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ABSTRACT
We define and characterise a sample of 1.3 million galaxies extracted from the first year of
Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence
of significant redshift uncertainties. The sample is dominated by luminous red galaxies located
at redshifts z & 0.6. We define the exact selection using color and magnitude cuts that balance
the need of high number densities and small photometric redshift uncertainties, using the
corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical
photo-z uncertainty varies from 2.3% to 3.6% (in units of 1+z) from z = 0.6 to 1, with number
densities from 200 to 130 galaxies per deg2 in tomographic bins of width ∆z = 0.1. Next we
summarise the validation of the photometric redshift estimation. We characterise and mitigate
observational systematics including stellar contamination, and show that the clustering on
large scales is robust in front of those contaminants. We show that the clustering signal in the
auto-correlations and cross-correlations is generally consistent with theoretical models, which
serves as an additional test of the redshift distributions.

Key words: cosmology: observations - (cosmology:) large-scale structure of Universe

1 INTRODUCTION

The use of the imprint of Baryon Acoustic Oscillations (BAO) in
the spatial distribution of galaxies as a standard ruler has become
one of the common methods in current observational cosmology
to understand the Universe. The physics that causes BAO is well
understood. Primordial perturbations generated acoustic waves in
the photon-baryon fluid until decoupling (z ∼ 1100). These sound
waves lead to the large oscillations observed in the power spectrum
of the CMB anisotropies, but they are also visible in the clustering
of matter, and therefore galaxies, as a high density region around
the original source of the perturbation, at a distance given by the
sound horizon length at recombination. This high density region
shows as a small excess in the number of pairs of galaxies sep-
arated by ∼ 150 Mpc. Since the sound horizon is very precisely
measured in the cosmic microwave background (Planck Collabora-
tion et al. 2016), the BAO measurements can be used as a standard
ruler. This is, therefore, a geometrical probe of the expansion rate of
the Universe, that maps the angular diameter distance and the Hub-
ble parameter as functions of the redshift. There have now been
multiple detections of the BAO in redshift surveys (Eisenstein et al.
2005; Percival et al. 2010; Ross et al. 2015; Alam et al. 2017; Ata
et al. 2018; Delubac et al. 2015; Bautista et al. 2017; Percival et al.
2001; Cole et al. 2005; Blake et al. 2011; Beutler et al. 2011) and
it is considered as one of the main cosmological probes for current
and planned cosmological projects.

A key feature of the BAO method is the fact that the sound
horizon length is large, and, therefore, very deep and wide galaxy
surveys are needed in order to reach precise measurements of the
BAO scale. But, at the same time, this large scale protects the BAO
feature from large corrections due to astrophysical and non-linear
effects of structure formation and therefore from systematic errors,
making BAO a solid probe of the expansion rate of the Universe.

The Dark Energy Survey (DES) is one of the most important
of the currently ongoing large galaxy surveys and, as its name sug-
gests, it is specially designed to attack the problem of the physical
nature of the dark energy. It will do it using several independent and
complementary methods at the same time. One of them is the pre-
cise study of the spatial distribution of galaxies, and in particular,
the BAO standard ruler. DES is a photometric survey, which means

? e-mail: martincrocce@gmail.com

that its precision in the measurement of redshifts is limited, pre-
venting the measurement of the Hubble parameter evolution. How-
ever, the evolution of the angular distance with redshift is possible,
through the measurement of angular correlation functions (Seo &
Eisenstein 2003; Padmanabhan et al. 2005; Blake & Bridle 2005;
Padmanabhan et al. 2007; Crocce et al. 2011; Sánchez et al. 2011;
Carnero et al. 2012; Seo et al. 2012; de Simoni et al. 2013).

Although DES will only measure BAO in the angular distri-
bution of galaxies, a determination of the photometric redshift as
precise as possible brings several benefits. It allows a finer tomog-
raphy in the mapping of the BAO evolution with the redshift and
makes the analysis cleaner, reducing the correlations between red-
shift bins. A sample of Luminous Red Galaxies (LRGs) would fit
these requirements (Padmanabhan et al. 2005, 2007). LRGs are lu-
minous and massive galaxies with a nearly uniform Spectral En-
ergy Distribution (SED), but with a strong break at 4000 Å in the
rest frame. These features allow a clean selection and an accu-
rate determination of the redshift for this type of galaxies, even in
photometric surveys. This selection has been done previously for
imaging data at z . 0.6 (Padmanabhan et al. 2005). But the BAO
scale has already been measured with high precision in this redshift
range (e.g. Alam et al. (2017) and references therein). In order to
go to higher redshifts, the selection criteria need to be redefined.
The 4000 Å feature enters the i band at z = 0.75, and the methods
used in previous selections are not valid anymore.

In this paper we describe the selection of a sample of red
galaxies to measure BAO in DES, that includes, but is not limited
to, LRGs. The selection is defined by two conditions. On the one
hand, keep the determination of the photometric redshift as precise
as possible. On the other hand, keep the galaxy density high enough
to have a BAO measurement that is not limited by shot noise.

In order to guide our efforts to select an optimized sample for
measuring BAO distance scales, we rely on Fisher matrix forecasts.
Seo & Eisenstein (2007) provide a framework and simple formulae
to predict the precision that one can achieve with a given set of
galaxy data. Thus, we will test how Fisher matrix forecasts vary
given the variations obtained for the number density and estimated
redshift uncertainty given a set of color-magnitude cuts.

This paper, detailing the BAO sample selection, is one of a
series describing the supporting work leading to the BAO mea-
surement using DES Y1 data presented in The Dark Energy Sur-
vey Collaboration et al. (2017) (hereafter DES-BAO-MAIN). As
part of such series, one paper presents the mock galaxy catalogues,

c© 2017 The Authors



Galaxy sample for DES Y1 BAO measurements 3

Avila et al. (2018) (hereafter DES-BAO-MOCKS). Gaztañaga et al.
(2018) discusses in detail the photo-z validation, and we denote it
DES-BAO-PHOTOZ. Chan et al. (2018), from now on DES-BAO-
θ-METHOD, introduces the BAO extraction pipeline using a to-
mographic analysis of angular correlation functions, while Cama-
cho et al. (2018) presents the study of the angular power spectrum
(hereafter DES-BAO-`-METHOD). Lastly, Ross et al. (2017a), in
what follows referred to as DES-BAO-s⊥-METHOD, introduced a
novel technique to infer BAO distances using the three-dimensional
correlation function binned in projected separations.

