky1 − 1]
(2.27)

where cL,R are the fermion bulk mass parameters and we have assumed that α > cL + cR.
The parameter α has to be larger than two, to solve the hierarchy problem, and in our
computations we will fix α = 2.
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Similarly for RH leptons in the IR brane

Y i3
L L̄L iHLR 3 + Ỹ i3

L L̄L iH̃LR 3 + h.c. (2.28)

and for bulk RH leptons

Y iI
L L̄

i
LHN I

R + Ŷ iI
L L̄

i
LHEI

R + Ỹ iI
L L̄

i
LH̃N I

R +
ˆ̃
Y ′ iIL L̄iLH̃EI

R + h.c. (2.29)

where we have added the bulk first and second generation right-handed neutrino doublets

N I
R =

(
νR
e′R

)I
, I = (1, 2). (2.30)

The Yukawa couplings for charged leptons are then given by

Y e
i3 = (cos βYL − sin βỸL)i3F3(ceiL),

Y e
iI = (cos βŶL − sin β

ˆ̃
YL)iIF (ceiL , ceIR) (2.31)

and for neutrinos, by

Y ν
iI = (sin β YL − cos β ỸL)iIF (cνiL , cνIR)

Y ν
i3 = (sin β YL − cos β ỸL)i3F3(cνiL) (2.32)

In the presence of a non-zero vacuum expectation value of the Σ field, we shall define

tan θΣ =
vΣ

vH
, (2.33)

where v =
√
v2
H + v2

Σ. In the decoupling limit, H1 = cos θΣ cos βh−sin βH−sin θΣ cos βHΣ

and H2 = cos θΣ sin βh + cos βH − sin θΣ sin βHΣ, while the neutral component of the
Σ field, Σ0 = sin θΣh + cos θΣHΣ. The SM-like Higgs boson is induced by excitations
of the field h = sin θΣΣ0 + cos θΣ(cos βH1 + sin βH2), while the excitations induced by
the orthogonal combinations H and HΣ are supposed to lead to heavy neutral states,
decoupled from the low energy theory. Since quarks and leptons only couple to the
field H, the masses are proportional to vH and therefore the Yukawa couplings must be
enhanced by a factor (cos θΣ)−1 with respect to the value they would obtain in the absence
of the Σ field.

In order to avoid strong constraints from lepton flavor violating processes, as e.g. µ→
eγ, µ → eee, or µ − e conversion, we will assume that for charged leptons the interac-
tion and mass eigenstate bases coincide, and therefore, hereafter, that the matrix Y e is
diagonal. This can be obtained by imposing a U(1)3 flavor symmetry in the lepton sector
broken only by the tiny effects due to the neutrino masses [30].
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For neutrinos propagating in the bulk, one can obtain realistic values of their masses by
adopting one of the proposed solutions for theories with warped extra dimensions [31–35].
In our scenario, however, neutrinos localized on the IR brane, as is the case with the
right-handed neutrinos ντ,R, couple in a relevant way to the Higgs and tend to acquire
masses of the same order as the charge lepton masses. This can be seen from the fact
that the Yukawa couplings in Eq. (2.32) will provide a Dirac mass to the third generation
neutrinos mDν̄LνR + h.c.. Therefore, in order to obtain realistic masses we will assume a
double seesaw scenario [36]. We shall first concentrate on the example of third generation
neutrinos. In order to realize this mechanism, we will introduce a Higgs HR, transforming
as (1, 2,−1/2) under SU(2)L ⊗ SU(2)R ⊗ U(1)X , which spontaneously breaks SU(2)R ×
U(1)X → U(1)Y , when its neutral, hyperchargeless, component gets a vacuum expectation
value vR, as well as a localized fermion singlet (1, 1, 0), SL, which provides the Dirac mass
m′DS̄LνR+h.c., where m′D = YRvR/

√
2. Finally, we can also write down a Majorana mass

term as MSLSL. Therefore the mass matrix in the basis (νL, ν
c
R, SL) can be written as

Mν =

 0 mD 0
mD 0 m′D
0 m′D M

 (2.34)

In the limit where m′D � mD � M there is a mass eigenstate ν0 ' νL with a mass
mν0 ' (mD/m

′
D)2M (which is obviously massless in the limit where M = 0), and an

approximate Dirac spinor ν1 = (νcR−SL,−νR+ScL)T/
√

2, with a mass mν1 '
√
m2
D +m′ 2D .

This mechanism has been dubbed in the literature, double seesaw [36]. The double seesaw
mechanism allows for acceptable masses for the left- and right-handed neutrinos without
extreme fine-tuning of the Yukawa couplings. For instance, for mD ' 1 MeV, m′D '
100 MeV and M = O(1 KeV), one obtains a mostly left-handed neutrino of mass of
order 0.1 eV, and an additional pseudo-Dirac neutrino, containing νR, of mass of order
100 MeV. Such masses are enough to accommodate the value of RD(∗) without any sizable
kinematic suppression.

The above mechanism can be easily generalized to give mass to the three generations
of neutrinos. As suggested before, we will consider in the bulk the two RH neutrino
doublets N I

R and add two singlets SIL, while the third generation right-handed leptons
and the singlet S3

L are as before localized in the IR brane. States transform under the
flavor symmetry group U(1)3 = U(1)Le ⊗ U(1)Lµ ⊗ U(1)Lτ , where the lepton number is
defined as L ≡ Le + Lµ + Lτ , in Tab. 1

The quantum numbers in Tab. 1 lead to the off-diagonal entries in Eq. (2.34). In
particular (m′D)ij, defined as

(m′D)iI = Y iI
R S̄

iH̃RN
I
R + h.c.

(m′D)i3 = Y i3
R S̄

iH̃RL
3
R + h.c. (2.35)

is a diagonal matrix, while also the matrix (mD)ij is diagonal as the bi-doublet H does
not carry any lepton number. Moreover we will introduce the non-diagonal Majorana
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Le Lµ Lτ L

N1
R 1 0 0 1

N2
R 0 1 0 1

L3
R 0 0 1 1

HR 1/3 1/3 1/3 1
S1
L 2/3 -1/3 -1/3 0
S2
L -1/3 2/3 -1/3 0
S3
L -1/3 -1/3 2/3 0

Table 1: Leptonic quantum numbers of fields involved in neutrino masses.

mass matrix for singlets as MijS
i
LS

j
L which will constitute a soft breakdown of the global

symmetry U(1)Le ⊗ U(1)Lµ ⊗ U(1)Lτ , by the small M mass matrix elements, leading to
the neutrino mass matrix [36]

mν = mD
1

m′D
M

(
mD

1

m′D

)T
(2.36)

which should describe the neutrino masses and PMNS mixing angles [3].

