
Draft version July 13, 2018
Typeset using LATEX twocolumn style in AASTeX62

An Eigenvector-based Method of Radio Array Calibration and Its Application to the Tianlai Cylinder Pathfinder

Shifan Zuo,1, 2 Ue-Li Pen,3, 4 Fengquan Wu,1 Jixia Li,1, 2 Albert Stebbins,5 Yougang Wang,1 and Xuelei Chen1, 2, 6

1Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101,
China

2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
3Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario M5S 3H8, Canada

4Canadian Institute for Advanced Research, CIFAR Program in Gravitation and Cosmology, Toronto, Ontario M5G 1Z8, Canada
5Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

6Center of High Energy Physics, Peking University, Beijing 100871, China

ABSTRACT

We propose an eigenvector-based formalism for the calibration of radio interferometer arrays. In the
presence of a strong dominant point source, the complex gains of the array can be obtained by taking
the first eigenvector of the visibility matrix. We use the stable principle component analysis (SPCA)

method to help separate outliers and noise from the calibrator signal to improve the performance of
the method. This method can be applied with poorly known beam model of the antenna, and is
insensitive to outliers or imperfections in the data, and has low computational complexity. It thus is

particularly suitable for the initial calibration of the array, which can serve as the initial point for more
accurate calibrations. We demonstrate this method by applying it to the cylinder pathfinder of the
Tianlai experiment, which aims to measure the dark energy equation of state using the baryon acoustic

oscillation (BAO) features in the large scale structure by making intensity mapping observation of the
redshifted 21 cm emission of the neutral hydrogen (HI). The complex gain of the array elements and
the beam profile in the East-West direction (short axis of the cylinder) are successfully obtained by
applying this method to the transit data of bright radio sources.

Keywords: techniques: interferometric, instrumentation: interferometers, methods: data analysis

1. INTRODUCTION

Calibration of a telescope is to determine the vari-

ous parameters which characterize the telescope model
by solving equations linking the observational data to
these parameters. In the case of a radio interferome-
ter array, the model typically includes the beam and
polarization response, the band pass, and the complex
gain of the receiving elements. In most cases, even if
the beam response of the telescope is relatively stable,
the amplitudes and phases of the receivers (complex
gain) still vary significantly and must be calibrated dur-
ing observation. Many interferometer array calibration
methods have been developed and are in wide use (see
e.g. Thompson et al. 1986; Perley et al. 1999; Sault
et al. 1996; Hamaker 2000; Smirnov 2011a,b). In re-
cent years, with the need of achieving high precision for
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arrays with very large number of elements, and espe-
cially the low frequency arrays which have large field of

view (FoV) where direction-dependent beam response
must be taken into account, the calibration methods are
further developed and refined, e.g. the SAGECal al-
gorithm Kazemi et al. (2011), the Wirtinger derivative
method Tasse (2014), the Statistically Efficient and Fast
Calibration (StEFCal) Salvini & Wijnholds (2014), the
Complex optimization method Smirnov & Tasse (2015),
the Facet calibration method van Weeren et al. (2016),
etc.

Calibration is usually a multi-step and iterative pro-
cess. After a reasonably good initial model of the tele-
scope is achieved, the model is refined to take into ac-
count smaller effects. While the initial calibration is a
coarse one, it also has the challenge that the model of

telescope is largely unknown, so it needs to be blind
and robust. In this paper, we present a method of cal-
ibrating the complex gains of the interferometer array
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based on eigenvector decomposition1, which is accurate
and computationally efficient. To make it more robust
in the presence of missing data or occasional outliers,
we also improve the method by using a technique called
the stable principal component analysis (SPCA) to sep-
arate the dominant calibrator signal, the noise and the
occasional outlier components by exploiting their differ-
ent properties in the covariance matrix. As a concrete
example, the method is applied to the calibration of the
Tianlai cylinder array pathfinder.

The Tianlai2 (Chinese for “heavenly sound”) project
(Chen 2012; Xu et al. 2015) is an experimental effort
to make intensity mapping (Chang et al. 2008) observa-
tions of the redshifted 21cm line from the neutral hydro-
gen, in order to measure the baryon acoustic oscillation
(BAO) signal of large scale structure, and measure the
dark energy equation of state. The Tianlai pathfinder
includes both a dish array with 16 dishes, compactly ar-
ranged in two concentric rings (Zhang et al. 2016a), and

a cylinder array with three north-south oriented cylin-
ders (Zhang et al. 2016b), containing 31, 32, and 33
feed elements respectively. The construction of the two
arrays was completed in 2015, and the first trial observa-

tion were done in September 2016. We have developed
a data processing pipeline for the arrays, and here we
present the method of its initial calibration.

This paper is organized as follows: In Sec. 2 we intro-
duce the basic principle of the complex gain determina-
tion using eigenvector analysis method and its general-

ization to the stable PCA method. In Sec.3 we apply the
method to the Tianlai array. We summarize the results
in Sec. 4.