This paper is organized as follow: in section 2, a description
of the main features of the DES-Y1 catalogue is given: in section 3,
we give a detailed description of the selection cuts that define the
data sample that has been used to measure the BAO scale in DES;
section 4 contains a description of the procedure that has been de-
veloped and applied in DES in order to ensure the quality of the
photometric redshift determination, and to determine its relation
with the true redshift; section 5 describes the masking scheme and
the treatment of the variable depth in the survey; section 6 is a de-
scription of the analysis and mitigation of observational system-
atic errors on the clustering measurement; and finally, section 7
describes the measured two-point correlation and cross-correlation
functions and their evolution with redshift for the selected sample.
We finish with our conclusions in section 8.

2 DES Y1 DATA

The BAO galaxy sample we will define in this work makes use of
the first year of data (Y1) from the Dark Energy Survey. This pho-
tometric dataset has been produced using the Dark Energy Camera
(DECam, Flaugher et al. (2015)) observations, processed and cal-
ibrated by the DES Data Management system (DESDM) (Sevilla
et al. 2011; Mohr et al. 2012; Morganson et al. 2018) and finally
curated, optimized and complemented into the Gold catalog (here-
after denoted ‘Y1GOLD’), as described in Drlica-Wagner et al.
(2017). For each band, single exposures are combined in coadds
to achieve a higher depth. We keep track of the complex geome-
try that the combinations of these dithered exposures will create at
each point in the sky in terms of observing conditions and survey
properties. Objects are detected in chi-squared combinations of the
r, i and z coadds to create the final coadd catalog (Szalay, Connolly
& Szokoly 1999).

Y1GOLD covers a total footprint of more than 1800 deg2;
this footprint is defined by a HEALPIX (Górski et al. 2005) map at
resolution Nside = 4096 and includes only area with a minimum
total exposure time of at least 90 seconds in each of the griz bands,
and a valid calibration solution (see Drlica-Wagner et al. (2017) for
details). This footprint is divided into several disjoint sub-regions
which encompass the supernova survey areas, a region overlapping
stripe 82 from the SDSS footprint (S82; Annis et al. (2014)) and
a larger area overlapping with the South Pole Telescope coverage
(SPT; Carlstrom et al. (2011)). Figure 1 shows the angular distri-
bution of galaxies, selected as described in Section 3, that includes
these two areas. A series of veto masks, including masks for bright
stars and the Large Magellanic Cloud among others, reduce the
area by ∼ 500 deg2, leaving 1336 deg2 suitable for LSS study.
Other areas that are severely affected by imaging artifacts or other-
wise have a high density of image artifacts are masked out as well.
Section 5 provides a full account of the final mask used in com-
bination with the final BAO sample. “Bad” regions information is
propagated to the ‘object’ level by using the flags badregion

column in the catalog. Finally, individual objects which have been
identified as being problematic by the DESDM processing or by
the vetting process carried out by the scientists in the collaboration
are flagged when configuring the catalog (this is done through the
flags gold column). All data we describe in this and in sub-
sequent sections are drawn from quantities and maps released as
part of the DES Y1 Gold catalog and are fully described in Drlica-
Wagner et al. (2017).

The photometry used in this work comes mainly from two dif-
ferent sources:

• the SExtractor (Bertin & Arnouts (1996)) AUTO magni-
tudes, which are derived from the best matched elliptical aperture
according to the coadd object elongation and angle in the sky, mea-
sured using the coadded object flux;
• Multi-Object Fitting (MOF) pipeline, which performs a multi-

epoch and multi-band fit of the shape and per-band fluxes directly
on the single epoch exposures for each of the coadd objects, with
additional neighboring light subtraction. This is described in more
detail in Drlica-Wagner et al. (2017).

Using these photometric measurements, we will consider
three different photometric redshift catalogues. Two of them
are built using BPZ (Benı́tez 2000), a Bayesian template-fitting
method, and another using a machine learning approach: the Di-
rectional Neighborhood Fitting (DNF) algorithm as described in
De Vicente, Sánchez & Sevilla-Noarbe (2016). They are combined
with the photometric quantities described above and used as fol-
lows:

• BPZ run with AUTO magnitudes (hereafter zBPZ−AUTO) used
for making the selection of the overall sample.
• BPZ run with MOF magnitudes (hereafter zBPZ−MOF) used

for redshift binning and transverse distance calculation, finally used
as secondary catalogue to show the robustness of the analysis.
• DNF run with MOF magnitudes (hereafter zDNF−MOF) used

for redshift binning and transverse distance calculation, finally used
as our fiducial catalogue.

We should note that BPZ with AUTO magnitudes is part of
the DESDM data reduction pipeline and is available early on in the
catalogue making. This explains why we used that particular com-
bination for sample selection. We did not find, and do not expect,
the relative optimization of the sample selection and cuts to depend
much on the particular photo-z catalogue (but the final absolute er-
ror on BAO distance measurement does).

In Section 4, we summarize the validation performed to select
and characterise the true redshift distributions of the binned sam-
ples, which is described in detail in DES-BAO-PHOTOZ.

Throughout our analysis we assume the redshift estimate of
each galaxy to be the mean redshift of the redshift posterior for
BPZ, or the predicted value for the object in the fitted hyper-plane
from the DNF code (see De Vicente, Sánchez & Sevilla-Noarbe
(2016). Any potential biases from these estimates are calibrated as
described in Section 4.

3 SAMPLE SELECTION

In this section, we describe the steps towards the construction of a
red galaxy dominated sample, optimized for BAO measurements,
starting from the dataset described in Section 2. The selection is
performed over the largest continuous regions of the survey at
this point, namely SPT and S82. Objects are selected so that we

MNRAS 000, 1–16 (2017)
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Figure 1. Angular distribution and projected density of the DES-Y1 red galaxy sample described in this paper, and subsequently used for BAO measurements.
The unmasked footprint comprises the two largest compact regions of the dataset: one in the southern hemisphere of 1203 deg2, overlapping South Pole
Telescope observations (SPT; Carlstrom et al. 2011), and 115 deg2 near the celestial equator, overlapping with Stripe 82 (S82, Annis et al. 2014). The sample
consists of about 1.3 million galaxies with photometric redshifts in the range [0.6− 1.0] and constitutes the baseline for our DES Y1 BAO analysis.

Table 1. Complete description of the selection performed to obtain a sample dominated by red galaxies with a good compromise of photo-z accuracy and
number density, optimal for the BAO measurement presented in DES-BAO-MAIN. The redshifts of the resulting catalogue are then computed using different
codes (BPZ and DNF) as described in Sec 2. Therefore, any subsequent photo-z selection can be done either with zphoto from BPZ or DNF.