3 Generating RD(∗)

Only fermion doublets localized on the IR brane, with both non-vanishing components,
will interact with WR. Then we can write the 4D charged current Lagrangian, Eq. (2.19),
in the mass eigenstate fermion basis as

L =
gR√

2

∞∑
n=1

{
ūR(V †uRG

n VdR) /W
n
RdR + τ̄R /W

n
RG

nντR
}

(3.1)

where the matrix form has been used. The coupling matrix Gn can be approximated by

Gn ≡ diag (Gn
1 , G

n
2 , G

n
3 ) (3.2)

where Gn
1,2 � Gn

3 = fnWR
(y1), and fnWR

(y) is the normalized wave-function of the Kaluza-
Klein modes of W n

R (see App. A). After integration of the KK modes we can write down
the effective Lagrangian

Leff = −4GF√
2
VcbCτ (c̄Rγ

µbR)(τ̄RγµντR) (3.3)

which has been normalized to the SM contribution, where the Wilson coefficient is given
by

Cτ =
∑
n

(
gR
2
Gn

3

v

mn

)2
(
V †uR
)

23

Vcb
' 1.45

(
gR
2
G3

v

m1

)2
(
V †uR
)

23

Vcb
(3.4)
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where G3 ≡ G1
3 and m1 are the coupling and mass of the first KK mode, and the pre-factor

1.45 takes into account the contribution of the whole tower.

The Wilson coefficient Cτ contributes to the process b→ cτ ν̄τ and thus to the ratio

RD(∗)

RSM
D(∗)

= 1 + |Cτ |2 (3.5)

where
RSM
D = 0.300± 0.011, RSM

D∗ = 0.310± 0.017 (3.6)

is the SM prediction [37–40], and the best fit value to experimental data is given by
Cτ ' 0.46 [16] 2. Using this value there is a relation between the ratio

(
V †uR
)

23
/Vcb and

the mass m1 given by

m1 '
0.64

sin θR

((
V †uR
)

23

Vcb

)1/2

TeV (3.7)

so that the element
(
V †uR
)

23
as a function of sin θR and the mass m1 is given in Fig. 1.

In principle the anomaly in the branching ratio B(B → D(∗)τRν̄R) might give rise
to a large contribution to the branching fraction B(Ds → τ ν̄) ' 0.05 from the process
s̄c→ τ+

R νR, which is mediated by the KK modes W n
R. However since cR and sR are in the

bulk, and in different SU(2)R doublets, they couple to W n
R only via mixing with the third

generation quarks. This implies that this contribution is further suppressed by a factor
(VdR)32 which, as we will see, is restricted to be small to satisfy the constraints on ∆mBs .
Thus, no significant contribution to the branching ratio B(Ds → τν) is obtained.

Similarly, in this model one would also expect an excess in the observable

R(J/Ψ) =
B(B+

c → J/Ψ τ+ντ )

B(B+
c → J/Ψ µ+νµ)

. (3.8)

The LHCb experiment has recently provided a result on this observable, showing an excess
of the order of 2 σ above the SM expected value, R(J/Ψ)SM ' 0.25–0.28, Ref. [42, 43],
with large errors

R(J/Ψ) = 0.71± 0.25. (3.9)

Theoretical analyses of this observable [44, 45] confirm this anomaly and show it to be
governed by the same operator as the one governing RD(∗) . In our particular model, we
have

R(J/Ψ)

R(J/Ψ)SM

= 1 + |Cτ |2 . (3.10)

Given the value of R(J/Ψ)SM, the measured value of this ratio is about 2.6±1. Hence, the
value of Cτ obtained above to explain RD(∗) can only slightly ameliorate this anomaly, and

2In Ref. [16] the best fit value Cτ ' 0.46 is shown to be consistent with the experimental bound
B(Bc → τ ν̄) < 0.05 [41].
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Figure 1: Contour lines of (V †uR)23 in the plane (sin θR,m1) as fixed from the best fit value to

the experimental data for R
(∗)
D .

one should wait for more accurate experimental measurements of R(J/Ψ) before further
discussion of this issue.

4 Constraints

In this section we will examine the main constraints in processes which are related to
RD(∗) , and where the strong coupling of the third generation RH quarks and leptons to
KK modes plays a significant role. To do that one has to compute the mixing between the
electroweak gauge bosons W±

L and ZL and the KK modes using the effective Lagrangian.

We can easily compute the effective description of the Lagrangian, with mixing terms
WLW

n
L,R and ZLZ

n
L,R, generated by the vacuum expectation values of the bulk Higgs bi-

doublets H and Σ as well as the Higgs doublet HR in the representation (1, 2), with VEV
〈HR〉 = (vR, 0)T , and with QX = −1/2. These are induced from the kinetic terms in the

13



5D Lagrangian as

LGH = tr |gLW a
LT

a
LH− gRHW a

RT
a
R|

2 + tr |gLW a
LT

a
LΣ− gRΣW a

RT
a
R − gXXΣ|2 (4.1)

+ |gRHRW
a
RT

a
R −

1

2
gXXHR|2 (4.2)

where we are using the fact that T aL acts on the bi-doublets rows and T aR on the bi-doublets
columns.

A straightforward calculation gives for the 4D quadratic Lagrangian for the gauge
boson n-th KK modes

LG
n = g2

L

v2

4
WLWL +

g2
L

cos2 θL

v2

8
ZLZL (4.3)

+
v2

4
Gn

3rh(α)

{
g2
L(WLW

n
L + h.c.)− 2v1v2

v2
gLgR(WLW

n
R + h.c.)

}
+
v2

4
Gn

3rh(α)

{
g2
L

cos2 θL
ZLZ

n
L +

gLgR
cos θL cos θR

[
2 sin2 θΣ − cos2 θR

]
ZLZ

n
R

}
where v2 = v2

1 + v2
2 + v2

Σ, the first two terms provide the WL and ZL-masses, and we
have introduced the function rh(α) which depends on the localization in the bulk of the
h Higgs direction acquiring a vacuum expectation value. In fact for a Higgs localized in
the IR brane, α→∞, one gets rh ' 1, while for a Higgs localized towards the UV brane
α ≤ 1 one gets rh ' 0. For α = 2 the Higgs is sufficiently localized towards the IR brane
to solve the hierarchy problem, and we shall use this value in the rest of in this article,
leading to a factor rh ' 0.68.

Another important effect for analyzing the relevant constraints, in the presence of
composite, and partly composite, fermions f , is that in our model the effective operators

OftR = (f̄γµf)(t̄RγµtR) (4.4)

are induced, with Wilson coefficients given by

CftR = −
∑
n

(
Gn

3

mn

)2

rf (cf )

[
g2
L

cos2 θL
(gAffgAtRtR + gZLffgZLtRtR) +

g2
R

cos2 θR
gZRffgZRtRtR

]
.

(4.5)
In the above, we have introduced the function rf (cf ) as

rf (cf ) ≡ Gn
f (cf )/G

n
3 ,

where Gn
f (cf ) is the overlapping integral of fermion zero mode profiles, for the given value

of the cf parameter, and the gauge boson KK mode profile. In particular, for IR localized
fermions, which could be considered as the limiting case where cf → −∞, it turns out
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that limcf→−∞ rf (cf ) = 1. The Wilson coefficients trigger a one-loop modification of the
ZLf̄f couplings, through a top-quark loop diagram followed by emission of the ZL gauge
boson [46],which in turn induces the modification of the corresponding ZLf̄f coupling. In
particular, for the relevant cases we will analyze here f = τR, bR, bL, µL are the composite
(bR, τR), or partly composite (bL, µL), fermions.