The notation used in this paper is as follows: the vec-

tors and matrices as a whole are denoted by bold let-
ters. The l0-(quasi)norm of a vector z, denoted as ‖z‖0
is defined as the number of non-zero elements of z; the

l1-norm of z is defined as ‖z‖1 =
∑n
i=1 |zi|. The l0- and

l1- norms for a matrix X are defined by taking it as an
vector. The Frobenius norm of a matrix X is defined

as ‖X‖F =
√

Tr (XX†), where TrM denotes the trace
of the matrix M. Finally, the vector hard-thresholding
operator Θλ(z) is defined component-wise as

Θλ(zi) =

{
zi if |zi| > λ;

0 otherwise.
(1)

2. BASIC PRINCIPLE

1 This method was previously used by K. Bandura in the cal-
ibration of the Pittsburgh cylinder in his Ph.D. thesis (Bandura
2011).

2 http://tianlai.bao.ac.cn

In radio interferometry a visibility Vij is the instanta-
neous correlation between the voltages from two receiver
feed elements Fi and Fj . Without losing generality, we
may assume there are two orthogonal polarizations X
and Y in each feed. In the Tianlai cylinder case, the
feeds are dipoles with linear polarization, and we shall
call the east-west polarization X and north-south polar-
ization Y . The interferometer takes four combinations
of the measurements V XXij , V XYij , V Y Xij and V Y Yij for
each baseline (i, j). In this paper, we deal with only
the non-polarized calibration, i.e., we do the calibration
for only V XXij and V Y Yij independently. For symbolic
simplicity, we omit the XX and Y Y superscript in the
following discussion. With noise, the voltage of element
i is

Fi = gi

∫
d2n̂Ai(n̂)E(n̂)e−2πin̂·ui + ni (2)

where E(n̂) is the electric field of the radio wave coming
from direction n̂ on the celestial sphere, Ai(n̂) is the
primary beam of feed i, and gi is a direction-independent

complex gain factor that calibration seeks to solve, and
ni is the noise in receiver i. Assuming that the signal
and noise are uncorrelated, and neglecting the couplings
between the feeds, the visibility is ideally given by

Vij ≡〈FiF ∗j 〉

= gig
∗
j

∫
d2n̂Ai(n̂)A∗j (n̂)e−2πin̂·uijI(n̂) + 〈nin∗j 〉,

where uij = (ri − rj)/λ is the baseline vector between
the two feeds in units of wavelength, and I(n̂) is the

sky intensity distribution. One can substitute the sky
model and telescope model into these equations to solve
for the complex gains.

2.1. Complex Gain as Eigenvectors

If we have a good knowledge on the primary beam re-
sponses Ai(n̂), the positions ui, and a sky model I(n̂),
neglecting noise, we can compute the visibilities induced
by the sky model V model

ij . The ratio between the obser-
vation and data is

Rij = V obs
ij /V model

ij = gig
∗
j . (3)

or in matrix form,

R = gg†, (4)

where g is a vector with its i-th element being the gain
gi.

One can simply go for numerical solution of Eq. (4) by
putting in the model and observed values. However, tak-
ing note of the form of Eq. (4), an eigen-analysis method

http://tianlai.bao.ac.cn
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presents itself for solution. Specifically, because R is a
rank-one matrix, it has only one non-zero eigenvalue in
the absence of noise. Note that Rg = (gg†)g = g(g† ·g)
and g† · g = ||g||2 =

∑
i |gi|2 is a real number, so the

(unnormalized) eigenvector of R is g, with eigenvalue
||g||2. Thus, in principle the complex gains of the array
could be obtained by solving the eigenvalue problem for
the matrix R.

However, noise is present in actual measurement, and
the beam response is not precisely known so the com-
putation of the model visibility is inaccurate or even
impossible, making the solution with Eq. (3) and (4)
impractical in the general case. But if there is a strong
radio point source with flux Sc at direction n̂0 which
dominates over the noise, then

Vij = V 0
ij + nin

∗
j , (5)

where ni, nj are the noise from the receivers i, j respec-
tively, and

V 0
ij =ScGiG

∗
j , (6)

with

Gi = giAi(n̂0)e−2πin̂0·ui ; (7)

in matrix form,

V0 = ScGG†. (8)

The vector G which includes complex gain and beam

response is an eigenvector of V0.
If noise is present but small compared with the cali-

brator source and statistically equal in all elements, i.e.
V = V0 + N, where N = 〈nn†〉, the vector G could be

obtained by principal component analysis (PCA): solv-
ing the eigenvector of the matrix V, with the eigenvec-
tor associated with the largest eigenvalue identified as

G. This is also the least square solution of the form
V = gg†. To prove this, introduce a Lagrangian multi-
plier λ, and normalize the solution to satisfy

gi =
√
λvi,

∑
|vi|2 = 1,

define the residual error

ε ≡
∑
i,j

(Vij − λviv̄j)2.