Keyword Cut Description

Gold observations present in the Gold catalog Drlica-Wagner et al. (2017)
Quality flags badregion < 4; flags gold = 0 Sec.5; Sec.2

Footprint 1336 deg2 (1221 deg2 in SPT and 115 deg2 in S82) Fig. 1 Sec.5
Color Outliers −1 < gauto − rauto < 3 Sec. 3.1

−1 < rauto − iauto < 2.5 Sec. 3.1
−1 < iauto − zauto < 2 Sec. 3.1

[Optimized] Color Selection (iauto − zauto) + 2.0(rauto − iauto) > 1.7 Sec. 3.4.1
[Optimized] Completeness Cut iauto < 22 Sec. 3.1

[Optimized] Flux Selection 17.5 < iauto < 19.0 + 3.0zBPZ−AUTO Sec. 3.4.2
Star-galaxy separation spread model i + (5/3) spreaderr model i > 0.007 Sec. 3.2

Photo-z range [0.6− 1.0] Sec. 4

avoid imaging artifacts and pernicious regions with foreground ob-
jects using the cuts on flags badregion and flags gold de-
scribed therein. In the rest of this section we go into finer details on
the flux, color and star-galaxy separation selection.

In Table 1, we summarise this sample selection, including ref-
erences to the sections where these cuts are explained.

3.1 Completeness and color outliers cuts

The overall flux-limit of the sample is set as

iauto < 22. (1)

Additionally, we remove the most luminous objects by making the
cut iauto > 17.5 . The cut of Eq. (1) is chosen as a compromise be-
tweensurvey area, given that we need to achieve an homogeneous
depth, and the number of galaxies in that area. For a given overall
flux limit of the galaxy sample (e.g. all galaxies with i 6 22) we
select the regions of the survey that are deeper than that limit (e.g.
i-band 10σ limit depth > 22) and mask everything brighter. In this
way that sample selection should be complete over such footprint.
Clearly, for fainter selections more objects are incorporated into
the sample but the area of the survey reaching that depth homoge-
neously is also smaller. Hence there is a compromise between area
and number of objects. In Fig. 2 we show the normalized counts as

MNRAS 000, 1–16 (2017)
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Figure 2. Measurement of the trade off between area and number of objects
as a function of magnitude limit and sample flux limit in Y1GOLD and SV.
For a given iauto-band “threshold” value we select all regions which have
a deeper limiting magnitude that this value (10σ depth limit> “threshold”)
and count the galaxies brighter than the “threshold” value over those re-
gions. These should be complete samples at each threshold value. Number
counts are shown normalized to their maximum in the figure.

a function of the magnitude limit cut. For comparison we include
the same quantity in Science Verification Data, which is deeper than
Y1 but has much smaller area, see Crocce et al. (2016). We would
like to select a sample and footprint that are at once homogeneous
and with the highest possible number of galaxies. The curve shows
a plateau in the range 22 . iauto . 22.3 where the number counts
is maximized, with variations of about 5%. But the figure does
not account for photo-z performance, which degrades rapidly for
fainter objects (particularly at high redshift) and is of key relevance
for BAO measurements, as shown below in Sec. 3.4. Therefore we
decided to stay at the bright end of this range (iauto = 22) as an
overall flux limit of the sample.

Color outliers which are either unphysical or from special
samples (Solar System objects, high redshift quasars) are removed
as well, to avoid extraneous photo-z populations in the sample (see
Table 1).

3.2 Star-Galaxy Separation

Removing stars from the galaxy sample is an essential step to avoid
the dampening of the BAO signal-to-noise (Carnero et al. 2012)
or the introduction of spurious power on large scales (Ross et al.
2011a). Stellar contamination affects the broad shape of the mea-
surement and so we want to minimise it to be able to fit the BAO
template properly. However, it does not appreciably affect the lo-
cation of the BAO feature, so we do not need to push for 100%
purity. Any residual contamination is then taken care of by using
the weighting scheme detailed in Section 6.

In this work we have used the default star-galaxy clas-
sification scheme described in detail in Sevilla-Noarbe et al.
(2018), see also Drlica-Wagner et al. (2017), which is based on
the i-band coadd magnitude spread model i and its associated
error spreaderr model i, from SExtractor. This classifier
was developed using as truth tables data from COSMOS (Leau-
thaud et al. 2007), GOOD-S (Giavalisco et al. 2004) and VVDS
(Le Fèvre et al. 2005) overlapping Y1GOLD, and subsequently
tested against CFHTLenS (Erben et al. 2013). The combination
spread model i + (5.0/3.0)spreaderr model i > 0.005 is
suggested for high-confidence galaxies as a baseline for Y1GOLD.
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Figure 3. Contamination of galaxy sample from stars as a function of red-
shift and star-galaxy separation threshold, as measured using galaxy density
vs stellar density plots (from a pure stellar sample). The MODEST classifier
is defined in Drlica-Wagner et al. (2017) as the default star galaxy classi-
fier (based on spread model and wavg spread model). ‘BAO classifier’
stands for a cut in spread model i + (5.0/3.0)spreaderr model i. A
threshold of 0.007 provides an important decrease of contamination with a
minor adjustment in the number of galaxies, which becomes significantly
more severe at higher thresholds for a very similar purity. The redshift bin-
ning here uses zBPZ−AUTO.
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Figure 4. Photometric redshift distribution of stars selected morphologi-
cally and passing the same cuts described in Table 1.The redshift value
zphot is the mean from the pdf of zBPZ−AUTO, which was used for the
overall sample selection in Section 3.

A detailed follow up analysis of star-galaxy separation is given in
Sevilla-Noarbe et al. (2018). Here instead we decided to modify
slightly this proposed cut in order to increase the purity of the sam-
ple (from 95% to 97 − 98%), at the cost of losing approximately
3% of the objects, by making the following selection:

spread model i + (5.0/3.0)spreaderr model i > 0.007.