4.1 The coupling ZτRτR

As the τR lepton is localized on the IR brane, and it couples strongly to the KK modes,
the main constraint will be the modification of the coupling ZLτRτR, defined as

LZτRτR =
gL

cos θL
τ̄R /ZL(gZLτRτR + δgZLτRτR)τR, (4.6)

where the term δgZLτRτR is constrained by the global fit to the experimental data of
Ref. [47] as

δgZLτRτR = (0.42± 0.62)× 10−3. (4.7)

The term δgZLτRτR in Eq. (4.6) is generated at the tree level by the mixing Zn
L,RZL

induced by the Higgs vacuum expectation value, and through radiative corrections using
the effective operator

OτRtR = (τ̄Rγ
µτR)(t̄RγµtR) (4.8)

with Wilson coefficient given by Eq. (4.5). Using now the mixing terms from Eq. (4.3)
and the couplings from Eqs. (2.21) and (2.22) we can write

δgZLτRτR =
∑
n

(
gRvG

n
3

2mn

)2
{
rh(α)

cos2 θR

[
sin2 θΣ

(
1− 2 sin2 θR

)
− 1

2
cos2 θR

]
(4.9)

+
3h2

t

4π2
log

m1

mt

[
2

3
sin2 θR +

1

cos2 θR

(
1

2
− sin2 θR

)(
1

2
− 2

3
sin2 θR

)]}
,

where the first line comes from the contribution of the KK gauge bosons through mixing
effects and the second line is the radiative contribution from the top quark loop 3 induced
by the operator (4.8). The coupling ht is the SM top-Yukawa coupling, defined by

mt ≡ ht v/
√

2, (4.10)

which is therefore related to the Y u
33 coupling defined in Eq. (2.25) by

ht = cos θΣY
u

33. (4.11)

3We have done the calculation using DimReg and the MS renormalization scheme.
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Figure 2: The region between the (brown) solid lines is allowed by the best fit to δgZLτRτR for
m1 = 3 TeV.

In order to determine the KK-mode contribution we use the condition (3.4) on RD(∗)

and get the allowed region in the plane (sin θΣ, sin θR) shown in Fig. 2, where we are
assuming m1 = 3 TeV. Fig. 2 shows that the constraint on δgZLτRτR puts a lower bound
on sin θΣ, which is given by

sin θΣ =
vΣ

v
& 0.67 , (4.12)

and in particular excludes the value sin θΣ = 0, i.e. it requires the introduction of the
Higgs bi-doublet Σ.

4.2 Oblique observables

In these theories the T -parameter, defined as,

αEM(mZ)T =

[
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

]
, (4.13)

is protected by the custodial symmetry in the bulk only in the case when tan β = 1 and
sin θΣ = 0.
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In general, there may be relevant contributions to the precision electroweak observables
induced by the mixing of the gauge boson zero modes with the KK modes, as given by
Eq. (4.3), as well as loop corrections induced by top loop corrections. In fact in a similar
way as the operator (4.4) is generated by exchange of (An, Zn

L, Z
n
R) KK modes, the operator

(H†iDµH)(t̄Rγ
µtR) (4.14)

is generated by the mixing of ZL with KK modes in (4.3) followed by the exchange
of (Zn

L, Z
n
R) KK modes coupled to the top quark. The radiative correction to the T

parameter is obtained after closing the top-loop, and by emission of a ZL-gauge boson
from it.

There are also loop contributions involving fermionic KK modes, but in a scenario
in which the right handed third generation fermions are localized on the infrared brane,
they strongly depend on the localization of the left handed third generation quarks (see,
for example, Refs. [48–50]). In particular, these loop corrections are strongly suppressed
when the left-handed third generation quarks are localized close to the IR brane, or in the
presence of sizable quark brane kinetic terms. Moreover, unlike the mixing between gauge
KK n-modes and gauge zero modes, which is enhanced for IR brane localized fermions
by ∼ |Gn

3 | =
√

2ky1, the mixing between fermion KK n-modes and fermion zero modes
is ∼ Gn

3/
√
ky1, so that the loop corrections to the T parameter are not volume-enhanced,

while they are suppressed by the mass of the heavy fermions and by loop factors. Hence,
in this work, we shall concentrate on the relevant corrections to flavor physics observables
induced by the gauge boson mixing, and the inter-generational mixing of the right-handed
quarks, as well as by the top loop corrections we have just described from the operator
(4.14). These corrections to the precision electroweak observables are well defined within
our framework, and are strongly correlated with our proposed solution to RD(∗) .

We can easily compute the contributions to the T -parameter induced by the mixing
of the zero mode gauge bosons with the KK modes by using the effective description of
the Lagrangian, with mixing terms WLW

n
L,R and ZLZ

n
L,R, from Eq. (4.3), and at one-loop

from the effective operator (4.14). Working to lowest order, O(v4), in Higgs insertions,
we obtain the result

αT = rh(α)
∑
n

(
gR v G

n
3

2mn

)2
{
rh(α)

[
cos2 2β − 4 sin2 θΣ

(
1− sin2 θΣ

cos2 θR

)
+ sin2 2β sin2 θΣ

(
2− sin2 θΣ

) ]
(4.15)

− 3h2
t

2π2
log

m1

mt

[
− 2

3
sin2 θR +

1

cos2 θR

(
2 sin2 θΣ − cos2 θR

)(1

2
− 2

3
sin2 θR

)]}
where the first two lines is the tree-level result and the third line the radiative correc-
tion induced at one-loop by the mixing between the tree-level (4.3) and one-loop (4.14)
operators.
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Figure 3: The region between the solid lines is allowed by δgZLτRτR (brown lines, as obtained in
Fig. 2) and by the 95 % C.L. bound on the T parameter, for m1 = 3 TeV and tanβ = 1 (black
lines), tanβ = 3 (blue lines) and tanβ = 5 (red lines).