The least square solution is obtained by ∂ε/∂v̄i = 0, i.e.∑
j

Vijvj = λvi. (9)

which is the eigenvector equation. Note also that adding
a constant along the diagonal of the matrix does not

change the solution, and for a unit normalized covari-
ance matrix, setting the diagonals to zero does not affect
the solution either.

This is the basic idea of calibration with eigenvec-
tor analysis. The solution obtained as an eigenvec-
tor automatically satisfies both the phase and the am-
plitude closure relations. This is because the quan-
tity gi is of the form gi = |gi| eiφi , from the algebraic
identity (φi − φj) + (φj − φk) + (φk − φi) = 0 and
|gi||gj ||gk||gl| = |gi||gk||gj ||gl| we always have

Arg(gig
∗
j ) + Arg(gjg

∗
k) + Arg(gkg

∗
i ) = 0,

and
|gig∗j ||gkg∗l | = |gig∗k||gjg∗l |.

2.2. Stable Principle Component Analysis

In the real world, in addition to the calibrator source

and noise, there may be radio frequency interferences
(RFIs), or some data might be missing due to various
reasons, e.g. receiver malfunction. Even though some

of the RFIs and missing data might be removed in pre-
processing, some large residues may still be present and
wreck the PCA. In such a case, the observed visibilities
can be modeled as

V = V0 + S + N, (10)

where V0 = ScGG† is a rank 1 matrix from the calibra-
tor (strong point source), S is a sparse matrix whose ele-

ments are outliers (the un-flagged RFI, abnormal value,
etc) which may have large magnitude, and N is a matrix
with dense small elements which represents the noise,

signal of fainter objects in the field of view, cross-talks
and so on, and we assume it has a magnitude smaller
than the non-zero elements of the outliers S. The sta-
ble principal component analysis (SPCA) method (Zhou

et al. 2010) may be applied to solve the problem in this
case. In this approach, the observed data matrix X is
decomposed as X = L+S+N where L is a matrix of low
rank, S a sparse matrix (i.e. only a small fraction of its
elements are non-zero), and N is a dense noise matrix.
In our case, the SPCA would yield L = ScGG† = V0.

The SPCA decomposition is achieved by solving the

following optimization problem

min
L,S

1

2
‖X− L− S‖2F + λ‖S‖0

subject to rank(L) ≤ r. This is done with a block co-
ordinate descent strategy: first take an estimate of out-
liers S and subtract it out to get the “cleaned” data
C = X−S, and fit L based on C. Then, we update the
outliers S by hard thresholding on the error E = X−L.
That is, iterate the following steps until it converges:
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1. L = SVDr(X− S);

2. λ =
√

2 log(mn) MAD(X− L) / 0.6745;

3. S = Θ√2λ(X− L).

Here, SVDr(M) is the rank-r truncated SVD of the ma-
trix M, i.e., the SVD with all small singular values be-
ing truncated to zero except the largest r ones, Θλ(zi)
is the hard-thresholding operator defined in Eq. (1),
MAD is the median absolute deviation, MAD(E) =
med(|E−med(E)|) for a real matrix E, where med de-
notes the median of the sample. The MAD provides
a robust estimate for the “standard error”, in the case
of independent and identically distributed (i.i.d.) real
Gaussian variable E ∈ Rm×n,

σ̂ = MAD(E) / 0.6745. (11)

For the complex case,

MAD(E) =
√

MAD(<E)2 + MAD(=E)2 (12)

Some entries of X may not be available, e.g., the data
flagged as RFI. Let Ω ⊂ {(i, j) : i = 1, · · · ,m, j =

1, · · · , n} be the index set of the available entries of X,
and Ωc be its complement. To deal with the missing
data, we first set Xij = 0 for (i, j) ∈ Ωc while keep-
ing other values unchanged, then solve the optimization

problem as before but with the additional constraint,

(L + S + N)ij = 0, for (i, j) ∈ Ωc. (13)

If in the solution the values of these elements in the

low-rank component L are close to 0, in Ωc they will
introduce only small perturbations to the data, which
would be separated out as small noises and assigned to

the matrix N. On the other hand, if the corresponding
values of L are large, they will be treated as outliers, as
long as the support of the true outliers and the induced
outliers are not too large as to cause the algorithm fail.
This would have little effect for the recovery of the low-
rank component L, which is usually the one in which we
are most interested in practice.

Applying the SPCA to Eq. (10), we solve for

min
V0,S

[
1

2
‖V −V0 − S‖2F + λ‖S‖0

]
s.t. rank(V0) ≤ 1.

(14)

To solve Eq. (14), we need to initialize the outliers S.
The simplest choice would be S = 0, which works in
most cases. Alternatively, we may set

S =

{
V −med(V); if |V −med(V)| ≥ τ MAD(V);

0; otherwise,

(15)

where τ is a chosen threshold, usually between 3 and
5. The motivation for this initialization is that we ex-
pect elements of V0 are of similar magnitude, so values
that are well above the median would likely be outliers.
This initialization helps to make the algorithm converge
faster.