In Fig. 3 we show the estimated star sample contamination
for different thresholds of this cut, using the relation between
galaxy density and a map of stellar density built from Y1GOLD
(a methodology that is described in detail in section 6). The error
bars displayed are the fitting errors obtained for the intercept when
parametrizing the contamination level using a linear relationship
between the galaxy density as a function of stellar density. Note
that a threshold of 0.007 reduces the contamination level to less
than 5% across the redshift range of interest. In Table 3 we re-
port a consistent or smaller level of stellar contamination, using a
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Figure 5. Evolution of BPZ templates in color-color space. Each dot corresponds to a different redshift in steps of 0.1, ranging from z = 0.0 to z = 2.0. The
shadowed region in the central panel is excluded from the sample. The black dots indicate the position of z = 0.6 (triangles), and z = 1.0 (squares) for the
two reddest templates. Also shown, for reference, is the stellar locus as a purple dashed line. The inset crosses indicate an estimate of the error in the colors,
arising from photometric errors, from a sub-sample of DES Y1 galaxies selected in the range 21 < iauto < 22 (see text for more details).

similar estimation, in the catalogues with MOF photometry, both
for BPZ and DNF (see Sec. 6). In Fig. 5 we also include in the
middle figure the track from the stellar locus, which showcases the
reason why the first two redshift bins are more affected by stellar
contamination, as it crosses the elliptical templates at these red-
shifts. To further illustrate this, in Fig. 4 we show the distribution
of the mean photometric redshifts for stars (selected using the cri-
terion |wavg spread model i| < 0.002, a more accurate variant
of spread model i using single-epoch, suitable for moderate to
bright magnitude ranges) showcasing how they will contaminate
preferentially the second redshift bin, following the same trend as
shown in Table 3.

3.3 Selecting Red Luminous Galaxies

Next we want to select from Y1GOLD a sample dominated by lu-
minous red galaxies, because their typical photo-z estimates are
more accurate than for the average galaxy population, thanks to the
4000 Å Balmer break in their spectra. This feature makes redshift
determination easier even with broad-band photometry (Padman-
abhan et al. 2005). In addition we want our BAO sample to cover
redshifts larger than 0.6 as there are already very precise BAO mea-
surements for z < 0.6, see e.g. Cuesta et al. (2016); Ross et al.
(2017b); Beutler et al. (2017).

We have tested that, while a very stringent selection can be
done to yield minimal photo-z errors, e.g. with the redMaGiC
algorithm (Rozo et al. 2016), it does not lead to optimal BAO
constraints because the sample ends up being very sparse, with
∼ 200, 000 galaxies in Y1GOLD at z > 0.6 (Elvin-Poole et al.
2017). Instead we will follow an alternative path and apply a stan-
dard selection in color-color space to isolate red galaxies at high
redshift, balancing photo-z accuracy and number density with a
BAO figure-of-merit in mind.

In Figure 5 we show the evolution in redshift of the eight
spectral templates used in BPZ, which includes one typical red el-
liptical galaxy, two spirals and five blue irregulars/starbursts (color
coded) based on Coleman, Wu & Weedman (1980) and Kinney
et al. (1996). We compute the expected observed DES broad-band
magnitudes for these templates as a function of redshift and show
them in different color-color combinations.The tracks are evolved
from z = 0 to z = 2.0 in steps of 0.1 (marked with dots). We will

use them to define cuts in color-color space intended to isolate the
red templates.

In real data galaxy colors have an uncertainty due to photo-
metric errors, which effectively thicken those tracks. In order to
provide an estimate for this we computed the errors in the colors
for a sub-sample of Y1GOLD galaxies with 21 < iauto < 22 (the
typical range of magnitudes that we explore below to define the
BAO sample). For each galaxy we estimate the color error adding
in quadrature the corresponding magnitude errors1. The average er-
ror in each corresponding color is shown with a cross at the bottom
right inset label of the three panels of Fig. 5. Their values are 0.128,
0.073, 0.067, 0.076 for (g-r, r-i, i-z, r-z) respectively.

In addition, a model of a red elliptical galaxy spectrum is
shown in Figure 6, redshifted to z = 0.4, 0.8, 1.15, where the
notable 4000 Å break crosses from g → r, r → i and i → z. This
suggests that for z > 0.6 the strongest evolution in color will be for
i−z and r−i, and hence we will focus in these color combinations
in what follows (that moreover have the smallest error).

Note how the transition of the 4000 Å break from one band to
another abruptly bends the color-color tracks in Figure 5. However,
this applies mainly to elliptical templates, and recent star formation
will dampen this effect.

3.4 Optimization of the color and magnitude cuts for BAO

Optimizing the actual sample selection for the measurement of
BAO in imaging data is considerably different that doing so for
spectrospopic data. In the later case one basically needs to maxi-
mize the area (or volume) provided that n̄P > 1 (where n̄ is the
galaxy density and P the power spectrum). For imaging data the
photometric redshift accuracy plays a vital role. Worse photo-z er-
ror degrades the signal as the galaxy radial separations are smeared
out (this also complicates the definition of survey volume). In turn,
the best photo-z’s are typically obtained for very bright, and low
density, samples. Therefore there is a non-trivial. interplay to max-
imise BAO signal to noise.

In DES-BAO-s⊥-METHOD we discussed in detail how to

1 In turn computed as merr = −2.5(Fluxerr/F lux)/ log(10)
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Figure 6. Elliptical model spectrum used in template-based fitting code
BPZ. Overplotted are the DES response filters g,r,i,z. The template has been
redshifted to z = 0.4, 0.8, 1.15, where the notable 4000 Å break crosses
from g → r, r → i and i→ z.

fold in the photo-z accuracy into an effective n̄eff
2. However com-

puting n̄eff is cumbersome and as complicated as doing an actual
BAO forecasting. Therefore we decided to follow this later path and
rely on the Fisher matrix forecast formalism described in Seo &
Eisenstein (2007). Provided with a concrete set of color-magnitude
cuts we measure in the data the number density and redshift uncer-
tainty in several tomographic bins within 0.6 6 photo-z 6 1.0, and
assume a clustering amplitude. We then use the formulae from Seo
& Eisenstein (2007) to predict the precision that one can achieve
with that set of galaxy data properties. We repeat this process for a
different set of cuts until an optimal BAO distance error is achieved.

Through this process we fix the clustering amplitude, assum-
ing a galaxy bias of b = 1.6 for all calculations. This is the bias
found in Crocce et al. (2016) for a flux limited sample (i < 22.5)
at redshifts z ∼ 0.9, selected from DES Science Verification (SV)
data. Since that redshift and magnitude are compatible with what
we expect in this paper, we consider b = 1.6 a representative value.
More precise measurements are expected for more biased samples,
but the galaxy bias for any given sample is not known a priori and
the redshift uncertainty and number density are the more dominant
factors.