Using now the expression fitting the value of RD(∗) , we can obtain the allowed regions
for the T parameter in the (sin θΣ, sin θR) plane, fixing the values of m1 and tan β. In
Fig. 3, in addition to the δgZLτRτR bounds from Fig. 2, we show the regions allowed by
the T parameter experimental bounds at the 95% confidence level [3]

T = 0.07± 0.12, (4.16)

for m1 = 3 TeV and several values of tan β = 1, 3, 5. The value T = 0 is a middle line
inside every band. In order to reduce the value of the Yukawa coupling Y u

33, Eq. (2.25), we
should consider values of tan β > 1. The intersection of the δgZLτRτR allowed band with
the T parameter allowed band for tan β = 1 (solid brown and black lines, respectively),
define the upper bounds on sin θR and sin θΣ in the regime we are considering as,

sin θR . 0.4 , sin θΣ . 0.75 . (4.17)

As for the S and U parameters, they are defined in our theory as

αEM(mZ)S = 4 sin2 θL cos2 θLΠ′ZZ(0) (4.18)

αEM(mZ)(S + U) = 4 sin2 θLΠ′WW (0) (4.19)
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Figure 4: Contour lines of S (left panel) and U (right panel) for the case m1 = 3 TeV and
tanβ = 2.

which, using the effective description of Eq. (4.3), can be cast as

αEM(mZ)S = −2r2
h(α)

ky1

∑
n

(
vgRG

n
3

2mn

)4

sin2 θR cos2 θL

[
sin2 θR
sin2 θL

+

(
2 sin2 θΣ − cos2 θR

)2

cos2 θR

]
(4.20)

and

αEM(mZ)(S + U) = −2r2
h(α)

ky1

∑
n

(
vgRG

n
3

2mn

)4

sin2 θR cos4 θL

[
sin2 θR
sin2 θL

+
sin2 2β

cos2 θL
cos4 θΣ

]
.

(4.21)
where, as their tree level values is so small we are neglecting its crossing with the radiative
corrections induced by the operator (4.14).

After applying the constraint from the RD(∗) anomaly, fixing the value of the KK mass,
m1 = 3 TeV, and tan β = 2, the S and U countors are depicted in Fig. 4. It follows from
this figure that the predicted values are consistent with the experimental constraint [3]

S = 0.02± 0.10, U = 0.00± 0.09 (4.22)

in all the parameter region. Similar small values of S and U are obtained for other values
of tan β.

19



4.3 Flavor observables

New physics contribution to ∆F = 2 observables appears mainly from exchange of KK
gluons. The leading flavor violating couplings of the KK gluons Gnµ involving RH down
and up quarks is given by

Ls = gs(V
†
uR

)i3(VuR)3jū
i
R/G

n
Gn

3u
j
R + gs(V

†
dR

)i3(VdR)3j d̄
i
R/G

n
Gn

3d
j
R. (4.23)

After integrating out the gluon KK modes we obtain a set of ∆F = 2 dimension six
operators. In particular, the most constrained operators are those given by

Leff = Csd(s̄Rγ
µdR)2 + Ccu(c̄Rγ

µuR)2 + Cbd(b̄Rγ
µdR)2 + Cbs(b̄Rγ

µsR)2 (4.24)

where the Wilson coefficients are given by

Csd =
g2
s

6

[
(V †dR)23(VdR)31

]2∑
n

(
Gn

3

mn

)2

(4.25)

Ccu =
g2
s

6

[
(V †uR)23(VuR)31

]2∑
n

(
Gn

3

mn

)2

(4.26)

Cbd =
g2
s

6
[(VdR)31]2

∑
n

(
Gn

3

mn

)2

(4.27)

Cbs =
g2
s

6

[
(V †dR)23

]2∑
n

(
Gn

3

mn

)2

, (4.28)

where (V †uR)23 is constrained by RD(∗) , see Fig. 1. If, for simplicity, we assume real matrices
VuR and VdR (no CP violation in the right-handed sector) the Wilson coefficients Csd, Ccu,
Cbd and Cbs are constrained from ∆mK , ∆mD, ∆mBd and ∆mBs , respectively, as [51,52]

Csd < 9× 10−7 TeV−2, (4.29)

Ccu < 5.6× 10−7 TeV−2, (4.30)

Cbd < 2.3× 10−6 TeV−2, (4.31)

Cbs < 5× 10−5 TeV−2. (4.32)

Operators involving third generation quarks, although providing weaker bounds on
the Wilson coefficients, are very constraining as they contain the element (V †dR)33 ' 1. In
particular the bounds on Cbd and Cbs, Eqs. (4.31) and (4.32), provide bounds on (VdR)31

and (V †dR)23, respectively, as

|(V †dR)13| . 1.1× 10−3
( m1

3 TeV

)
, |(V †dR)23| . 5.2× 10−3

( m1

3 TeV

)
. (4.33)
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Using now the bounds in Eq. (4.33) we can bound the element Csd as

Csd < 4.5× 10−11
( m1

3 TeV

)2

TeV−2, (4.34)

which is a stronger bound than Eq. (4.29). Moreover, from the definition of Ccu in
Eq. (4.26) and the corresponding bound (4.30), we can fix an upper bound on the element
(VuR)31 using the value of (V †uR)23 provided by RD(∗) . The result is plotted in Fig. 5 as a
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u R
) 3
1

Figure 5: Upper bound on (VuR)31 as a function of sin θR from condition (4.30) for m1=3 TeV,

using the value of (V †uR)23 provided by RD(∗) .

function of sin θR.

4.4 Lepton flavor universality tests

There are two processes where lepton flavor universality has been tested to hold with a
high accuracy. The first one is the ratio

R
µ/e

D(∗) =
B(B → D(∗)µν̄µ)

B(B → D(∗)eν̄e)
(4.35)

which is constrained by experimental data to be R
µ/e

D(∗) . 1.02 [53]. In our model, the
process Γ(b → cW ∗

R → c`ν̄`) = 0, for ` = (µ, e), since only the third generation leptons

couple to WR. Hence, it follows that R
µ/e

D(∗) = R
µ/e

D(∗) |SM ' 1 and the experimental bound
is satisfied .

The second process is

Rτ/`
µ =

B(τ → `ντ ν̄`)/B(τ → `ντ ν̄`)SM
B(µ→ eνµν̄e)/B(µ→ eνµν̄e)SM

, (` = µ, e) (4.36)
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which is constrained by experimental data to be R
τ/µ
µ = 1.0022 ± 0.0030 and R

τ/e
µ =

1.0060 ± 0.0030. It turns out that the contribution to these processes from WR, B(τ →
ντW

∗
R → ντ`ν̄`) and similarly B(µ→ νµW

∗
R → νµ`ν̄`) is negligible for the same reason as

before, and hence the deviation of R
τ/`
τ with respect to the SM values is also negligible,

in good agreement with these measurements.

4.5 LHC bounds

The first neutral KK resonance X1 (X = ZL, ZR, A) can be produced on-shell at LHC in
Drell-Yan processes σ(bb̄→ X1), followed by decays X1 → ff̄ where f = τR, bR, tR. The
production cross-section times branching ratio can be written as∑

X

σ(pp→ X1)× B(X1 → ff̄) =
1

9
g2
R 2ky1f(m1)

[
sin2 θR sin2 θLB(Z1

L → ff̄)

+
1

cos2 θR
(3/2− sin2 θR)2B(Z1

R → ff̄) + sin2 θR cos2 θLB(A1 → ff̄))
]

(4.37)

where f(m1) is the production cross-section for unit coupling obtained by MadGraph

v5 [54].
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Figure 6: Plot of
∑

X σ×B(X1 → f̄f) as a function of sin θR, for m1 = 3 TeV and f = bR (upper
black solid line), f = tR (middle red solid line) and f = τR (lower blue solid line). Horizontal
lines correspond to the 95% CL experimental upper bounds from the ATLAS experiment for
f = bR (upper dashed line), for f = tR (middle dot-dashed red line) and f = τR (lower dotted
blue line).