The SPCA decomposition and eigen-analysis calibra-
tion method only assumed very simple telescope and sky
models. It is fairly robust, and the computation com-
plexity ∝ N instead of ∝ N2, where N is the number of
elements in the array, which make it scalable to arrays
with a very large number of elements.

2.3. Extension to Polarization

The method described above can also be extended to
case of full polarization response calibration with po-
larized points sources. To characterize the full polar-
ization states, in addition to the same polarization cor-
relations, we should also include the cross-polarization

correlations, i.e. V XXij , V Y Yij , V XYij , V Y Xij for linear po-
larization feeds, or V LLij , V LRij , V RLij and V RRij for circular
polarization feeds.

Denote the electric field of the incoming wave in or-
thogonal polarization components p, p = (vX , vY ) for
linear polarizations or p = (vL, vR) for circular polar-

ization. For a system of N antennas/feeds, the 2N com-
ponent array voltage response is given by

q = Gp, (16)

where G is an N × 2 gain matrix. The observed visibil-

ities are (neglecting noise)

V = 〈qq†〉 = G〈pp†〉G†. (17)

If there is one dominating point source, the brightness
matrix is B = 〈pp∗〉, and

B =

(
I +Q U + iV

U − iV I −Q

)
. (18)

for the linear polarization,

B =

(
I + V Q+ iU

Q− iU I − V

)
. (19)

for circular polarization. Substituting Eq.( 18) or
Eq. (19) into Eq. (17), we see that V is a rank 2 matrix.
This is valid for a single dominating source, regardless
whether it is polarized or not. As in the un-polarized

case, we model the imperfections as noise and outliers,

V = V0 + S + N, (20)
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where we define

V0 = GBG†, (21)

which is the visibility generated by the point source, and
it’s a rank 2 matrix. As in the un-polarized case, S is a
sparse matrix whose non-zero elements are outliers, and
N is a small dense noise matrix.

The decomposition in Eq. (20) could also be done by
the same SPCA algorithm, except the rank of V0 is 2
instead of 1. But now the problem is how to solve for
the gain G from Eq. (21). It is not possible to uniquely
determine G by observing a single calibrator source. To
obtain the full solution of the system gain G, three cal-
ibrators with different polarizations are needed.

Below we shall solve the XX and Y Y polarizations
separately without considering the cross-polarization
correlations; this is equivalent to the solution of two un-
polarized cases. The calibration of the Tianlai array

with full polarization response will be deferred to future
studies.

3. APPLICATION TO THE TIANLAI ARRAY

For illustration, we apply the calibration method de-
scribed above to the Tianlai Cylinder Array, which con-
sists of three adjacent north-south oriented parabolic

cylinders. A total of 96 dual-polarization feeds are in-
stalled on them, with 31, 32, and 33 units on the three
cylinders which all span the same length of 12.4 meters,

so that the distance between the feeds are 41.33 cm,
40.00 cm and 38.75 cm respectively. This arrangement
forms slightly unequal baselines in order to reduce the
grating lobes (Zhang et al. 2016b). The data set used

here was collected during the first light drift scan ob-
servation on 27 September, 2016. We choose a period
of the data when the sky calibration source Cygnus A

(Cyg A) transits over the array. The transit time is
13:25:46 (UT+0h). Before calibration, the data is first
pre-processed to remove known bad channels and strong
radio frequency interferences (RFIs). The SumThresh-
old method Offringa et al. (2010) is used for RFI flag-
ging. As an example, here we show the result for the
frequency channel of ν = 750 MHz.

Due to logistic reasons, the Tianlai array antenna is
located a relatively long distance away from the station
house, where the electronic systems sit. The radio fre-
quency signal from the antenna feed, after first being
amplified by a low noise amplifier (LNA), is converted
to an analog optical signal and transmitted via optical
fiber (RF over fiber) to the station house. The cable
length is about 7 km, and varies slightly as the environ-
ment temperature changes. This necessitate a two step
calibration procedure: in the first step, we use a period-
ically broadcasted artificial noise source signal to do a

relative phase calibration, so as to compensate the phase
variations over time induced by the cable delay; then we
perform an absolute calibration by using a strong radio
source on the sky.

3.1. Noise Source Calibration

The signal from the artificial noise calibrator is much
stronger than the signal from sky, and its broadcasting
time is known, so it is easily recognized in the data.
The noise source can be viewed as a near-field source.
Approximately, its visibility can be approximated as

V ns
ij ≈Sn

Ai(n̂i)A
∗
j (n̂j)√

ΩiΩj

r2

rirj
e−ik·(ri−rj) (22)

where ri, rj are the distance between the noise source
and the receiving feed i, j respectively. However, even if
the pre-factor in Eq. (22 is not exact, the phase factor

e−ik·(ri−rj) would still be right. The noise source is

switched on and off periodically, and the time averaged
visibility data obtained are

V on
ij = Gij(V

sky
ij + V ns

ij + nij)

V off
ij = Gij(V

sky
ij + nij),

so we have

V on
ij − V off

ij = GijV
ns
ij + δnij

≈ C|Gij |e−ik∆Lije−ik(ri−rj),

where δnij is the difference of the random noise. As the
calibrator signal is much stronger, we can neglect the
noise. ∆Lij is the equivalent instrument delay difference

between the channels i and j, which are mostly due to
the variation in the cable length for the two channels.
The phase of it is

φij = Arg(V on
ij − V off

ij ) = k∆Lij + const., (23)

where we have used the fact that the relative position
of the noise source and the receiving feeds are fixed and
the coefficient factor C is stable.

