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Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initi-
ated by a dynamical process of “inertial spontaneous symmetry breaking” that does not involve
a potential. This is dictated by the structure of the Weyl current, Kµ, and a cosmological phase
during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining
exact Weyl invariance in the renormalized quantum theory is straightforward when renormalization
conditions are referred back to the VEV’s of fields in the action of the theory, which implies a con-
served Weyl current. We do not require scale invariant regulators. We illustrate the computation
of a Weyl invariant Coleman-Weinberg potential.

I. INTRODUCTION

The discovery of the Higgs boson with the appearance
of a fundamental, point-like, scalar field, unaccompanied
by a natural custodial symmetry, has led many authors,
in search of a new organising principle, to turn to scale
symmetry. In particular, Weyl symmetry [1] in conjunc-
tion with gravity may provide a modern context for fun-
damental scalar fields and a foundational symmetry for
physics [2–5]. Scale or Weyl symmetry, like many of the
flavour symmetries seen in nature, must be broken. Of-
ten the breaking is treated spontaneously, implemented
for scale invariant potentials via the Coleman Weinberg
(CW) mechanism of dimensional transmutation [6].

In this paper we emphasise that that there is a new
way to break scale symmetry that does not employ a po-

tential. While this mechanism is implicit in many of the
approaches taken to spontaneously generating the Planck
scale, it seems not to have been made explicit prior to
ref [3]. This mechanism is a direct consequence of the
structure of the Weyl scale current. We call this inertial
spontaneous symmetry breaking.

A crucial aspect of this mechanism is that quantum
theory should not break scale symmetry. We believe this
is generally possible. To understand this, it is important
that one does not conflate the procedure of regularisa-
tion, which generally introduces arbitrary mass scales,
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and renormalisation, which introduces counter-terms to
define the final theory and its symmetries. Though it
may be convenient, one need not deploy a regulator that
is consistent with the symmetries of the renormalised the-
ory. The nonexistence of a symmetry in the regulator
does not imply the nonexistence of the symmetry in the
renormalised theory. Furthermore, physics should not
depend upon the choice of regulator [7].

In this view, Weyl symmetry is central and all mass
scales must emerge by way of random initial conditions
governing VEV’s (Vacuum Expectation Values) of fields
that are entirely contained within the action. Essentially
there exist no fundamental mass scales, and the mass of
anything is defined only relative to field VEV’s in the
theory. For this to be phenomenologically acceptable it
is necessary to explain how the spontaneous breaking of
Weyl symmetry can lead to a period of inflation followed
by a reheat phase and transition in the infrared to a
theory describing the fundamental states of matter and
their interactions with an hierarchically large difference
between the Planck scale and the electroweak breaking
scale.

Remarkably it has been shown in a simplified model
involving two scalar fields that this structure is possible
[2, 3]. The model has a scale invariant scalar potential
and non-minimal coupling of the scalar fields to the Ricci
scalar. When the fields develop VEVs the Planck scale
is generated spontaneously in the Brans-Dicke manner.
For a wide range of the non-minimal couplings and scalar
interactions, there is an initial period of “slow-roll” in-
flation that can give acceptable values for the slow-roll
parameters. This is followed by a “reheat” phase and a
flow of the field VEVs to an infrared fixed point at which
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the ratio of the scalar field VEVs are determined by the
dimensionless couplings of the theory. Thus it is possible
to arrange an hierarchically large ratio for the VEVs and,
interpreting the second scalar as modelling the Standard
Model Higgs boson, this large ratio corresponds to the
ratio between the Planck scale and the electroweak scale.
In this paper we will concentrate on explaining how

inertial symmetry breaking comes about. To clarify the
discussion we use the 2-scalar model mentioned above for
illustration but the mechanism and methods discussed
immediately extend to the general case of Weyl invariant
models involving fundamental scalars.
In section II we present the mechanism for inertial

spontaneous symmetry breaking that results from the
conservation of the Weyl current. As it does not involve
a potential the mechanism opens a new pathway to gen-
erating spontaneous scale symmetry breaking and the as-
sociated spontaneous breaking of other symmetries. As
such it may be useful for novel aspects of model building.
In section III we discuss how Weyl invariance is main-

tained at the quantum level and thus preserves the in-
ertial spontaneous symmetry breaking mechanism. The
crucial aspect of this is the decoupling of the dilaton [8]
and the appearance of the inertial spontaneous symme-
try breaking scale. As a result the logarithmic corrections
that normally break the scale invariance now automat-
ically depend only on physically relevant ratios of field
VEVs which preserve the underlying Weyl invariance of
the theory. We compare this procedure to previous pro-
posals for scale invariant regularisation that require an
arbitrary choice of regulator, a function of the scalar
fields.
Finally, in section IV, we present a summary of our

results and the conclusions to be drawn.

