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Abstract

Understanding the physics of neutrinos is of paramount relevance for the development of high
energy physics, cosmology and astrophysics, thanks to their characteristics and phenomenology.
In particular, the property of changing flavor while neutrinos travel, the so-called neutrino
oscillation phenomenon, provides us with valuable information about their behavior and their
impact on the standard model of particles and the evolution of the universe, for instance.

Here I present an overview of the most recent results as reported by relevant experiments
studying neutrinos produced by accelerator facilities and detected after traveling long distances:
the so-called Long-Baseline neutrino experiments.

1 Introduction

It is a very well stablished fact that neutrinos are massive particles (contrary to what the Stan-
dard Model -SM- suggests) and that mix: neutrino-flavor eigenstates are related to neutrino-mass
eigenstates though the mixing (also known as the PMNS) matrix, as

Ve 131
v, | =Upvns | v2 |. (1)
Vr V3

Here, the vector on the left represents the three flavor neutrinos (v4, & = e, i, 7) which are actually
created and detected (through weak interaction processes), while the vector on the right includes
the definite-mass neutrinos (4,7 = 1,2, 3), which propagate through vacuum or matter.

The mixing matrix in (1) is usually parametrized in terms of three orthogonal rotation matrices,
each one depending upon the three so-called mixing angles (6;;,i # j = 1,2, 3), and a phase! which
parametrizes the CP violation in the lepton sector, (dcp):

Ve 141
VH = R(egg) . R(913, 5C’P) . R(912) 1%} . (2)
Vr 12

The mixing angles and the CP-violating phase, together with two mass-squared difference (Am3,,
Am3;; Am?k = m? — mi), define the change of flavor that neutrinos can undergo while traveling an

specific distance (from the source to the detector, for instance), a phenomenon known as neutrino
oscillations.
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'Here, neutrinos are assumed to be Dirac particles.
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A number experiments have studied neutrino oscillations using different neutrino sources (the
sun [1], the atmosphere [2], nuclear reactors [3, 4, 5], accelerators [6, 8]) and detection techniques,
measuring five out of six of the parameters with great precision. However, there are still important
open questions regarding this phenomenon, having implications in other areas of particle physics,
cosmology and astrophysics: it is not yet clear wether there is maximal mixing in the p— 7 sector or
not (i.e., is a3 = w/47); we do not know the value of dcp (i.e. is there a violation of CP symmetry
in the lepton sector?); the neutrino mass pattern (order or hierarchy) is unknown (i.e. is Am3, > 0
—normal order— or Am3, > 0 —inverted order—?).

There are other important and interesting questions?, but answer to those just exposed are
currently under investigation by some of the long-baseline (LBL) neutrino experiments. In the
following sections, a short review of the recent results from accelerator-based oscillation neutrino
experiments is presented.

2 LBL neutrino experiments

Results from four LBL accelerator-based neutrino experiments are shown here: NOvA, T2K, MI-
NOS and OPERA. All of them use a neutrino beam created by a similar mechanism: high energy
protons are fired against a fixed target (made of graphite or beryllium, for instance), producing 7+
(m~) which, after decaying, generate a beam mainly composed by muon (anti)neutrinos.

So produced muon-(anti)neutrinos, traveling across the earth, may change flavor with a prob-
ability which depends on the mixing angles and the mass-squared differences. In this way LBL
experiments are able to study neutrino physics from the observation of v, disappearance, v,
appearance, and v, appearance, allowing them to measure the oscillation parameters (mainly
013, 023, Am?ﬁ, dcp, and and to study possible differences between neutrinos and antineutrinos.

2.1 NOvA

The NuMI? Off-axis v, Appearance (NOvA) experiment [7, 8, 9] is a two-detector accelerator-based
neutrino experiment designed to study the appearance of electron-(anti)neutrinos from a beam of
muon-(anti)neutrinos. The v, beam travels through the earth from the Near Detector (ND) (100
m underground) at Fermilab, to the 14 kton Far Detector (FD) in Ash River, Minnesota, around
810 km apart. The FD is located 14 mrad off the centerline of the neutrino beam coming from
Fermilab, so that the flux of neutrinos has a narrow peak at an energy of 2 GeV, the energy at
which oscillation from muon neutrinos to electron neutrinos is expected to be at a maximum.