For most receivers the calibrator is in the side lobe
of the beam, so the observed amplitude is not very sta-
ble. We therefore only use it to correct for the phase
change. An example of this phase change is shown in
Fig.1 for the XX linear polarization of several baselines
(the baselines are marked by the pair of receiver num-
ber). We see the phases change smoothly for a small

amount during the night, varying a few degrees for most
baselines. However, the changes are more significant and
rapid during day time, when the temperatures varies
more significantly, which affects the length of the opti-
cal fibers.
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Figure 1. The phase change of some baselines. The XX
polarization of the pairs (10, 26), (15, 95), (1, 31), (26, 32),
(32, 56) and (63, 71) are plotted. Top: phase changes during
one day; Bottom: phase changes during two hours in the
night. The results for Y Y signal are similar. .

We compensate for the relative phase change due to

∆L in the relative phase calibrated visibility:

V rel-cal
ij = e−iφijVij . (24)

After this step, the phase variation over time in the ob-
served visibility is removed, but there is still an unknown
constant phase factor to be determined in V rel-cal

ij , which
must be determined from absolute calibration using sky
source.

3.2. Sky Source Calibration

After compensating for the relative phase changes, we
use the calibrator on-off data for sky calibration. In
this first stage calibration, we use the strongest radio
point sources during its meridian transit as the calibra-
tor. Cyg A is an excellent source for such purpose, as
its position is very close to the zenith of the array. We

also used several other strong sources, such as the Cas-
siopeia A (Cas A), Taurus A (Tau A), Virgo A (Vir A).
In this first stage calibration, we calibrate the XX and
Y Y linear polarizations separately; the full-polarization
calibration will be deferred to future works.

Figure 2. The eigenvalues of V0 (green) and V (red). The
top and bottom panels are for the XX (East-West) polar-
ization and Y Y (North-South) polarization respectively.

As shown by the discussions above, in the ideal case

of a single dominating point source we should have only
one non-zero eigenvalue in the visibility V. In Fig. 2, we
show the eigenvalues for the observed visibility data V

(red points). Actually, besides the largest one, there are
also a few other sizable eigenvalues, which are perhaps
due to the effect of outliers or noises. In contrast, we
also show the matrix V0 obtained by the SPCA decom-
position (green points) on the same plot. In this case
there is a single large value, and the remaining eigenval-
ues are all very small; the SPCA decomposition helps to
separate out the components and get better calibration
precision.

In Fig. 3 we plot the magnitude of the eigenvector cor-

responding to the largest eigenvalue of V (red) and V0

(green). The eigenvector is taken as the solution of G,
from which the gain gi of each receiver unit is obtained.
Note that for V0, several gain values are nearly zero,
which are due to malfunctioning hardware. The SPCA
automatically separated these out as outliers. The other
gain values are slightly affected, but generally the mag-

nitude are comparable with each other. So we see the
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Figure 3. Magnitude of the eigenvector corresponding to
the largest eigenvalue of V0 (green) and V (red). The top
and bottom panels are for the XX (East-West) polarization
and Y Y (North-South) polarization respectively.

presence of large outliers biases the principal compo-

nents estimation, but the SPCA may help remove these
outliers.

We show the SPCA decomposition of the observed vis-

ibility in Fig. 4 for the Cyg A transit. The three com-
ponents are successfully separated. Although the auto-
correlation (the main diagonal of the V matrix) of each
feed is high, it does not appear in the recovered rank-one
matrix V0. The auto-correlation is dominated by noise,
but amazingly, the much smaller visibility induced by
the sky source is extracted from the data. Also we note
that in the recovered V0, there are several apparently
symmetric horizontal/vertical strips that have value of 0.
We have checked that they correspond to the bad feeds,

which are automatically detected in this decomposition.
The outliers are picked out and put in the sparse S as
expected. Though we call S the outliers matrix, not
all of its non-zero elements are outliers. The high noise
in the auto-correlations and short baselines also come
under S in this classification. For the same reason, ele-
ments in N are not all pure random noise, and we can

see some obvious patterns in it. Three squares along the
main diagonal are formed by the correlations/cross-talks
between feeds along the same cylinder.