II. INERTIAL SPONTANEOUS SYMMETRY

BREAKING.

To illustrate the mechanism it is convenient to con-
sider a simple example of a real scalar field theory action
implementing Brans-Dicke gravity (our metric signature
convention is (1,−1,−1,−1)),

S =

∫ √−g

(
1

2
gµυ∂µφ∂νφ−W (φ)− 1

12
αφ2R

)
(1)

where the scalar potential is given by:

W (φ) =
λ

4!
φ4. (2)

If α = 1, this theory has the local Weyl invariance given
by:

gµν → e−2σ(x)gµν φ → eσ(x)φ(x) (3)

In this case, redefining the metric as: gµν →
(φ2/M2)φ(x)g̃µν to go from the Jordan to the Einstein
frame, we can remove φ altogether from the action,

and we are left with an Einstein-Hilbert action in the
“new metric” g̃µν with a cosmological constant λM4

and a vanishing Weyl current [9] but with a wrong-sign

M2R term [10]). If, however, we consider the case that
α < 0, the field φ can acquire a vacuum expectation value
(VEV), and this then generates a right-sign Planck mass,

M2
P = −(1/6)α〈φ〉2 [3].
For α < 0 the theory is only globally Weyl (scale)

invariant. The associated conserved Noether current is
given by:

Kµ =
δS

δ∂µσ
= (1− α)φ∂µφ (4)

where:

DµKµ = 4W (φ)− φ
δ

δφ
W (φ) (5)

For the scale invariant potential of eq.(2) we have that
the rhs of eq.(5) vanishes and the Kµ current is then co-
variantly conserved (this can be seen from the combiend
Einstein and Klein-Gordan equations of motion, [3]).
The Noether current can be written in terms of a “Ker-

nal,” K, given by:

Kµ = ∂µK, K =
1

2
(1 − α)φ2 (6)

For the case of N scalars, φi, with action given by:1

S =

∫
d4x

√−g

[
− 1

12

N∑

i

αiφ
2
iR

+
1

2

N∑

i

∂µφi∂
µφi −W (~φ)

]
(7)

with:

W (~φ) =

N∑

i

N∑

i

φ2
iWijφ

2
j (8)

the Noether current generalises to [3]:

K =
1

2

N∑

i=1

(1 − αi)φ
2
i . (9)

Using the K-current we can easily understand the dy-
namics of this theory. If we take the φi to be functions
of time t only, the current conservation equation implies:

K̈ + 3

(
ȧ

a

)
K̇ = 0. (10)

1 It is straightforward to extend this effective Lagrangian to matter
and gauge fields [2, 8, 11].
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In a Friedman-Robertson-Walker universe (gµν =
[1,−a2(t),−a2(t),−a2(t)]) this can be readily solved to
give:

K = c1 + c2

∫
dt

a3(t)
. (11)

where c1,2 are constants. Therefore in an expanding uni-
verseK will evolve to a constant value, K → K̄. In other
words, the scalar fields will rapidly evolve such that their
values will be constrained to lie on the N -dimensional
ellipsoid given by eq(9).2 Since K has dimension of
(mass)2, a constant vacuum value of K implies a spon-
taneous breaking of the scale symmetry in the theory
has occurred. Note that, unlike the CW mechanism, this
does not employ a potential but is driven solely by the
initial conditions. K is the order parameter of inertial
spontaneous symmetry breaking.