For illustrative purposes we show in Table 2 the variation in
BAO distance error achieved by changing the number density and
photo-z accuracy away from those at the optimal cuts described
below. We also include the variation with survey area. As pointed
before, BAO distance errors are very sensitive to photo-z accuracy.

3.4.1 Optimization of the color cut

Thus, in order to maximize the signal-to-noise of the BAO fore-
casted measurement, a color cut is applied to the sample in the

2 Photometric redshift errors leads to n̄effP < 1 in all cases explored.

Table 2. Sensitivity of the forecasted BAO distance error to variations in
density, photometric redshift errors and survey area. Note that these vari-
ations are considered individually, neglecting their correlations. Baseline
values are those corresponding to the optimal cuts discussed in Sec. 3.4.

property variation forecasted BAO distance error

10% worse photo-z 8% worse
20% worse photo-z 16% worse
10% lower density 3% worse
20% lower density 6% worse
10% smaller area 2.8% worse

form,

(iauto − zauto) + a1(rauto − iauto) > a2. (2)

The cut was chosen in this form following the discussion in
Sec. 3.3 (see Fig. 5), as it allows us to select more likely the red-
dest galaxies which are the ones with lower uncertainties in their
photometric redshift determination and still present a high enough
number density.

Samples were produced across a grid of a1 and a2 values,
calculating the number of galaxies Ngal and a mean width of the
photo-z distribution σz/(1 + z) for each sample, after splitting the
galaxy in tomographic bins. For BPZ we estimated σz averaging in
each tomographic bin the width of the individual redshifts posterior
distributions (PDFs) provided per galaxy.

The BAO forecast using the algorithm of Seo & Eisenstein
(2007) is then run for the Ngal and σz/(1 + z) of each sample and
final values of a1 and a2 are selected to minimise the forecasted
BAO uncertainty, finding a balance between galaxy number density
and redshift uncertainty. In order to give a sense for the sensitivity
of such process, we note there is a slight degeneracy when increas-
ing a1 and a2 simultaneously, resulting in similar forecasted BAO
uncertainties. However deviations from this degeneracy direction
lead to significant degradation in the forecasted error. For example,
doubling a1 leads to a degradation of the forecasted error by ap-
proximately 0.01 (from 5% to 6% roughly). The values used in this
analysis are a1 = 2.0, a2 = 1.7. Figure 5 shows the color cut in
the central panel, where the shadowed region is excluded from the
sample.

3.4.2 Optimization of the magnitude cut

To further minimize the forecasted BAO uncertainty, an additional,
redshift dependent magnitude cut is applied to the sample as a sec-
ond step. This applies a cut to iauto at low redshift which is stricter
than the global iauto < 22 cut (at lower redshift the sample is suf-
ficiently abundant that one can still select brighter galaxies, with
better photo-z, and still be sample variance dominated). The cut is
in the form,

iauto < a3 + a4z. (3)

As with the color cut in Eq. 2, this is designed to find a sample
that balances redshift uncertainty with number density, to minimise
the forecasted BAO error. The BAO forecast error was minimised
at the values a3 = 19 and a4 = 3 and this cut was applied to the
sample. We find that the forecasted error improves by∼ 15% when
introducing the redshift dependent flux limit as opposed to a global
iauto < 22 cut.

The final forecasted uncertainty on angular diameter distance
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Table 3. Characteristics of the DES Y1 BAO sample, as a function of red-
shift. Results are shown for a selection of the sample in bins according to
DNF photo-z (zphot) estimate in top of the table and BPZ in the bottom,
both with MOF photometry. Here z̄ =< ztrue > is the mean true redshift,
σ68 and W68 are the 68% confidence widths of (zphot − ztrue)/(1 +

ztrue) and ztrue respectively, all estimated from COSMOS-DES valida-
tion with SVC correction, as detailed in Sec. 4 and Fig. 7. fstar is the esti-
mated stellar contamination fraction, see Sec. 6

DNF Ngal bias z̄ σ68 W68 fstar

0.6− 0.7 386057 1.81 ± 0.05 0.652 0.023 0.047 0.004
0.7− 0.8 353789 1.77 ± 0.05 0.739 0.028 0.068 0.037
0.8− 0.9 330959 1.78 ± 0.05 0.844 0.029 0.060 0.012
0.9− 1.0 229395 2.05 ± 0.06 0.936 0.036 0.067 0.015

BPZ Ngal bias z̄ σ68 W68 fstar

0.6− 0.7 332242 1.90 ± 0.05 0.656 0.027 0.049 0.018
0.7− 0.8 429366 1.79 ± 0.05 0.746 0.031 0.076 0.042
0.8− 0.9 380059 1.81 ± 0.06 0.866 0.034 0.060 0.015
0.9− 1.0 180560 2.05 ± 0.07 0.948 0.039 0.068 0.006

combining all the tomographic bins is ∼ 4.7%. Note that the dis-
cussion in this section only has as a goal the definition of the sam-
ple. The real data analysis with the sample defined here, and the
final BAO error achieved, will of course depend in many other vari-
ables that were not considered up to this point. Such as the quality
of photometric redshift errors, analysis and mitigation of systemat-
ics, use of the full covariance and optimized BAO extraction meth-
ods.

Nonetheless we stress that the forecasted error obtained in this
section matches the one from the analysis of mock simulations, see
e.g. DES-BAO-θ-METHOD, and is in fact quite close to the final
BAO error obtained in DES-BAO-MAIN. In the following sections
we discuss the various components that will enter the real data anal-
ysis, starting with the validation of photometric redsfhit errors and
the estimate of redshift distributions.

4 PHOTOMETRIC REDSHIFTS

The photometric redshifts used for redshift binning and transverse
distance computations in our fiducial analyses are derived using the
Directional Neighborhood Fitting (DNF) algorithm (De Vicente,
Sánchez & Sevilla-Noarbe 2016), which is trained with public
spectroscopic samples as detailed in Hoyle et al. (2017). For com-
parison we also discuss below the Bayesian Photometric Redshift
(BPZ) (Benı́tez 2000) which we find slightly less performant in
terms of the error with respect to “true” redshift values (see below).
In both cases we use MOF photometry which provides∼ 10−20%
more accurate photo-z estimates with respect to the equivalent esti-
mates using SExtractor MAG AUTO quantities from coadd photom-
etry. In this section we summarise the steps taken to arrive at these
choices, based on a validation against data over the COSMOS field.