In Fig. 5 we show a snapshot of solved G at the transit
time of Cyg A obtained from the SPCA analysis. Both
the real and imaginary parts as well as the amplitude of
Gi are shown. We see that the phase of G are randomly
distributed, but most feeds has a typical |Gi| value of
300 ∼ 400 (digital output, arbitrary units). But a few
feeds have small gain amplitude, |Gi| ≈ 0; these are the
malfunction ones.

If the beam response Ai(n̂) and the positions of the
antenna/feed ui are accurately known, we can solve the
gain gi for each feed i from Gi. But the beam response
of the Tianlai cylinder array has not been measured be-
fore. While a beam model was computed with electro-
magnetic field simulation (Cianciara et al. 2017), it is
based on the ideal model, while the actual construction
could be different. Here we fit the beam profile from the
observed data.

From Eq. (7), the normalized Gi is given by

Ĝi ≡
Gi
|Gi|

= ĝiEi, (25)

where ĝi ≡ gi/|gi| and and Ei = e−2πin̂0·ui . We used
the fact that the beam profile Ai(n̂0) is real. Ei varies

as the calibration source transits over the beam. As-
suming that the receiver is stable and its complex gain
gi a constant during this period, we may fit ĝi with the

observational data. This determines the phase of the
gain gi. For the amplitude |gi|,

|Gi| = |gi|Ai(n̂0), (26)

We see |gi| is degenerate with the normalization of beam

response Ai(n̂0). We may choose a normalization, e.g.,
take Ai(ẑ) = 1 in the direction of zenith. In fact, it
happens that the declination of Cyg A (40◦44′02′′) is
close to the latitude of the Tianlai site (44◦09′08′′), so it
crosses near the Zenith during its transit. The cylinder
array beam response is a narrow strip along the north-
south direction and it varies slowly near the zenith, so
as a first approximation we can normalize Ai ≈ 1 at the
direction of Cyg A when it transits over the array.

In Fig. 6, we show the total sky visibility and the
various components (the Cyg A, the outlier and the
noise) obtained by decomposition for two baselines dur-
ing a period of 40 minutes centered at Cyg A’s tran-
sit time. The two baselines shown are for the element

pair (1, 13) (short, north-south direction) and the ele-
ment pair (15, 80)(long, nearly east-west) XX polariza-
tion. We have removed the part when the artificial noise
calibrator was on, so the curves are broken at the time of
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(a) V (b) V0

(c) S (d) N

(e) V (f) V0

(g) S (h) N

Figure 4. SPCA Decomposition of the XX (top, a,b,c,d) and Y Y (bottom,e,f,g,h) visibilities for the Cyg A transit. For each
sub-figure, left is the real part of the data and right is its imaginary part.

their broadcasting. As expected, for the Cyg A (marked
”cyg” in the figure) component (V0), the NS baseline
show a general profile of the primary beam, while the
EW baseline shows interferometer fringes with primary
beam as the envelope. The outlier and noise compo-
nents are small for these two baselines during the Cyg
A transit.

The outlier matrix is a sparse one, for most baselines
it is small, as in the last figure, but occasionally the

decomposition yields non-zero outlier components; two
examples are shown in Fig.7. These are more frequently
seen in the visibility of the short baselines, which per-
haps have higher noise levels due to cross-interference.
In the top panel of Fig. 7, the outlier component is
much greater than the threshold and so varies smoothly
during the observation. In the bottom panel, as the

level of the “outlier” component is close to the thresh-
old λ =

√
2 log (mn) σ̂, there is some degeneracy of the

two components and we can see the “mixing” or rapid
switching of the two during the observation. This how-
ever does not affect the calibration which uses only the
point source component which is still stable.

We see the signal of the point source Cyg A is domi-
nant in about half an hour. When its signal dominates,
the SPCA algorithm can successfully extract it from
the observed visibility, but the algorithm fails when its
strength drops to the level of noise. When the algorithm
fails, the solution of the low-rank component is some-
what unstable. The relative strength between the signal

and the noise level can be roughly quantified by the ra-
tio between the largest eigenvalues of V0 and V −V0.
In Fig. 8, we show the largest and second largest eigen-
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Figure 5. The snapshot of solved G for XX(top panel) and
Y Y (bottom panel) polarization at the transit time of Cyg A.

values of the matrix V (marked as V1, V2) in solid and
dashed blue curves respectively, and the largest eigen-

value of the SPCA component V0 in green curve, as
well as the eigenvalue of the matrix V−V0 in red curve
during the transit. The largest eigenvalue of V is signif-
icantly larger than the second from 13:19 UT to 13:32
UT. At the same time, the largest eigenvalue of V0 is
significantly larger than the largest eigenvalue of the re-
maining components V − V0, showing the dominance
of the calibrator signal. Beyond this time interval, the
eigenvalues of V become comparable with each other,
and the largest eigenvalue of V0 drops below that of
V − V0. The algorithm begins to fail to extract the
low-rank signal component as the signal strength drops.
We can truncate the algorithm here. However, in prac-
tice we find that the algorithm can go a much longer way

until the largest eigenvalue of V0 drops below a factor
c < 1 of that of V − V0. To make the computation
run smoothly, we make the following remedy: when the