After collecting data from neutrinos and antineutrinos beams, NOvA has observed 58 neutrino
(15 background) and 18 (5 background) antineutrino events, while studying the neutrino v, ap-
pearance, thus providing a larger than 40 evidence of electron anti-neutrino appearance. From the
v,, disappearance analysis, NOvVA observed 113 neutrino and 65 antineutrino events, when 730 and
266 events were expected in absence of oscillations, respectively [10, 11].

A joint v,-disappearance-v.-appearance data analysis allows NOVA to constraint the oscillation
parameters as depicted in Fig. 1, where 1,2 and 30 C.L. allowed regions for both, normal (top panels)
and inverted (bottom panels) mass orderings are shown for comparison. The best fit values of the
oscillation parameters are

Am3, = 2517003 x 107%eV?, sin? fa3 = 0.58 + 0.03, dpc = 0.177. (3)

2 Are there only three neutrinos? What is the absolute mass of the neutrinos? Is the neutrino its own antiparticle?
3Neutrinos at the Main Injector
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Figure 1: Regions of Am%Z vs. sin® a3 (left) and sin® o3 vs. dcp parameter spaces obtained from
the v.-appearance and v,-disappearance data analysis at various levels of significance. The top
panels correspond to normal mass ordering while the bottom panels to inverted ordering [10, 11].

In addition, NOvA data favor the normal mass ordering, non-maximal mixing with a3 > 45°, and
excludes dcp = 7/2 at more than 30 C.L. for the inverted mass ordering.

2.2 T2K

T2K* is a LBL neutrino experiment [12] studying neutrino oscillations using muon (anti)neutrinos
produced at the Japan Proton Accelerator Research Center (JPARC). The neutrino beam is di-
rected towards a two detector system: one located 280 m from the production point, and the other,
far detector, located 295 km away, at the Kamioka Observatory, 2.5° off-axis with respect to the
neutrino beam [13] (neutrino energy spectra peaked at 800 MeV).

The T2K analysis was performed using data from neutrinos and antineutrinos and studying
v,~-disappearance as well as v.-appearance channels. After comparing the observed rates at the FD
to predictions under oscillation hypothesis, they found that data is consistent with that model, for
any value of dop. However, regarding the v.-appearance, T2K observed fewer events than expected
for any value of dop (9 events observed while 11.8 events were expected with oscillations and 6.5
without oscillations), preventing them to arrive to a robust statistical conclusion.

Their data fit analysis was done considering both channels to find constraints on Amgg, sin? 63
and dcp, but T2K also considered the constraints coming from reactor experiments, and their
results are shown in Fig. 2. The best fit values for the oscillation parameters are

Alm3,| = 2.434 4 0.064 x 1073 eV?, sin? fg3 = 0.536 70058 Normal Ordering;  (4)

Almiy| = 241070582 x 1073 eV?, sin? fa3 = 0.53670057, Inverted Ordering.  (5)

4Tokai-to-Kamioka
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Figure 2: Left. Regions of sin?fa3 vs. dop parameter space obtained by T2K data only (top
panel) and combined with reactors (bottom panel). Right. Regions of Am3, vs. sin? o3 parameter
space (top) and confidence intervals for sin? a3 (bottom) obtained by T2K combined with reactor
constraint [14].

Notice that CP conserving values are outside of 20 region for both mass orderings and that normal
ordering is favored by data.

2.3 MINOs and MINOS+

With its 735 km baseline, MINOS (originally planned to perform research on atmospheric neutrinos
in the FD) and MINOS+ were designed to observe muon (anti)neutrino flavor changing from a beam
produced at Fermilab and directed towards a two-detector system (the Far detector located at the
Soudan Underground Laboratory in Minnesota) [15]. Thanks to improvements implemented on the
NuMI beam, the neutrinos energy peak increased from 3 GeV for MINOS to 7 GeV for MINOS+
[16].