We recall that throughout this work we use the individual ob-
ject’s mean photo-z from BPZ (not to be confused with the mean
value z̄ =< z > of the sample) and the predicted value in the
fitted hyper-plane from the DNF code, as our point estimate for
galaxy redshifts. As for the estimates of theN(z) from the photo-z
codes, for comparison with our fiducial choice based on the COS-
MOS narrow band p(z), we will use the stacking of Monte Carlo
realisations of the posterior redshift distributions p(z) for the BPZ

estimates, or the stacking from the nearest neighbour redshifts from
the training sample, in the case of DNF (henceforth we’ll call these
stack N(z)). Figure 7 shows the stack N(z) (yellow histograms)
in all 4 redshift bins for our fiducial DNF photo-z analysis.

4.1 COSMOS Validation

As detailed in DES-BAO-PHOTOZ, we check the performance of
each code by using redshifts in the COSMOS field (which are not
part of the training set in the case of DNF), following the procedure
outlined in Hoyle et al. (2017). These redshifts are either spectro-
scopic or accurate (σ68 < 0.01) 30-band photo-z estimates from
Laigle et al. (2016). Both validation samples give consistent results
in our case because the samples under study are relatively bright.

The COSMOS field is not part of the DES survey. However a
few select exposures were done by DECam which were processed
by DESDM using the main survey pipeline. We call this sample
DES-COSMOS. Because the COSMOS area is small (2 square de-
grees) and DECam COSMOS images were deeper and not taken
as part of the main DES-Y1 Survey, we need to first resample the
DES-COSMOS photometry to make it representative of the full
DES Y1 samples that we select in our BAO analysis. Hence we
add noise to the fluxes in the DES-COSMOS catalog to match the
noise properties of the fluxes in the DES-Y1 BAO sample, this is
what we refer to as resampled photometry. Then for each galaxy in
the DES-Y1 BAO sample, we select the galaxy in DES-COSMOS
whose resampled flux returns a minimum χ2 when compared to the
DES-Y1 BAO flux (the χ2 combines all bands, g, r, i and z). This
is done for every galaxy in the DES-Y1 BAO sample to make up
the ‘COSMOS-Validation’ catalog, which by construction has col-
ors matching those in the DES-Y1 BAO sample. The “true” redshift
is retrieved from the spectroscopic/30-band photo-z of this match.

We then run the DNF photo-z code over the COSMOS-
Validation catalog to select 4 redshift bin samples in the same way
as we did for the full DES-Y1 BAO sample. We use the “true” red-
shifts from the COSMOS-Validation catalogs to estimate the N(z)
in each redshift bin by normalising the histogram of these true red-
shifts.

Results are shown as histograms in Figure 7, which are com-
pared to the stack N(z) from the photo-z code, for reference. The
black histograms show large fluctuations which are caused by real
individual large scale structures in the COSMOS field. This can
be seen by visual inspection of the maps. This sampling variance
comes from the relatively small size of the COSMOS validation re-
gion. There is also a shot-noise component, indicated by the error
bars over the black dots, but it is smaller. In the next section, we
briefly describe the methodology to correct for this to be able to
make use of this validation sample effectively.

4.2 Sample variance correction

As detailed in DES-BAO-PHOTOZ we apply a sampling variance
correction (SVC) to the data and test this method with the Halo-
gen mocks described in DES-BAO-MOCKS. In what follows we
provide a summary of such process and its main results.

We use the VIPERS catalog (Scodeggio et al. 2016), which
spans 24 square degrees to i < 22.5, to estimate the sampling
variance effects in the above COSMOS validation. After correct-
ing VIPERS for target, color and spectroscopic incompleteness we
select galaxies in a similar way as done in section 3. We then use the
VIPERS redshifts to estimate the true N(z) distribution of the par-
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Figure 7. Normalised redshift distributions for our different tomographic bins of DNF-MOF photo-z. StackN(z) are shown for the full DES-Y1 BAO sample
(yellow histograms). The black histogram (with Poisson error bars) shows the raw 30-band photo-z from the COSMOS-DES validation sample. Magenta lines
shows the same sample corrected by sample variance cancellation (SVC, see text), which is our fiducial estimate. The labels show the values of W68, σ68 and
∆z =< zstack > − < z > and in each case, see also Table 3.

ent DES-COSMOS sample (before we select in photometric red-
shifts). The ratio of the N(z) in the DES-COSMOS sample to the
one in VIPERS gives a sample variance correction that needs to be
applied to the N(z) in each of the tomographic bins.

Figure 7 shows the SVC-corrected version of the raw COS-
MOS catalog in magenta. As shown in this figure the resulting
distribution is much smoother than the original raw measurements
(black histograms). This by itself indicates that SVC is working
well. Tests in simulations show that this SVC method is unbiased
and reduces the errors in the mean and variance of the N(z) distri-
bution by up to a factor of two. Similar results are found for differ-
ent binnings in redshift.

Notably, the distributions obtained from the stacked N(z) and
the ones from COSMOS SVC match well overall, although some
discrepancies can be seen, e.g. for the second and fourth bin.
More quantitative statements are provided below, but in DES-BAO-
MAIN (Table 5, entry denoted “w(θ) z uncal”) we show these have
no impact in our cosmological results. The difference in angular di-
ameter distance measurements when using either of these two sets
of redshift distributions is less than ∼ 0.25σ.

4.3 Photo-z validation results

In Table 3 we show the values of σ68, which corresponds to the
68% interval of values in the distribution of (zphoto− ztrue)/(1 +
ztrue) around its median value, where zphoto is the photo-z from
DNF (zmean above) and ztrue is the redshift from the COSMOS
validation sample corrected by SVC. We also show W68 and z̄
which are the 68% interval and mean redshift in the ztrue distribu-
tion for each redshift bin. The corresponding values for the stack
N(z) and raw N(z) are also shown in the labels of Figure 7. ∆z
in the label inset shows the difference ∆z =< zstack > − < z >,
where < zstack > is the mean stack redshifts for DES-Y1, shown
in the top label.