Figure 6. Samples of SPCA decomposition result with
nearly zero outliers during Cyg A transit. Top: a north-
south short baseline (1, 31) XX polarization; Bottom: an
east-west long baseline (15, 80) XX polarization. The three
subpanels in each plot are, from top to bottom, the real part,
imaginary part and the magnitude of the visibility.

largest non-zero eigenvalue of the solved low-rank com-
ponent V0 falls below a factor c (we take c = 0.2) of
the largest eigenvalue of the residual matrix V−V0, we
take Veff

0 = SVD1(V −V0). This makes the algorithm
works more smoothly during a run, but note that this

solution is no longer the true dominating low-rank com-
ponents (i.e., the visibility matrix of the point source).

To check the precision of the calibration, we compare
the gains obtained for several strong point sources with
different transit times, including the Cyg A, the Cas A
and the Tau A. They all transit over the array during the
night in that observation, over a time span of about 9
hours. The result is shown in Fig. 9. We see the complex
gain solutions obtained for the three calibrator sources
are highly consistent with each other, especially in their

phases. The amplitudes of the gains have some differ-
ences, but note that in the approach described above, in
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Figure 7. Samples of SPCA decomposition result with non-
zero outliers during Cyg A transit. Similar to Fig. 6, but
for two different baselines which exhibit the non-zero out-
liers. Top: baseline (2, 3) XX polarization; Bottom: baseline
(32, 40) XX polarization.

each case the beam Ai(n̂0) is normalized to 1 at the peak

of the transit, but the three calibrators are actually lo-
cated at different declinations, so part of this difference
may come from the north-south beam profile.

3.3. Redundant Baselines

The redundant baselines of an interferometer array
are baselines with the same direction and length but
formed by different pairs of receivers. Theoretically, the
redundant baselines should all have identical outputs,
so they provide a good check on the calibration. The
difference in their output reflects the non-uniformity of
the system.

In the Tianlai cylinder array, the receivers on the same
cylinder are placed along the due North-South direction

with equal spacings, though the spacing for the three
cylinders are different (the three cylinders have 31, 32
and 33 feeds respectively, each with a total length of
12.4 m, so that and the average center-to-center spacings

Figure 8. the variation of the largest eigenvalue of V, V0

and V −V0.

are 0.4133 m, 0.40 m, 0.3875m respectively). Thus, for

receivers on the same cylinder, except for the longest
one, the baselines all have redundancy, with the shorter
ones having more redundancy.

In Fig. 10 we show all the visibilities of the redundant
baselines for a single frequency at the moment of Cyg
A meridian transit. If the gain of the receivers are the
same, with only difference in the phase, we would ex-

pect that the visibilities all have the same magnitude,
but with different phases, so in the complex plane they
should form a circle. As shown in the top panel of the fig-

ure, there is a circular distribution of the visibilities, but
the magnitudes spread over the whole circle area, due
to both differences in the receiver gain amplitude and

the noise. The uncalibrated V0 component extracted
by the SPCA process is shown in the middle panel of
Fig. 10, where the ring of data points have less spread
in the radius, as the noise is removed. Some points in
the Origin are from malfunctioning feeds which produce
too small output. After calibration (bottom panel), for
each redundant baseline, the visibilities from the dif-

ferent pairs are indeed collapsed to a single point, and
all the points of the different baselines form a nearly
perfect circle, as one would have expected from the the-
ory. This shows that our method of calibration indeed
works with high precision. The “redundant baseline”
calibration method assums that the visibility from re-
dundant baselines should all be the same, and uses this
to solve for the array gain. However, noise or outliers
may affect the precision of such calibration method, as
shown by Fig. 10. If the redundant baseline calibra-
tion is performed when a strong source dominates, the
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(a) XX(EW) polarization

(b) YY(NS) polarization

Figure 9. The complex gains of (a) The XX(East-West)
polarization and (b) YY (North-South) polarization. For
each polarization, the amplitude (top) and phase (bottom)
are shown for the three different calibrators: Cyg A (cyg),
Cas A (cas), and Tau A (crab).

SPCA method may also be applied to extract the signal
component for use in the redundant baseline calibration,
which may help improve the signal to noise ratio.

3.4. Beam Profile

Fig. 11 shows the solved |Gi| for all 96 feeds during

the Cyg A transit, centering on the calculated time of
astrometric transit. We arrange the feeds on the three
cylinders, which are clearly marked by the two dark hor-
izontal lines in the figure. The regularly spaced verti-
cal white stripes corresponds to the time of artificial
calibrator broadcasting. The bad feeds are shown as
blue/white horizontal lines. From the figure, we can see
also the approximate beam profiles for each feed, be-
cause |Gi| ∝ Ai(n̂0) if gi is constant or changes slowly.