In the single scalar case, as K → K̄, the Jordan the-
ory flows to the Einstein frame theory with parameters

Λ = λK̄2

(1−α)2 , M
2
P = − αK̄

3(1−α) , f2 = K̄, explicitly demon-

strating how the equivalence between the theories defined
in the two different frames is achieved dynamically. In
a multi scalar theory the flow K → K̄ does not fix the
relative values of the scalar field VEVs, which initially
end up at some random point on the ellipse. It is here
that the potential becomes important.

In the infrared (IR) the fields, attached to the ellipse,
flow towards an IR fixed point in which the ratios of
the field VEVs are determined by the potential terms
alone [3]. For the case that the potential has a flat di-
rection, the vacuum energy vanishes at the minimum,
corresponding to vanishing cosmological constant. The
IR fixed point is then the intersection of the potential’s
flat direction with the ellipsoid. The ratios of the VEV’s
is then determined by the scalar potential couplings, but
constrained by the requirement the fields lie on the N -
dimensonal ellipsoid.

For the case that the potential is positive definite, the
IR fixed point corresponds to an eternally inflating de-
Sitter solution in which the ratio of the field VEV’s is de-
termined by the scalar potential couplings together with
the couplings, αi, of the scalars to the Ricci scalar. Thus
we see that inertial spontaneous symmetry breaking is
responsible for triggering the spontaneous breaking in all
sectors of the theory without the need for dimensional
transmutation. As such it opens new possibilities for
model building.

2 In the 2-scalar model discussed below we have checked numer-
ically that the initial rate of approach to the ellipsoid is very
rapid and thereafter the fields precisely track the ellipsoid corre-
sponding to constant K. This is true for a wide range of initial
conditions and readily allows for an inflationary period to com-
mence.

III. QUANTUM SCALE INVARIANCE AND

REGULARISATION

Up to now our discussion has been confined to the clas-
sical action. For the scenario of inertial spontaneously
broken scale symmetry to work, and lead to a stable
Planck mass, it is essential the that Weyl current be iden-
tically conserved at the quantum level:

DµKµ = 0. (12)

In what follows we will refer to nonzero contributions
coming from loops to the rhs of eq.(12) as “Weyl anoma-
lies.” The trace anomalies of the scale current determined
by diffeomorphisms are identical to those in K for the
scalar sector of the theory.
Scale and Weyl symmetry of a theory appears ab ini-

tio to be broken by quantum loops. Loop divergences
are subtle, however, and are often confused with physics.
Here we adopt an operating principle that has been es-
poused by W. Bardeen [7]: The allowed symmetries of
a renormalised quantum field heory are determined by
anomalies, (or absence thereof). Quantum loop diver-
gences are essentially unphysical artefacts of the method
of calculation.
Weyl or scale symmetry is permitted if the renor-

malised theory has no Weyl anomalies. Since trace
anomalies come from triangle diagrams they are necessar-
ily associated with dimension-4 operators. Hence there
is no Weyl anomaly in the Standard Model of the form
H†H where the Higgs mass is m2H†H . Thus there are
no Weyl anomalies associated with quadratic or quartic
divergences in quantum field theory in four dimensions.
Another way of saying this is that divergent terms and
counter terms are not separately measurable, only the
renormalised mass is physical. In a variation of the Stan-
dard Model with no gravity, no grand unification and no
Landau poles in the far UV the Higgs mass would be
technically natural with no hierarchy problem!

A. The origin of Weyl anomalies

Our problem of maintaining Weyl symmetry requires
that we build a theory that has no anomaly in Kµ. To
understand this problem, and its solution, we turn to the
CW potential. In computing CW potentials for mass-
less scalar fields we encounter an infrared divergence that
must be regularised [6, 12]. To do so we often introduce
explicit “external” mass scales into the theory by hand.
These are mass scales that are not part of the defining
action of the theory, and essentially define the RG tra-
jectories of coupling constants. These externally injected
mass scales lead directly to the Weyl anomaly.
We can see this in eq.(3.7) of CW [6] where, to renor-

malise the quartic scalar coupling constant, λ, in an ef-
fective potential at one loop level, W (φ), they introduce
a mass scale M . Once one injects M into the theory, one
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has broken scale and Weyl symmetry, and the effective
potential in the large φ

M limit then takes the form

W (φ) =
β1

4!
φ4 ln

(
φ

M

)
(13)