We have performed an extensive a comparison of the quan-
tities shown in Table 3 computed with different validations sets:
DES-COSMOS with and without SVC, using N(z) from DNF
stacks, using the COSMOS subsample with spectroscopic redshifts
(as opposed to that with 30-band photo-z). We have also compared
these N(z) to the one predicted by subset galaxies that have spec-
tra within the BAO sample over full DES-Y1 footprint. Further-
more we have performed a validation using a larger spectroscopic
sample in the VIPERS/W4 field (∼ 4 square degrees) which was
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observed in DESY1 and is completely independent from the COS-
MOS validation 3. The results from these different validation sets
is that the means of the redshift distributions 〈z〉 (w.r.t to the mean
using the stack N(z)) are always within 0.01 except for the sec-
ond tomographic bin where differences are < 0.02 (see also la-
bels of Figure 7). The values of W68 are always within 0.01 as
well, for all bins. This means that the differences inW68 are within
15% − 20% (depending on redshift) and 〈z〉 is within 1% (2%
for the bin [0.7− 0.8]). In Sec. 4.3 of DES-BAO-θ-METHOD we
investigate the impact in derived BAO angular diameter distances
from systematic errors in the mean and variance of the underly-
ing redshift distributions. The most important quantity is the mean
of dn/dz. The level of shifts discussed above would induce about
0.8% systematic error in θBAO, while 20% in the variance would
have no impact. These are small compared to the statistical errors,
see DES-BAO-MAIN. The validation errors and biases in 〈z〉, σ68

andW68 were also studied and we anticipate that they are subdom-
inant for the BAO analysis, which instead is dominated by the lim-
ited size of the DES Y1 footprint. These results will be presented
more extensively in DES-BAO-PHOTOZ.

We also include in that work a comparison with BPZ photo-
z (see also Table 3) and results for different photo-z with coadd
photometry. The values of W68 and σ68 are always smaller (by 10-
20%) for DNF with MOF photometry, which is therefore used as
our fiducial photo-z sample.

We finish the section by stressing that the fiducial N(z) used
in the main BAO analysis are the ones from DES-COSMOS with
SVC (magenta lines in Figure 7).

5 ANGULAR MASK

We build our mask as a combination of thresholds/constraints on
basic survey observation properties, conditions due to our particu-
lar sample selection, and restrictions to avoid potential clustering
systematics. In summary,

• We start by combining the Y1GOLD Footprint and Bad
regions mask, both of which are described in Drlica-Wagner
et al. (2017). The Footprint mask imposes minimum total
exposure times, valid stellar locus regression4 (SLR) calibration
solutions and basic coverage fractions. The Bad Regions
mask removes at different levels various catalog artifacts, regions
around bright stars and large foreground objects. In particular,
for the later we remove everything with flag bit > 2 in Table 5
of Drlica-Wagner et al. (2017), corresponding to regions around
bright starts in the 2MASS catalogue (Skrutskie et al. 2006).

• We introduce coordinate cuts to select only the wide area
parts of the surveys, namely those overlapping SPT (roughly with
300 < RA(deg) < 99.6 and −40 < DEC(deg) < −60) and
S82 (with 317.5 < RA(deg) < 360 and −1.76 < DEC(deg) <
1.79). This removes small and disjoint regions which are part of
the Supernova survey and two auxiliary fields used for photo-z

3 The completeness of the VIPERS sample depends on galaxy type and has
a color preseleccion to exclude galaxies at z < 0.5. We have included all
the suggested incompleteness factors (Scodeggio et al. 2016), but nonethe-
less have decided to use COSMOS-SVC as our fiducial validation set to
avoid potential residuals.
4 This is a complementary calibration technique used for the construction
of Y1GOLD making use of the distinct color locus occupied by stars to
perform relative additional calibration between bands.

calibration and star-galaxy separation tests (COSMOS and VVDS-
14h), which do not contribute to our clustering signal at BAO
scales (they total 30 deg2).

• Pixelized maps of the survey coverage fraction were created
at a HEALPIX resolution of Nside = 4096 (area = 0.73 arcmin2)
by calculating the fraction of high resolution subpixels (Nside =
32768, area = 0.01 arcmin2) that were contained within the original
mangle mask (see Drlica-Wagner et al. (2017) for a description
of the later). Since our color selection requires observations in all
four griz bands we use the coverage maps to enforce that all pixels
considered, at resolution 4096, show at least 80% coverage in
each band (this removes 70.7 deg2 with respect to the case where
no miminum coverage is required). Furthermore we then use the
minimum coverage across all four bands to down-weight the given
pixel when generating random distributions, see Sec. 7.

• In order to match the global magnitude cut of the sample and
ensure it is complete across our analysis footprint, we select re-
gions with 10σ limiting depth of iauto > 22, where the depths are
calculated according to the procedure presented in Drlica-Wagner
et al. (2017).

• Since we want to reliably impose the color cut defined in
Eq. (2) and Table 3, we consider only areas with limiting depth
in the corresponding bands large enough to measure it. Given
that we are already imposing iauto depth greater than 22, the
new condition implies keeping only the regions with 10σ limit-
ing magnitudes (2 rauto − zauto) < 23.7, or equivalently those
with zauto > 2 rauto−23.7. This removes an additional 53.8 deg2.

• As a result of our analysis of observational systematics in
Sec. 6, we identify that galaxy number density in regions of high
z-band seeing shows an anomalous behaviour. To isolate this out
we remove areas with z-band seeing greater than 1 arc-second
(this amounts to 71 deg2, or 5% of the footprint).

• Lastly we also remove a patch of 18 deg2 over which the
airmass computation was corrupted.

The resulting footprint occupies 1336 deg2 and is shown in Fig. 1.

6 MITIGATION OF OBSERVATIONAL SYSTEMATIC
EFFECTS

We have tested for observational systematics in a manner similar to
Elvin-Poole et al. (2017), which builds upon work in DES Science
Verification Data (Crocce et al. 2016) and other surveys (e.g. Ross
et al. (2011a); Ho et al. (2012)).

Generically, we test the dependence of the galaxy density
against survey properties (SPs). We expect there to be no depen-
dence if SPs do not introduce density fluctuations in our sample
beyond those already accounted for by the masking process. We
have used the same set of SP maps as in Elvin-Poole et al. (2017),
namely :

• 10σ limiting depth in band
• full width half maximum of point sources (“seeing”)
• total exposure time
• total sky brightness,
• atmospheric airmass,
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all of them in each of the four bands griz, in addition to Galac-
tic extinction and stellar contamination (refer to Elvin-Poole et al.
(2017) for a detailed explanation on how the stellar density map is
constructed from Y1GOLD data). We find that the relevant system-
atics are stellar density, PSF FWHM, and the image depth. We out-
line the tests that reveal this and how we apply weights to counter
their effect in what follows.