Our model prediction for
∑

X σ(pp → X1) × B(X1 → f̄f) is given by the upper,
middle and lower solid lines of Fig. 6 for f = bR, tR, τR, respectively. We compare them
with the experimental 95% CL upper bounds from the corresponding processes, which are
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given by the dot-dashed (red), dashed (black) and dotted (blue) horizontal lines from the
ATLAS experiment on σ×B(Z ′ → t̄t) [55], σ×B(Z ′ → b̄b) [56] and σ×B(Z ′ → ττ) [57]
for mZ′ = 3 TeV, respectively. As can be seen from Fig. 6 only the process σ×B(Z ′ → t̄t)
puts a significant bound on our model, of sin θR & 0.15 for m1 = 3 TeV, as we are
assuming.

In a similar way the first charged KK resonance W 1
R can be produced on-shell at

the LHC in the process σ(bc̄ → W 1
R), followed by the decays WR → τRντR , tRb̄R, that

assuming that there are no exotic fermions localized in the IR brane, yield branching
ratios around 1/4 and 3/4, respectively. In our model the production cross sections times
branching-ratio is

σ(pp→ W 1
R)× B(W 1

R → τRντR) ' g2
R

8
G2

3(V †uR)2
23 g(m1) (4.38)

where g(m1) is the production cross-section for unit coupling obtained by MadGraph

v5 [54] 4. Our model prediction for σ(pp → WR) × B(WR → τRντR) is given in Fig. 7,
from where it follows that the model prediction is below the ATLAS 95% CL experimental
upper bound σ(pp → W 1

R) × B(W 1
R → τRντR)exp . 0.0035 pb [58] by a factor of order of

a few.
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Figure 7: Plot of σ(pp → W 1
R)× B(W 1

R → τRντR) as a function of sin θR, for m1 = 3 TeV and

the values of (V †uR)23) required for the solution to the R
(∗)
D anomaly.

In the previous analyses we did not take into account the width of resonances. While
the width (with respect to its mass m1) of the KK photon A1 is around ∼0.24, those of the
other resonances depend on the angle sin θR. For instance, in the range 0.35 . sin θR . 0.5
the Z1

L width varies between 0.05 and 0.08, while those of Z1
R and W 1

R are generically O(1).
For the case of broad resonances, as is the case of the Z1

R and W 1
R resonances, we expect

4We thank Xiaoping Wang for help in the computation of these cross sections.
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that the effect of the width can affect the production cross-section (due to possible KK
mode superpositions) as well as the experimental bounds (due to the absence of a clear
resonance). Recent ATLAS studies [55] show that bounds on the cross-sections for the
case of broad resonances are affected by factors of order a few, while the cross-section
predictions are also affected by similar factors. Hence, although a detailed experimental
and theoretical analysis would be necessary to determine the precise bounds on the gauge
boson KK mode masses, they are expected to be of the same order as the ones shown in
Figs. 6 and 7.

Finally there are also strong constraints on the mass of KK gluons G1 from the cross-
section σ(pp → G1) × B(G1 → t̄t) from the ATLAS experimental analysis in Ref. [55].
As the resonance G1 is a broad one, both the experimental results and the theoretical
calculation of the production cross sections should be re-analyzed to get reliable bounds
on the mass of the KK gluons. However, a simple way of relaxing the bounds is introducing
brane kinetic terms for the SU(3) gauge bosons, in particular in the IR brane. This theory
has been analyzed in Refs. [59, 60], where it is shown that, even for small coefficients in
front of the brane kinetic terms, the coupling of the KK modes Gn to IR localized fermions
decreases very fast while the mass of the modes mn increases. Both facts going in the
same directions, the bounds on KK gluons can be easily avoided. As the strong sector
does not interfere with the electroweak one SU(2)L ⊗ SU(2)R ⊗ U(1)X , the presence
of brane kinetic terms will not affect our mechanism for reproducing the RD(∗) anomaly.
Moreover in the presence of brane kinetic terms for SU(3) gauge bosons the flavor bounds
in Sec. 4.3 should be subsequently softened, an analysis that, to be conservative, we are
not considering in this paper.

5 Predictions

In this section we will present some predictions of our theory consistent with the experi-
mental value of RD(∗) and all the previously analyzed experimental constraints.

5.1 The forward-backward asymmetry Ab
FB

We shall study the shifts in the couplings gZLbL,RbL,R , parametrized as

gZLbL,RbL,R = gSMZLbL,RbL,R + δgZLbL,RbL,R . (5.1)

The shift of these couplings induce an anomalous modification of the forward-backward
bottom asymmetry, conventionally defined as

AbFB =
3

4
AeLR

(
g2
ZLbLbL

− g2
ZLbRbR

g2
ZLbLbL

+ g2
ZlbRbR

)
(5.2)
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where

AeLR =

(
g2
ZLeLeL

− g2
ZLeReR

g2
ZLeLeL

+ g2
ZleReR

)
(5.3)

The currently measured value of δAbFB = AbFB
∣∣
exp
− AbFB

∣∣
SM

is given by,

δAbFB = −0.0038± 0.0016, (5.4)

and hence AbFB exhibits a ∼2.3 σ anomalous departure with respect to the SM predic-
tion [61].

In our model the values of δgZLbLbL and δgZLbRbR are induced by the ZLZ
n
L,R mixing, in

turn induced by the electroweak breaking, followed by the corresponding coupling gZLbLbL
or gZRbRbR

5, and by one-loop radiative corrections induced by the operators in Eq. (4.4).
An analysis similar to that done in Sec. 4.1 yields the expressions

δgZLbRbR =
∑
n

(
gRvG

n
3

2mn

)2
{
rh(α)

cos2 θR

[
sin2 θΣ

(
1− 2

3
sin2 θR

)
− 1

2
cos2 θR

]
(5.5)

+
3h2

t

4π2
log

m1

mt

[
2

9
sin2 θR +

1

cos2 θR

(
1

2
− 1

3
sin2 θR

)(
1

2
− 2

3
sin2 θR

)]}

and

δgZLbLbL =
∑
n

(
gRvG

n
3

2mn

)2

rf (cbL) sin2 θR

{
rh(α)

[
1

2 sin2 θL
− 1

2
+

sin2 θΣ

3 cos2 θR

]
(5.6)

+
3h2

t

4π2
log

m1

mt

[
−1

9
+

1

6 cos2 θR

(
1

2
− 2

3
sin2 θR

)]}

where, again, the first lines in Eqs. (5.5) and (5.6) are the contributions from the gauge
bosons KK modes through mixing effects, and the second lines come from the contribution
of the radiative corrections induced by the operators

ObR,LtR = (b̄R,Lγ
µbR,L)(t̄RγµtR) .