Here β1 is the one-loop renormalisation group coefficient,
dλ(µ)/dµ = β1. The manifestation of this is seen in
the trace of the improved stress tensor [13], and in the
divergence of the Kµ current:

∂µKµ = 4W (φ)− φ
δ

δφ
W (φ) = −β1

4!
φ4 (14)

Of course, there is nothing wrong with the CW poten-
tial, or with this procedure, if one is only treating the
effective potential as a subsector of the larger theory. If,
however, Weyl symmetry is to be maintained as an exact
invariance of the world, then M must be replaced by an
internal mass scale that is part of action, i.e. M must
then be the VEV of a field, χ, or some combination of
the fields, appearing in the extended action. We would
then have the Coleman-Weinberg potential:

W (φ, χ) =
β1

4!
φ4 ln

(
φ

χ

)
(15)

and, because we now have no external mass scales, the
current divergence vanishes:

∂µKµ = 4W (φ, χ)− φ
δW (φ, χ)

δφ
− χ

δW (φ, χ)

δχ
= 0.

(16)

This defines the basic idea for maintaining scale symme-
try in the quantum theory. It simply implements the
notion that there are no fundamanetal mass scales, and
masses are determined only as dimensionless ratios in-
volving VEV’s of scalar fields.

B. Weyl Invariant Coleman-Weinberg Calculation

How might we derive such a result as in eq.(15) from
first principles? We do so via a computation of a
Coleman-Weinberg (CW) effective potential. It is impor-
tant to realise that CW effective potentials themselves
must have the full symmetry of the underlying theory.
The symmetry is then broken spontaneously by the min-
imum of the potential.

In fact it is straightforward to show that the usual
regularisation procedure applied to the Weyl invariant
theory of eq.(7) does have a Weyl invariant form. For
the simple two scalar case, N = 2, with fields φ = φ1

and χ = φ2, it reduces to that of eq.(15) when the ratio
of VEV’s is small, but the general form is applicable for
arbitrary values of the ratio.

1. The two scalar action

The case, N = 2, is the simplest model with “realistic”
phenomenological properties. For reasonable parameter
choices and initial conditions it can have an initial infla-
tionary period followed by a “reheat” phase and subse-
quent evolution to an IR stable fixed point in which the
ratio of the field VEVs is determined by the fudamental
couplings of the theory. We will illustrate the regularisa-
tion procedure applied to this model but we emphasise
that the procedure immediately generalises to the case
with arbitrary N and indeed to the inclusion of funda-
mental fermions and vectors.
We start with the action given in eq.(7) with N = 2.

The Weyl invariance of the theory is spontaneously bro-
ken by the VEVs of the fields giving a massless Goldstone
boson, the dilaton, σ. It was shown in [8] that the dila-
ton decouples and so, of the two initial scalar degrees of
freedom, only one interacting one remains. To see how
this happens in practice, we change variables to:

φi = e−σ/f φ̂i

gµν = e2σ/f ĝµν (17)

where φ̂i are constrained to lie on the ellipse given by:

2K̄ =

N∑

i=1

(1− αi)φ̂
2
i = f2 (18)

where f2 is a constant. It is important to note that f
is invariant under scale transformations as the dilaton
dependence of the original fields has been factored out.
To illustrate the regularisation procedure it is sufficient

to calculate the CW potential resulting from the λ
4!φ

4
1

term in the potential. We first re-parameterise the fields
by:

φ̂1 =
f√

1− α1
sin θ, φ̂2 =

f√
1− α2

cos θ (19)

After scaling out the dilaton, the relevant terms of eq(7)
become:

S =

∫
d4x
√

−ĝ

[
1

2
f2

(
cos2 θ

(1− α1)
+

sin2 θ

(1− α2)

)
∂µθ∂

µθ

−λ

4
f4 sin4 θ

(1− α1)2

]
(20)

Performing the further redefinition Θ = F (θ) where:

F (θ) =

∫ θ

0

√
cos2 θ′

(1 − α1)
+

sin2 θ′

(1− α2)
dθ′ (21)

the action becomes:

S =

∫
d4x
√
−ĝ

[
1

2
f2∂µΘ∂µΘ− λ

4!
f4 sin

4 F−1(Θ)

(1− α1)2

]
.