Using neutrinos from the NuMI beam, MINOS+ found that FD data are consistent with three
flavor prediction, imposing tightly constrains on alternate oscillations hypotheses [17, 16]. The
combination of atmospheric and beam neutrinos (in the appearance and disappearance channels),
using data from neutrinos and antineutrinos, allows the collaboration to constraint the oscillation
parameters as shown in Fig. 3, finding the best fit at

Amily, =242 x 1072 V2, sin®faz = 0.42. (6)

Their results present a 1.1¢0 exclusion of maximal mixing and a 0.8c preference for the lower octant.
They also point to a normal mass order preference with a significance of 0.20 [16].

4
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Figure 3: Regions of sin? fa3 vs. §cp parameter space (left) and one-dimensional significance plots
for each oscillation parameter (right), obtained by MINOS and MINOS+ data for the Normal and
inverted mass orderings [16].

2.4 OPERA
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Figure 4: Energy distribution of OPERA data compared with the expectation [19].

Using a muon-neutrino beam generated at CERN and directed towards a detector located 730
km away, at the LNGS®, OPERA [18] was designed to detect the appearance of tau-neutrinos
through the v, — v, oscillation. With a total of 10 v, candidate events, their final analysis of
the full data sample confirms the appearance on tau-neutrinos with a significance of 6.10 (Fig 4),
and the statistical analysis allowed them to report the first measurement of Am%2 from the v,

®Gran Sasso National Laboratory, in Italy
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appearance mode [19]:
Am3, = 27107 < 1072 eV?, (7)

which is consistent with the results by other experiments in the disappearance mode.

3 The Future

In addition to the expected results coming from the currently active experiments, neutrino os-
cillations will be extensively end deeply studied by two impressive LBL experiments: Hyper-
Kamiokande and DUNE.

3.1 Hyper-Kamiokande

J-PARC

Accelerator Complex

-

Figure 5: The Hyper-Kamiokande experimental layout [21].

Hyper-Kamiokande (HK), located in Japan, is the successor of and take advantage of all the
technological success from the very well known Super-Kamiokande (SK) experiment. This water
Cherenkov detector will be placed in the Tochibora mine, about 295 km away from the J-PARC
proton accelerator research complex in Tokai [20] (Figure 5). As can be seen in Fig. 6 (left panel),

10

I Normal mass hierarchy HK 1tank 10years
I sin228,5=0.1
I sin?653=0.5

o=Vy?

=)
U L

Band for CP values

P T B

Ay? Wrong Mass Hierarchy Rejection

RN RN RRN AR RRRRE RRRRN ARSI

- B 6years
4 7 3
2f T2
- i 1 lyears
0..I....I....I........I....I....I‘.‘
-150 -100 -50 0 50 100 150 0 0% o.'45 015 0.|55 3
dcp[degree] sinfe,,

Figure 6: Expected significance to exclude dcp = 0 for the normal mass order (Left panel) and
neutrino Mass Order sensitivity as a function of the true value of sin? a3 (Right panel) in the HK
experiment [20, 21].

HK has the potential to exclude CP conservation (dcp = 0) for the normal mass ordering, with
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a significance larger than 50 after 10 years of data-taking. With enough time, HK will also reach
a large sensitivity for the determination of the correct neutrino mass ordering (depending on the
value of dcp (right panel of Fig. 6).

However, HK has a rich scientific program which goes beyond the study od neutrino oscillations,
including the search of nucleon decays, neutrinos emitted by supernova and from other astrophysical
sources (dark matter annihilation, gamma ray burst jets, and pulsar winds) [20].

3.2 DUNE
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Figure 7: The DUNE experimental layout.

The Deep Underground Neutrino Experiment (Figure 7) [22] will be based at Fermilab, from
where an intense neutrino beam is going to be fired towards a system of two Liquid Argon detectors,
1300 km apart: the Near Detector (ND), placed at Fermilab and the Far Detector (FD) at the
Sanford Underground Research Facility.