Finally, the modification of the left-handed and right-handed bottom couplings to the
Z gauge boson induce a modification of AbFB which, at linear order in δgZbL,RbL,R is given
by

δAbFB = −0.183 δgZLbRbR − 0.033 δgZLbLbL . (5.7)

The shift δgZLbLbL is constrained by electroweak precision data, to be [47]

5A related analysis of the bottom forward-backward asymmetry in models with custodial symmetry
in warped extra dimensions has been performed in Ref. [62]

25



0.001

0.002

0.003

0.004

0.005

0.006

0.1 0.2 0.3 0.4 0.5
0.20

0.25

0.30

0.35

0.40

0.45

0.50

sin θR

c b
L

0.0005

0.001

0.0015

0.002

0.1 0.2 0.3 0.4 0.5
0.20

0.25

0.30

0.35

0.40

0.45

0.50

sin θR

c μ
L

Figure 8: Left panel: Contour lines of δgZLbLbL in the plane (sin θR, cbL) where we have fixed
sin θΣ = 0.72. The white region is allowed by electroweak precision data at the 95% CL. Right
panel: The same for δgZLµLµL.

δgZLbLbL = (3.3± 1.7)× 10−3, (5.8)

The region (5.8) constrains the available values of cbL , as shown in the left panel of Fig. 8,
where we have fixed sin θΣ = 0.72 and where the shaded area is excluded at the 95% CL.

After fixing the condition to fit RD(∗) , and using e.g. the value cbL = 0.35, for which
δgZLbLbL ' 4.7 × 10−3, we find that the 1 σ (2 σ) experimental value (5.4) is obtained
between the dashed (dot-dashed) lines in Fig. 9, implying that the anomalous value of AbFB
remains consistent with the explanation of the RD(∗) anomaly, and the rest of electroweak
and LHC constraints, for the parameter region near tan β = 2 ± 1, sin θR ' 0.32 ± 0.08
and sin θΣ ' 0.72± 0.02. Observe, however, that tan β close to one demands large values
of the top-quark Yukawa coupling. As it is clear from Fig. 9, for somewhat larger values
of tan β the corrections to the right-handed bottom coupling allow to reduce the current
2.3 σ anomaly on AbFB into a value that is about 1 σ away from the central experimental
value.

Observe that this custodial symmetry model differs from the results obtained in an
abelian gauge symmetry extension of the SM, where an explanation of the forward-
backward asymmetry demands the extra gauge bosons to be light, with masses below
about 150 GeV, in order to induce small corrections to the T parameter [63].
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5.2 The processes B → Kνν and B+ → K+τ+τ−

The RD(∗) anomaly can in principle induce a large production in the process B → Kν̄ν,
i.e. b→ sν̄ν, mainly induced by the RH neutral current Lagrangian 6

L =
gR

cos θR

∞∑
n=1

{
(V †dR)23 gZRdRdR G

n
3 (s̄R /Z

n
RbR) + gZRνRνR G

n
3 (ν̄R /Z

n
RνR)

}
(5.9)

where the couplings of ZR to RH quarks and leptons are given in Eq. (2.21). After
integrating out the KK modes we get the effective Lagrangian

Lννeff = −gZRdRdR gZRνRνR
1

2 cos2 θR
(V †dR)23

∑
n

(
gRG

n
3

mn

)2

(s̄Rγ
µbR)(ν̄γµ(1 + γ5)ν)

≡ −4GF√
2
VtbV

∗
ts

αEM
4π

Cνν (s̄Rγ
µbR)(ν̄γµ(1 + γ5)ν) (5.10)

where we are normalizing B(B → KνRνR) to the SM value of
∑

` B(B → Kν`ν`), and

6Notice that gZLνRνR = gAνRνR = 0 and hence no ZnL or An mediated processes occur.
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the Wilson coefficient Cνν is given by

Cνν =
1

2 cos2 θR

(
1

2
− 1

3
sin2 θR

)
4π

αEM
(V †dR)23

1

Vcb

∑
n

(
gRvG

n
3

2mn

)2

(5.11)

and where we have used that in the Wolfenstein parametrization Vcb = −Vts = Aλ2, and
Vtb = 1.

Now we can write the ratio

Rνν
K =

B(B → Kνν)

B(B → Kνν)SM
= 1 +

1

3

|Cνν |2

|CSM
νν |2

' 1 + 0.008 |Cνν |2, (5.12)

where we have used the SM prediction CSM
νν ' −6.4 [64]. Using the experimental bound

Rνν
K < 5.2 at the 95% CL [14], one finds the bound |Cνν | . 23. However, after imposing

the constraints coming from the flavor condition (4.33) on the matrix element (V †dR)23,
one easily obtains values that are well below the experimental bound, particularly for
values of sin θR > 0.2. This is shown in the left panel of Fig. 10, where we plot contours
of constant Rνν

K in the plane (sin θR,m1) after using the bound for (V †dR)23 in Eq. (4.33).
Lower values of Rνν

K may be obtained for smaller values of sin θR by using the freedom
on the value of (V †dR)23, as shown in the right panel of Fig. 10, where we plot Rνν

K in the

plane
(

sin θR, (V
†
dR

)23

)
after fixing m1 = 3 TeV.

28



This model predicts a strong ττ production in the observable

Rτ
K =

B(B+ → K+ττ)

B(B+ → K+ττ)SM
(5.13)

In our model this observable is dominated by the Wilson coefficient Cτ
RR such that

Rτ
K ' 1 +

∣∣∣∣Cτ
RR

CSM
LL

∣∣∣∣2 (5.14)

where

Cτ
RR = − 8π

αEM

∑
n

(
gRvG

n
3

2mn

)2 (V †dR)23

V ∗ts

[
1

3
sin2 θR +

1

cos2 θR

(
1

2
− 1

3
sin2 θR

)(
1

2
− sin2 θR

)]
(5.15)

Contour lines of constant Rτ
K are presented in Fig. 11 for m1 = 3 TeV. The results are
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Figure 11: Contour lines of RτK in the plane [sin θR, |(V †dR)23|], for values of (V †dR)23 consistent
with the flavor constraints.

widely consistent with present experimental bounds from the BaBar Collaboration [65]
which yield the 90% CL upper bound, Rτ

K < 104.
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5.3 RK(∗)

One of the general applications of our theory is that it generically predicts a value of RK(∗)

RK(∗) =
BR(B → K(∗)µ+µ−)

BR(B → K(∗)e+e−)
, (5.16)

which can easily differ from its SM prediction [66, 67]. The general effective operator
Lagangian is written as

Leff =
4GF√

2

αEM
4π

V ∗tsVtb
∑
i

CiOi. (5.17)

We will find it convenient to work in the chiral basis for the operators Oi such that
operators

Oχχ′ = (s̄χγ
µbχ)(¯̀

χ′γµ`χ′) (5.18)

with chiralities χ, χ′ = {L,R}, have Wilson coefficients defined as C`
χχ′ ≡ CSM

χχ′ +∆C`
χχ′

7.
The SM predictions are given by

CSM
LL ' 8.4, CSM

RL ' CSM
LR ' CSM

RR ' 0 (5.19)

while ∆C`
χχ′ are the contributions to the Wilson coefficients coming from New Physics.