(22)
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For the case θ is small the action approximates to the
simpler form:

S ≈
∫

d4x
√
−ĝ

[
1

2
∂µΦ∂

µΦ− λ

4!
Φ4

]
. (23)

where Φ = fΘ and Θ ≈ θ√
1−α1

.

2. The CW potential

Here we demonstrate the derivation of the Weyl invari-
ant CW potential for the case φ1

φ2

≪ 1, starting with the

action of eq(23). Adding a classical source term, −JΦ,
to the Lagrangian induces a shift in the Φ field:

Φ = Φc + ~
1/2Φ̂ (24)

where Φ̂ is the small fluctuation about the classical min-
imum. Thus the potential has the form:

W (Φ) =
λ

4!
Φ4

c + ~
λ

4
Φ2

cΦ̂
2 + ... (25)

where the linear term cancels due to the classical source
term. Treating the quadratic term in Φ̂ as an interaction
the 1-loop potential with Φ̂ the propagating field is given
by:

Weff = Ω + i

∫
d4k

(2π)4

∞∑

n=1

1

2n

( 1
2λΦ

2
c

k2 + iε

)n

= Ω +
1

2

∫
d4k

(2π)4
ln

(
1 +

λΦ2
c

2k2

)

= Ω +
λΛ2

128π2
Φ2

c −
λ2Φ4

c

256π2
ln

( 1
2λΦ

2
c + Λ2

1
2λΦ

2
c

)

+
Λ4

64π2
ln

( 1
2λΦ

2
c + Λ2

Λ2

)
(26)

where:

Ω =
λ

4!
Φ4

c −
1

2
BΦ2

c −
λ

4!
CΦ4

c (27)

Note, at the intermediate stage the UV divergences are
regulated by introducing a cut-off, Λ2, when performing
the k2 integration. Thus, in the Λ → ∞ limit, we have
the CW result:

Weff = Ω+
λΛ2

64π2
Φ2

c +
λ2Φ4

c

256π2

(
ln

λΦ2
c

2Λ2
− 1

2

)
(28)

Following CW, the renormalisation conditions are:

d2Weff

dΦ2
c

∣∣∣∣
Φc=0

= 0,
d4Weff

dΦ4
c

∣∣∣∣
Φc=M

= λ, Z|Φc=M = 1

(29)

Here CW renormalise at an “external” mass scale, M ,
to avoid the IR singularity. Implementing these condi-
tions3 determines the counter terms and gives the final
CW result:

W =
λ

4!
Φ4

c +
λ2Φ4

c

256π2

(
ln

Φ2
c

M2
− 25

6

)
(30)

In terms of the original fields Φ = fΘ, Θ ≈ θ√
1−α1

and

θ ≈ φ̂1/φ̂2, the potential is given by:

W ≈ λ

4!
φ̂4
1 +

λ2φ̂4
1

256π2

(
ln

(
Cφ̂2

1c

φ̂2
2c

)
− 25

6

)
(31)

where C = f2

M2

1
1−α2

is a constant invariant under scale
changes. This is the Weyl invariant CW potential written

in terms of the variables (φ̂1, φ̂2) which are constrained
by eq.(19). In addition there is a dilaton, σ, with an iso-
lated kinetic term. By performing a Weyl transformation
that is the inverse of eq.(17), we can relax the constraint
eq.(19) and obtain,

W ≈ λ

4!
φ4
1 +

λ2φ4
1

256π2

(
ln

(
Cφ2

1c

φ2
2c

)
− 25

6

)
(32)

which is Weyl invariant, and the the fields (φ1, φ2) =

exp(−σ/f)(φ̂1, φ̂2) are independent variables.
The reason Weyl invariance has been preserved is be-

cause the inertial spontaneous symmetry breaking has
introduced the mass scale, f , that compensates for the
appearance of the renormalisation scale M under the log,
leaving the logarithmic terms invariant. Note that the
usual renormalisation group equations still apply as a
change in the renormalisation scale M (a change in C in
eq.(31)) is compensated by a change in the couplings and
wave function factors in the usual way.