During the construction of the array we made our best

effort to install the feeds along the same North-South

Figure 10. The redundant baseline visibilities for one of
the cylinder. Top: uncalibrated visibilities; Middle: the un-
calibrated visibility component V0; Bottom: the calibrated
visibilities.

line and adjusted their pointing to be along the plumb
line. However, it was understood that there maybe er-
rors in both the manufacture and the installation of the
feeds, and also winds etc. may affect position and point-
ing of the feeds. The cylinder reflector surface may also
have some error. As shown in Fig. 11, the measured
beam profiles for the different feeds are not completely
aligned; this is especially obvious in the second (middle)
and third (top) cylinders. We flag out the abnormal
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(a) East-West pol

(b) North-South pol

Figure 11. The solved |G| for the XX and Y Y polarization
during 40 minutes of the Cyg A transit period. The center of
beam profiles is found by fitting a sinc function to the good
data.

ones, and then fit the remaining ones with a Gaussian

function or a sinc function along the east-west direction.
The center point of the profile for the sinc function fit is
plotted in Fig. 11 as the blue points in the center, from

which the mis-alignment of the beam is more apparently
shown. The maximum deviation of the transit peak is
108 seconds, corresponding to an angle of 0.45◦. The
median value of the deviation is 28 seconds, correspond-
ing to an angle of 0.12◦. Field inspection and experiment
is needed to determine the actual cause of the misalign-
ment, which is beyond the scope of the present paper
and will be investigated in future works on the testing
of the Tianlai array.

We fit a common beam profile by combining the nor-

malized and aligned data (exclude the bad/abnormal
ones). The result for the frequency of 750 MHz is shown
in Fig. 12, where we plot both the Gaussian and the sinc
function fitting curves. The different receiver units have

(a) XX polarization, FWHM = 3.6◦

(b) YY polarization, FWHM = 3.15◦

Figure 12. The fitted beam profile.

almost identical beam profile in the central part. In the
side lobes the profiles of different units vary a lot, but
note that in the side lobe there is also large measurement
error, as the calibrator signal is no longer dominant over

the noise. The Gaussian and sinc fitting curves also co-
incide with each other in the center part. From the fit-
ted Gaussian function we can obtain the FWHM of the
beam width. Using θFWHM = ΩEarth∆TFWHM/ cos δsrc
(cos δCygA ≈ 1) we find the FWHM beam width is 3.6◦

for the XX polarization, and 3.15◦ for the Y Y polar-
ization.

4. CONCLUSION

We have developed a method for the initial calibra-
tion of the complex gains of a radio interferometer ar-
ray by taking the observational data of a strong point
source, and arranging the visibilities (interferometer cor-
relations) as a matrix Vij with indices denoting the pairs
of receiver feeds, then solving for the eigenvector of the
matrix. The eigenvector of the matrix with the largest
eigenvalue gives a least square solution to the complex
gains of the receivers. To deal with the noise and outliers
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(e.g. malfunctioning feeds, and residual RFIs) which are
frequently seen in such data, we improve the method by
first using a stable principal component analysis (SPCA)
algorithm to decompose the visibility matrix into the
point calibrator signal (a low rank matrix), an outlier
component (a sparse matrix), and a noise component (a
matrix with dense small elements). When the calibrator
signal is strong, this decomposition yields unique solu-
tion. While in this paper we have applied the method to
transit observations, it can also be used for tracking ob-
servation. The method can also be extended to treat the
calibration of full polarization responses, though in that
case calibration observation for at least three polarized
calibrator sources are need for solving the additional pa-
rameters in the measurement equation.

We applied this method to the first light data of the
Tianlai cylinder pathfinder array. The calibration is
performed using both periodically broadcasted artificial
noise calibrator for the relative instrument phases and

strong astronomical radio sources for both phase and
amplitude of complex gains. We find that the instru-
ment phases are very stable during the night, though
during day time the phases vary as the environment

temperature changes. Checking with visibilities of the
redundant baselines, we find that as expected, the cal-
ibrated visibilities form a circle on the complex plane,

while the raw visibilities spread out as an irregular disk.
The SPCA algorithm can be used to extract the signal
component from the noise and outliers, which may also

be useful to help improve the signal-to-noise ratio in the
calibrations based on the redundant baselines.

Based on the strong source transit data, the cylinder
beam profile is measured along the East-West direction

for each feed. We find that despite engineering efforts,

there is some misalignment in the feed response, the
exact cause is still to be determined. We also have fitted
the beam profile with Gaussian and sinc functions. After
adjusting for the misalignment, the central part of the
beam for the different feeds agree very well, and the
FWHM beam width are measured.

Much further analysis with more data is necessary to
fully characterize the performance of the Tianlai array
and to accurately calibrate its response. The aim of the
present work is to present a method of array calibration
based on eigenvector analysis and SPCA decomposition.
The method is shown to work with a sample of the Tian-
lai data. We have incorporated this method in the Tian-
lai data processing pipeline3, and it will be used in our
subsequent works on the testing and commissioning of
the Tianlai pathfinder arrays.
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