The prediction of RK(∗) is given by

RK(∗) =
|Cµ

LL + Cµ
LR ± C

µ
RL ± C

µ
RR|2 + |Cµ

LR − C
µ
LL ± C

µ
RR ∓ C

µ
RL|2

|Ce
LL + Ce

LR ± Ce
RL ± Ce

RR|2 + |Ce
LR − Ce

LL ± Ce
RR ∓ Ce

RL|2
(5.20)

where the upper signs correspond to RK and the lower signs to RK∗ and we have assumed
that the polarization of the K∗ is close to p = 1, what is a good approximation in
the relevant q2 region associated with the RK∗ measurement [69]. The above equation,
Eq. (5.20), shows the well known correlation (anti-correlation) of the corrections to RK

and RK∗ associated to the left- (right-) handed currents. Therefore, considering the fact
that both RK and RK∗ are suppressed with respect to the SM values, this leads to a
preference of new physics effects involving left-handed currents.

The experimental value of RK(∗) departs from the SM prediction RK(∗) ' 1 [70] by
around 2.5 σ. Moreover global fits [71–77] to a number of observables, including the
branching ratios for B → K∗``, Bs → φµµ, and Bs → µµ, favor a solution where
∆Cµ

LL < 0 while ∆Cµ
RL ' ∆Cµ

LR ' ∆Cµ
RR ' 0, and ∆Ce

χ,χ′ ' 0 for χ, χ′ = {L,R}.
In fact, in our model, for

ceL,R & 1/2, cµR & 1/2 (5.21)

7The relation with the usual non-chiral basis, C
(′)
9,10, [68] is given by: CLL = C9−C10, CLR = C9+C10,

CRL = C ′9 − C ′10 and CRR = C ′9 + C ′10.
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it turns out that Ce
χχ′ ' CSM

χχ′ and ∆Cµ
LR ' ∆Cµ

RR ' 0 8. On the other hand the prediction
for ∆Cµ

LL is given by

∆Cµ
LL = − 8π

αEM

∑
n

(
gRvG

n
3

2mn

)2

rf (cbL)rf (cµL)·

sin2 θR

[(
1

2 sin2 θL
− 1

3

)(
1

2
− sin2 θL

)
+

1

3
cos2 θL −

1

12

sin2 θR
cos2 θR

,

]
(5.22)

where the first, second and third terms inside the square bracket comes from the con-
tribution of the Zn

L, An and Zn
R KK modes, respectively, and we are assuming [78] that

VuL ' 1 and VdL ' V , the CKM matrix. Similarly, the prediction for ∆Cµ
RL is given by

∆Cµ
RL = − 8π

αEM

∑
n

(
gRvG

n
3

2mn

)2

rf (cµL)
[
(V †dR)23/V

∗
ts

]
· (5.23)

sin2 θR

[
1

3

(
−1

2
+ sin2 θL

)
+

1

3
cos2 θL +

1

2 cos2 θR

(
−1

2
+

1

3
sin2 θR

)]
.

Observe that the combined contribution to ∆Cµ
LL from the Zn

L and An KK modes is con-
siderably larger than the one from the Zn

R KK modes. Recent global fits to experimental
data [75] yield the 1 σ (2 σ) prediction

∆Cµ
LL ⊂ [−1.66,−1.04]1σ, [−1.98,−0.76]2σ (5.24)

which constitutes a ∼ 4.8 σ deviation with respect to the SM prediction. On the other
hand Cµ

RL has to be small and in fact the global fit yields [75]

∆Cµ
RL ⊂ [−0.04, 0.36]1σ, [−0.24, 0.56]2σ (5.25)

which only depart ∼0.8 σ from the SM prediction.

The left panel of Fig. 12 shows the 1 σ (solid lines) and 2 σ contours of ∆Cµ
LL in the

plane (cbL , cµL), where we have fixed sin θR = 0.35. The values of cbL and cµL are mainly
constrained from δgZLbLbL , as given in Eq. (5.6), and plotted in the left panel of Fig. 8,
and from δgZLµLµL as given by

δgZLµLµL =
∑
n

(
gRvG

n
3

2mn

)2

rf (cµL) sin2 θR

{
rh(α)

[
1

2 sin2 θL
− 1

2
− sin2 θΣ

cos2 θR

]

+
1

12 cos2 θR

3h2
t

4π2
log

m1

mt

}
, (5.26)

8Or, in the usual basis language, ∆Cµ9 = −∆Cµ10 and ∆C ′µ9,10 ' 0.
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Figure 12: Left panel: Contour lines of constant ∆CµLL in the plane (cbL , cµL) using VdL ' V , at
1 σ (solid lines) and 2 σ (dashed lines) level as defined in Eq. (5.24). The value of sin θR = 0.35
has been fixed. Right panel: Contour lines of constant ∆CµRL in the plane (sin θR, cµL) after

selecting the upper bound on |(V †dR)23| ' 0.005 obtained in Eq. (4.33). In both panels the shaded
yellow area corresponds to the excluded area obtained in Fig. 8.

where, again, the first line in Eq. (5.26) denote the contributions from the gauge bosons
KK modes through the mixing and the second line denote those from the radiative cor-
rections induced by the operators

OµLtR = (µ̄Lγ
µµL)(t̄RγµtR) .

The prediction for δgZLµLµL is plotted in the right panel of Fig. 8, where we also have
fixed sin θΣ = 0.72, and where the white region is allowed at the 95% CL given the fitted
value to experimental data [47]

δgZLµL uL = (0.1± 1.2)× 10−3. (5.27)

Moreover, from Fig. 8 at 95% CL, cbL & 0.28 and cµL & 0.38, independently on the value
of sin θR. The forbidden regions in Fig. 12 are represented by shaded light-yellow areas.

The prediction for Cµ
RL is shown in the right panel of Fig. 12 in the plane (sin θR, cµL)

where we are already using the upper bound on (V †dR)23 from flavor observables, while the
shaded region is excluded by δgZLµLµL . We see that the values of ∆Cµ

RL in the region
defined by Eq. (5.20) are always . O(0.1) and hence in accordance with the global fits,
Eq. (5.25).
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6 Conclusions

The experimental measurements of RD(∗) show significant deviations from the SM values, a
surprising result due to the tree-level nature of this process in the SM. Possible resolutions
of this anomaly face significant constraints from the excellent agreement of flavor physics
observables with the values predicted within the SM. In this work, we have presented
an explicit realization of the solution to the RD(∗) anomaly based on the contribution of
right-handed currents of quarks and leptons to this process. The model is based on the
embedding of the SM in warped space, with a bulk gauge symmetry SU(2)L⊗ SU(2)R⊗
U(1)B−L, with third-generation right-handed quarks and leptons localized on the infrared-
brane, ensuring a large coupling of these modes to the charged gauge boson W n

R KK-
modes.