3. Scale invariant regularisation

The standard regularisation described above clearly
preserves Weyl invariance even away from the small φ1

φ2

limit because, on dimensional grounds, the spontaneous
scale breaking factor, f , always compensates for the
renormalisation scale factor to give an overall constant
under the log, together with a function of the scale in-
variant field Θ = fΦ.
Expanding eq.(20) beyond leading order leads to

higher order terms in θ but these non-renormalisable
terms are small. The reason is that Planck scale is pre-
dominantly due to the VEV of φ2 whereas the VEV of
φ1, which models the SM Higgs, is at the electroweak
scale so that the non-renormalisable terms are Planck

3 There is no wave-function renormalisation at 1-loop order
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suppressed. In order to generate the hierarchy in the
VEV’s at the IR fixed point it is necessary that the only
large coupling is λ while the other couplings associated
with the other scale invariant quartic interactions are hi-
erarchically small and can be neglected when calculating
the radiative corrections.

Of course there will be further terms when the gravi-
tational interactions are included. Gravitational correc-
tions require the addition of the Weyl tensor,W 2, and R2

terms, which are induced by matter loops and have log-
arithmically running coefficients. An analysis of the full
renormalization group equations appears in [13]. While
the Weyl tensor term is locally invariant, the R2 term is
only globally invariant. Hence we expect to maintain a
conserved current, K ′

µ, however the current will be modi-

fied by the addition of a new term, K ′
µ = Kµ+ c′∂µR/f2

0

in the notation of [13]. We expect that this is a small
correction to the above scenario of a fixed ellipse, but
may have some phenomenological implications that will
be pursued elsewhere.

Another potentially challenging consequence of the
gravitational corrections is that the λi become locked to
the αi by the renormalization group. This may necessi-
tate some large fine-tunings to maintain a small cosmo-
logical constant and/or flat potentials. We feel that this
requires a more sophisticated fundamental analysis since
the RG equations computed in flat geometries amount
ot a “gauge choice” for the Weyl symmetry and do not
admit analysis of the Weyl transformation.

Finally, it is possible to maintain the local Weyl sym-
metry without choosing special values of the αi, but
rather by introducing the Weyl vector potential. When
this is done, the dilaton is “eaten” to become the lon-
gitudinal part of a massive Weyl vector potential. The
relationship of this to gravitational corrections and our
general framework is unexplored.

4. Scale invariant dimensional regularisation

Of course regularisation should not depend on the
method used to control the intermediate divergences. Up
to now we have used a momentum space cut-off but it
is straightforward to use dimensional regularisation. In
this case one first continues the theory to d-dimensions
and introduces an external mass scale, µ, to relate the 4-
D dimensionless couplings to the dimension-full ones in
d-dimensions. For the 2-scalar theory discussed above,
dimensional regularisation leads straightforwardly to the
form of eq(31) with Mnon− replaced by µ. In this case
the quartic and quadratic terms are automatically ab-
sent. The dependence on the mass parameter, µ, needed
to continue away from four dimensions, will always ap-
pear in the scale invariant ratio µ/f giving eq(31) as
before.

5. Relation to previous regularisation proposals

Scale invariant dimensional regularisation that differs
from the one just described has been considered by sev-
eral authors - see [5] and references therein. The origin
of the difference is that the analyses were performed in
flat space and so the decoupling of the dilaton through
redefinition of the metric did not apply. Thus, to main-
tain scale invariance in radiative order, it is necessary to
replace µ by a function of the scalar fields, µ → µ(φi),
with the appropriate scaling behaviour. In this case the
d-dimensional tree level potential Ṽ has the form

Ṽ (φ, χ) ≡ µ(φ, χ)
4−d

V (φ, χ) . (33)

As a result the tree level potential introduced in eq(33)
has additional interactions of the form

W̃ (φ, χ)−W (φ, χ) = (4−d) W (φ, χ) ln µ(φ, χ)+O(4−d)2.
(34)