DUNE is expected to explore the neutrino oscillation phenomenon with an unprecedented pre-
cision, aiming to determine the mass ordering and the value of the CP-violating phase, dcp. As
depicted in Fig. 8, DUNE should be capable of determining the CP violation (i.e. measuring
dop # 0, m)with a significance around 5o after 7 years of data-taking, and even larger significance
after 10 years. For the neutrino Mass Ordering (right panel of Fig. 8), after 7 years, DUNE could
reach a 5o sensitivity for all possibe values of dcp [23, 24].

In addition, DUNE will be able to search for signals of proton decay, neutrinos coming form
supernovae and some exotic physics related to sterile neutrinos, non-standard neutrino interactions
and Dark Matter, for instance [25].

4 Conclusions

Research on neutrino physics, and specially on neutrino oscillations, has been extensive and we are
currently living a very exciting time with very important observations and with increasing precision
measurements: strong evidence of 7, and v, appearance, CP-conserving values excluded at 20, data
preference of normal mass ordering. All these confirming the 3 flavor oscillation hypothesis.

On the other hand, as there are yet opened questions to be resolved (precise measurement of
dcp; existence of sterile neutrinos; the Dirac/Majorana nature and the absolute mass of neutrinos,
among others), a number of proposed experiments are starting to become real as they are at their
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Figure 8: Significance with which CP violation (Left panel) and the neutrino Mass Order (Right
panel) can be determined as a function of the true value of dcp, for exposures of seven (green) or
10 (orange) years, and for the Normal Mass Ordering case in the DUNE experiment. The width of
the band represents the range of sensitivities for the 90% C.L. range of 623 values [23].

commissioning and /or building stages, allowing us to foresee a bright future for the neutrino physics
scientific community and beyond.

Acknowledgment

I am deeply grateful to the Organizers of the PIC2018 symposium for the kind invitation to par-
ticipate in this event, and to the NOvA Collaboration for their scientific support. I also thank the
Vicerrectoria de Investigaciones, Fxtension y Proyeccion Social of the Universidad del Atlantico
for their financial support.

References

[1] Q. R. Ahmad et al. [SNO Collaboration], “Direct evidence for neutrino flavor transformation
from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89,
011301 (2002) [nucl-ex/0204008].

[2] Y. Fukuda et al. [Super-Kamiokande Collaboration|, “Evidence for oscillation of atmospheric
neutrinos,” Phys. Rev. Lett. 81, 1562 (1998) [hep-ex/9807003].

[3] K. Eguchi et al. [KamLAND Collaboration]|, “First results from KamLAND: Evidence for
reactor anti-neutrino disappearance,” Phys. Rev. Lett. 90, 021802 (2003) [hep-ex/0212021].

[4] F. P. An et al. [Daya Bay Collaboration], “Observation of electron-antineutrino disappearance
at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012) [arXiv:1203.1669 [hep-ex]].



XXXVIII International Symposium on Physics in Collision,
Bogota, Colombia, 11-15 september 2018

[5]

J. K. Ahn et al. [RENO Collaboration]|, “Observation of Reactor Electron Antineutrino Dis-
appearance in the RENO Experiment,” Phys. Rev. Lett. 108, 191802 (2012) [arXiv:1204.0626
[hep-ex]].

K. Abe et al. [T2K Collaboration|, “Indication of Electron Neutrino Appearance from an
Accelerator-produced Off-axis Muon Neutrino Beam,” Phys. Rev. Lett. 107, 041801 (2011)
[arXiv:1106.2822 [hep-ex]].

D. S. Ayres, et al., The NOvA Technical Design Report, 396 FERMILAB-DESIGN-2007-01.

P. Adamson et al. [NOvA Collaboration|, “Constraints on Oscillation Parameters from v,
Appearance and v, Disappearance in NOvA”, Phys. Rev. Lett. 118, no. 23, 231801 (2017)
[arXiv:1703.03328 [hep-ex]].