The right-handed SU(2)R gauge boson KK-modes provide the necessary contribution
to RD(∗) , due to relevant mixing parameters in the right-handed up-quark sector. This may
be done without inducing large contributions to the B-meson invisible decays, or the B-
meson mixings, since these observables strongly depend on the down-quark right handed
mixing angles, which do not affect RD(∗) in any significant way within this framework.
The mass of the lightest KK-mode tends to be of about a few TeV, and it is in natural
agreement with current LHC constraints.

An important assumption within this model is that there is no mixing in the lepton
sector. This can be ensured with appropriate symmetries, that must be (softly) broken
in order to allow the proper neutrino mixing. We have presented a scenario, based on
symmetries and a double seesaw mechanism, that allows for a proper description of the
lepton sector of the model. The origin of the new parameters in the lepton sector remains,
however, as one of the most challenging aspects of these (and many) scenarios. Aside of
this question, beyond providing a resolution to the RD(∗) anomaly, this model also provides
a solution of the hierarchy problem, has an explicit custodial symmetry that implies small
corrections to the precision electroweak observables, and allows a solution to the RK(∗)

anomalies mainly via the contribution of the SU(2)L KK modes. Moreover, the proposed
model naturally predicts an anomalous value of the forward-backward asymmetry AbFB,
as implied by LEP data, driven by the Zb̄RbR coupling.
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A The KK-modes

The KK-modes of the gauge bosons can be obtained by solving the equation of motion

m2
AfA +

(
e−2yḟA

)·
= 0 . (A.1)

where we are using the notation ḟ ≡ df/dy. The (+,+) boundary conditions lead to the
following wavefunction

f
(+,+)
A (y) = C

(+,+)
0 eky

[
J1(eky−ky1m̂) + C

(+,+)
1 Y1(eky−ky1m̂)

]
, (A.2)

where

C
(+,+)
1 = −J0(e−ky1m̂)

Y0(e−ky1m̂)
(A.3)

guarantees the Neumann boundary condition in the UV brane, and Jα and Yα correspond
to the Bessel functions of the first and second kind respectively. We have defined here
m̂ ≡ m/ρ with ρ = e−ky1k.

By the same way, the boundary conditions (−,+) lead to

f
(−,+)
A (y) = C

(−,+)
0 eky

[
J1(eky−ky1m̂) + C

(−,+)
1 Y1(eky−ky1m̂)

]
, (A.4)

where

C
(−,+)
1 = −J1(e−ky1m̂)

Y1(e−ky1m̂)
(A.5)
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guarantees the Dirichlet boundary condition in the UV brane. In these expressions C
(+,+)
0

and C
(−,+)
0 are arbitrary constants. Notice that a constant fA(y) fulfills the (+,+) bound-

ary conditions, and from Eq. (A.1) one finds that this corresponds to a zero mode. The
(−,+) boundary conditions, however, do not lead to zero modes.

In the limit of large ky1, the Neumann boundary conditions in the IR brane lead to
the following equations for the eigenvalues

0 = J0(m̂++) +
π

2
Y0(m̂++)

1

ky1

+O(1/k2y2
1) , (A.6)

0 = J0(m̂−+) +
π

4
m̂2
−+Y0(m̂−+)e−2ky1 +O(e−4ky1) , (A.7)

for (+,+) and (−,+) boundary conditions respectively. Taking into account the expansion
of the Bessel function J0(m̂+ δm̂) = J0(m̂)− J1(m̂)δm̂+O(δm̂2), one finds the following
eigenvalues

m̂
(n)
++ = m̂

(n)
0 +

π

2

Y0(m̂
(n)
0 )

J1(m̂
(n)
0 )

1

ky1

+O(1/k2y2
1) , (A.8)

m̂
(n)
−+ = m̂

(n)
0 +

π

4
m̂

(n) 2
0

Y0(m̂
(n)
0 )

J1(m̂
(n)
0 )

e−2ky1 +O(e−4ky1) , (A.9)

where m̂
(n)
0 is the n-th zero of the J0(m̂) function, in particular:

m̂
(n)
0 = {2.405, 5.520, 8.654, 11.792, 14.931, · · · } .

The second term in the right-hand side of Eq. (A.9) leads to corrections of O(10−28) −
O(10−30) for the five lightest eigenvalues when ky1 = 35, so that this correction can be
considered negligible. The correction in Eq. (A.8) is ≈ 0.045, so the difference between
the eigenvalues is then

m̂
(n)
++ − m̂

(n)
−+ =

π

2

Y0(m̂
(n)
0 )

J1(m̂
(n)
0 )

1

ky1

+O(1/k2y2
1) (A.10)

of order 0.045 for all the modes. This difference will be neglected throughout this paper.

Let us now compute the value of the coupling fnWR
(ky1) = f

(−,+), n
A (ky1), where we are

normalizing the wave functions such that, Eq. (2.18),∫ y1

0

dyf 2
A(y) = y1 . (A.11)

The function fA(y) grows with y, so that this integral is dominated by the regime close
to y ' y1. In this regime the dominant contribution to the wave function is the term
∼ ekyJ1(eky−ky1m̂) in Eqs. (A.2) and (A.4), i.e.

fA(y) ' C0e
kyJ1(eky−ky1m̂) . (A.12)
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If we focus on the (−+) solution, then one has

y1 ' (C
(−,+)
0 )2

∫ y1

0

dy e2ky[J1(eky−ky1m̂)]2

' (C
(−,+)
0 )2

∫ y1

0

dy e2ky

(
[J1(eky−ky1m̂)]2 + J1(eky−ky1m̂)

1

k

d

dy
J1(eky−ky1m̂)

)
=

1

2k
(C

(−,+)
0 )2

∫ y1

0

dy
d

dy

[
e2ky

[
J1(eky−ky1m̂)

]2 ]
' 1

2k
(C

(−,+)
0 )2e2ky1 [J1(m̂)]2 . (A.13)

In the second equality we have added a term whose integral is vanishing when m̂ is an
eigenvalue of J0(m̂). To see this, let us note that

e2kyJ1(eky−ky1m̂)
d

dy
J1(eky−ky1m̂) =

d

dy

[
1

2
e2kyJ0(eky−ky1m̂)J2(eky−ky1m̂)

]
. (A.14)

This implies that after integrating this term in
∫ y1

0
dy, the result is ∝ J0(m̂), which is

vanishing 9. From Eqs. (A.12) and (A.13) one finally finds

|f (−+), n
A (y1)| '

√
2ky1 . (A.15)

This result is valid for any eigenvalue, in the approximation where we are neglecting
corrections of O(e−2ky1) for the lightest eigenvalues. The wave functions with boundary
conditions (++) have some small deviations with respect to Eq. (A.15) but we also find

|f (++), n
A (y1)| '

√
2ky1 for the non-vanishing modes. Therefore in this paper we will use

the approximation where

|f (++), n
A (y1)| ' |f (−+), n

A (y1)| '
√

2ky1 . (A.16)
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