Although these interactions vanish in 4 dimensions,
they give a finite correction to Weff at 1-loop order be-
cause the underlying divergence in 4-dimensions cancels
the 4 − d factor in the additional term in eq(34). Thus,
due to the additional interaction terms in eq(34) that
depend on the choice of µ(φ, χ), the scale invariant d-
dimensional theory is not the same as that defined purely
in 4-dimensions. As a result the final regulated theory
in 4-dimensional has additional terms that depend on
the precise choice of the regulator µ(φ, χ). For the 2-
scalar case with potential given by eq(33) and the choice
µ(φ, χ) = χ the additional term at one-loop is of the form
φ6/χ2. While this is still scale invariant it means the re-
sulting 4-dimensional potential is different from that ob-
tained by the regularisation procedure discussed above.
In summary, we have shown that the standard reg-

ularisation procedure preserves scale invariance. It does
not involve the introduction of an arbitrary regularisation
function and, although it involves non-renormalisable in-
teractions, these are well defined. Of course it is possible
to add additional non-polynomial terms to the theory
while preserving scale invariance but we see no reason so
to do.

IV. SUMMARY AND CONCLUSIONS

We have discussed how inflation and Planck scale gen-
eration can emerge from a dynamics associated with
global Weyl symmetry and its current, Kµ. In the pre-
inflationary universe, the Weyl current density, K0 , is
driven to zero by general expansion. However, Kµ has
a kernel structure, i.e., Kµ = ∂µK and, as K0 → 0, the
kernel evolves as K → K̄, constant. This resulting con-
stant K̄, that does not depend on the scalar potential,
is the order parameter of the Weyl symmetry breaking;
indeed, K̄ directly defines the Planck mass.
In multi-scalar-field theories K has the form K =

1
2

∑N
i=1(1 − αi)φ

2
i . As this is driven to a constant by
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gravity, it defines an ellipsoidal constraint on the scalar
field VEVs. An inflationary slow-roll period is then as-
sociated with the field VEVs migrating along the ellipse.
In the flow to the IR the potential ultimately sculpts the
structure of the vacuum (together with any quantum ef-
fects that may distort the K ellipse) fixing the relative
value of the scalar field VEVs through quartic terms only.
There is a harmless massless dilaton associated with the
dynamical symmetry breaking.

Any Weyl symmetry breaking effect at the quantum
level is intolerable and will show up as a nonzero diver-
gence in the Kµ current. We showed how, due to the
decoupling of the dilaton, these quantum effects actually
preserve the Weyl symmetry using the normal momen-
tum space cut-off or dimensional regularisation schemes.
The potential scale dependence introduced by the “exter-
nal” mass scale needed to regulate the logarithmic diver-
gences is cancelled by the scale invariant order parameter
responsible for spontaneous breaking of the Weyl symme-
try.

A strong motivation for considering such Weyl invari-
ant theories is as a solution to the hierarchy problem
of the Standard Model. In the absence of gravity or
very massive states associated with the Landau pole of
the Standard Model or of an extension of the Standard
Model such as Grand or string unification, the Standard
Model is natural in the sense that the quadratic diver-
gence found in radiative corrections to the Higgs mass
is unphysical and is cancelled by the mass counter term.
Requiring scale invariance ensures that the Higgs is mass-
less but, of course, some mechanism to spontaneously
break the scale symmetry is needed.

If gravity is included via the Weyl invariant extension
discussed here the Standard Model plus gravity is natural
in the sense just discussed4. Moreover the scale symme-
try is now automatically spontaneously broken by the
inertial mechanism. To obtain the hierarchy between the
Planck scale and the electroweak breaking scale it is nec-
essary to have hierarchically large ratios of the dimen-
sionless couplings of the scalar potential but, in the ab-
sence of gravitational radiative corrections, these ratios
are only multiplicatively changed by radiative corrections
and thus are natural. This may be seen from the underly-
ing shift symmetry of the Weyl invariant Higgs potential.

This symmetry is broken by the Higgs coupling to the
Ricci scalar. To determine whether the hierarchy is ul-
timately preserved requires a calculation of the graviti-
ational radiative corrrections which is beyond the scope
of the present paper. In a Weyl invariant variation of
the Standard Model with no gravity, no grand unifica-
tion and no Landau poles in the far UV the Higgs mass
is technically natural with no hierarchy problem!

4 Of course it is still necessary that there be no massive states
strongly coupled to the Higgs with masses much larger than the
electroweak scale.
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