M. A. Acero et al. [NOvA Collaboration], “New constraints on oscillation parameters from v,
appearance and v, disappearance in the NOvA experiment”, Phys. Rev. D 98, 032012 (2018)
[arXiv:1806.00096 [hep-ex]].

M. Sanchez, “NOvA Results and Prospects”, Talk at XXVIII International Conference on
Neutrino Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI: 10.5281/zen-
0do.1286758, URL: https://doi.org/10.5281/zenodo.1286758

P. Vahle, “Accelerator Neutrino Physics Overview”, Talk at 20th Workshop on Neutri-
nos from Accelerators, NuFACT, 12-18 August 2018, Blacksburg, Virginia, USA, URL:
https://nufact2018.phys.vt.edu.

K. Abe et al. [T2K Collaboration|, “The T2K Experiment”, Nucl. Instrum. Meth. A 659, 106
(2011) [arXiv:1106.1238 [physics.ins-det]].

M. Khabibullin, “Recent results from the T2K experiment”, EPJ Web Conf. 191, 03001 (2018).

M. Wascko, “T2K Status, Results and Plans”, Talk at XXVIII International Conference on
Neutrino Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI: 10.5281/zen-
0do.1286751, URL: https://doi.org/10.5281/zenodo.1286751.

J. Evans [MINOS and MINOS+ Collaborations], “New results from MINOS and MINOS+”,
J. Phys. Conf. Ser. 888, no. 1, 012017 (2017).

A. Aurisano, “Recent results from MINOS and MINOS+”, Talk at XXVIII International
Conference on Neutrino Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI:
10.5281/zenodo.1286759, URL: https://doi.org/10.5281 /zenodo.1286759.

S. De Rijck [MINOS and MINOS+ Collaborations|, “Latest Results from MINOS and MI-
NOS+7, J. Phys. Conf. Ser. 873, no. 1, 012032 (2017).

M. Guler et al. [OPERA Collaboration], “OPERA: An appearance experiment to search for
v, ¢+ v, oscillations in the CNGS beam. Experimental proposal”, CERN-SPSC-2000-028,
CERN-SPSC-P-318, LNGS-P25-00.

N. Agafonova et al. [OPERA Collaboration|, “Final Results of the OPERA Experiment on
v; Appearance in the CNGS Neutrino Beam”, Phys. Rev. Lett. 120, no. 21, 211801 (2018),
Erratum: [Phys. Rev. Lett. 121, no. 13, 139901 (2018)], [arXiv:1804.04912 [hep-ex]].



[20]

[21]

[22]

XXXVIIT International Symposium on Physics in Collision,
Bogotd, Colombia, 11-15 september 2018

K. Abe et al. [Hyper-Kamiokande Collaboration]|, “Hyper-Kamiokande Design Report”,
arXiv:1805.04163 [physics.ins-det].

M. Shiozawa, “Hyper-Kamiokande”, Talk at XXVIII International Conference on Neutrino
Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI: 10.5281/zenodo.1286768,
URL: https://doi.org/10.5281 /zenodo.1286768

R. Acciarri et al. [DUNE Collaboration], “Long-Baseline Neutrino Facility (LBNF) and Deep
Underground Neutrino Experiment (DUNE) : Conceptual Design Report, Volume 1: The
LBNF and DUNE Projects”, arXiv:1601.05471 [physics.ins-det].

D. Brailsford [DUNE Collaboration], “DUNE: Status and Perspectives”, arXiv:1804.04979
[physics.ins-det].

E. Worcester, “DUNE: Status and Science”, Talk at XXVIII International Conference on
Neutrino Physics and Astrophysics, 4-9 June 2018, Heidelberg, Germany, DOI: 10.5281/zen-
0d0.1286764, URL: https://doi.org/10.5281/zenodo.1286764.

R. Acciarri et al. [DUNE Collaboration], “Long-Baseline Neutrino Facility (LBNF) and Deep
Underground Neutrino Experiment (DUNE) : Conceptual Design Report, Volume 2: The
Physics Program for DUNE at LBNF” | arXiv:1512.06148 [physics.ins-det].

10