We found the most important systematic effect, in terms of
its impact on the measured clustering, to be the stellar density. In
the top panel of Fig. 8 we find positive trends when comparing the
number density of our ‘galaxy’ sample as a function of the stellar
number density (nstar). Our interpretation is that there are stars in
our sample. Assuming these contaminating stars follow the same
spatial distribution as the stars we use to create our stellar density
map, this stellar contamination will produce a linear relationship
between the density of our galaxy sample and the stellar density. In
this scenario, the value of the best-fit trend where the number den-
sity of stars, nstar, is 0 is then the purity of the sample. We find the
results are indeed consistent with a linear relationship, as illustrated
in the top panel of Fig. 8. The stellar contamination, fstar, that can
be determined from these plots is listed in Table 3. The stellar con-
tamination varies significantly with redshift, as expected given the
proximity of the stellar locus to the red sequence as a function of
redshift. Thus, we measure the stellar contamination in ∆z = 0.05
bin widths and use a cubic spline interpolation in order to obtain the
stellar contamination at any given redshift. This allows us to assign
a weight to each galaxy given by,

w(fstar(z)) = ((1− fstar(z)) + nstarfstar(z)/〈nstar〉)−1 , (4)

where nstar is the stellar density that depends on angular location
and 〈nstar〉 is the mean stellar density over the DES-Y1 footprint.

Note that we repeat the fitting procedure for each photo-z cata-
logue, hence redshift here means either zDNF−MOF or zBPZ−MOF.
From Fig. 8 it seems that the measurements are a bit noisy. However
this procedure helps us resolve the peak in the stellar contamination
of five per cent at z ∼ 0.78. The uncertainty on each fit is ∼ 0.01,
which is consistent with the scatter we find in the values of fstar

per bin. The spline simply interpolates between the best-fit values.
We also add weights based on fits against relationships with

the mean i-band PSF FWHM (seeing, which we denote as si) and
the g-band depth (dg). For the seeing, we do not find a strong de-
pendence on redshift and thus use the full sample to define the see-
ing dependent weight

w(si) = (As +Bssi)
−1 , (5)

where As and Bs are simply the intercept and slope of the best-
fit linear relationship, shown in the middle panel of Fig. 8. The
coefficients we use are Ai = 0.782 and Bi = 0.0625. For the
g-band depth, we fit linear relationships in redshift bins ∆z = 0.1
and again use a cubic spline interpolation in order to obtain a weight
at any redshift

w(dg, z) = (C(z) + dg(1− C(z))/〈dg〉)−1 , (6)

where C(z) is the interpolated result for the value of the linear-
fit where dg = 0. The relationships as a function of redshift and
the linear best-fit models are shown in the bottom panel of Fig. 8.
The total systematic weight,wsys, is thus multiplication of the three
weights

wsys = w(fstar(z))w(si)w(dg, z). (7)

The dependencies we find are purely empirical as we lack any
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Figure 8. The galaxy density vs. potential systematic relationship used to
define weights that we apply to clustering measurements. Top panel: The
galaxy density versus stellar density in four photometric redshift bins. The
linear fits are used to determine the stellar contamination. The χ2 values for
the fits are 9.7, 10.0, 3.5, and 14.3 (8 degrees of freedom). Middle panel:
The galaxy density versus the mean i-band seeing for our full sample. The
inverse linear fit is used to define weights applied to clustering measure-
ments. The χ2 is 7.7 (8 degrees of freedom) and the coefficients are 0.788
and 0.0618. Bottom panel: The galaxy density versus g-band depth in four
photometric redshift bins. The coefficients are interpolated as a function of
redshift and used to define weights to be used in the clustering measure-
ments. The χ2 values for the fits, given 8 degrees of freedom, are 7.7, 8.9,
12.7, and 6.1. The slopes are (-0.0256, 0.0320, 0.103, 0.0609).
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more fundamental understanding for how these correlations de-
velop. They must result from the complicated intersection of our
color/magnitude selection and the photometric redshift algorithm,
that are not perfectly captured by our mask. Besides the relations
with different observing properties (airmass, seeing, dust, exposure
time) are also very correlated what makes physical interpretation
very complicated.

In the following section, we test the impact of these weights on
the measured clustering, and determine their total potential impact.
In DES-BAO-MAIN , we show that the weights have minimal im-
pact on the BAO scale measurements and that our treatment is thus
sufficient for such measurements. Our treatment is not as compre-
hensive as Elvin-Poole et al. (2017), and thus further study might
be required when using the sample defined here for non-BAO ap-
plications.

7 TWO-POINT CLUSTERING

In this section we describe the basic two-point clustering properties
of the samples previously defined. We concentrate on large-scales
where the BAO signal resides, and the sample using zDNF−MOF

photometric redshifts which is the default one used in DES-BAO-
MAIN.

We compute the angular correlation functionw(θ) of the sam-
ple, split into four redshift bins, using the standard Landy-Szalay
estimator (Landy & Szalay 1993),

w(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
(8)

as implemented in the CUTE software5 (Alonso 2012), where
DD(θ), DR(θ) and RR(θ) refer to normalized pair-counts of
Data (D) and Random (R) points, separated by an angular aper-
ture θ. Random points are uniformly distributed across the foot-
print defined by our mask (albeit downsampled following the frac-
tional coverage of each pixel, described in Sec. 5), with an abun-
dance twenty times larger than that of the data in each given bin.
For the fits and χ2 values quoted in this section we always con-
sider 16 angular-bins linearly spaced between θ = 0.45 deg and
θ = 4.95 deg, matching the scale cuts in the BAO analysis us-
ing w(θ) of DES-BAO-MAIN. We compute pair-counts in angular
aperture bins of width 0.3 deg in order to reduce the covariance
between the measurements. The covariance matrix is derived from
1800 Halogen mocks, described in detail in DES-BAO-MOCKS.

The expected noise in the inverse covariance from the finite
number of realisations (Hartlap, Simon & Schneider 2007) and the
translation of that into the variance of derived parameters (Dodel-
son & Schneider 2013) is negligible given the size of our data vec-
tor (16 angular measurements per tomographic redshift bin) and
the number of model parameters (one bias per bin). For instance
the increased error in derived best-fit biases in any given bin would
be sub-percent. The change in the full

√
χ2 is ∼ 3.7% (16x4 data-

points, see the discussion below). We therefore neglect these cor-
rections in this section.

Figure 9 shows the impact of the systematic weights on the
measured angular clustering in terms of the difference ∆w between
the pre-weighted correlation function w and the post-weighted one
wweighted, relative to the statistical error σw (i.e. neglecting all co-
variance). To compare this against the expected amplitude of the

5 https://github.com/damonge/CUTE

Figure 9. Top panel shows the impact of the systematic weights on each
redshift bin, shown by the differential angular correlations, with and with-
out weights applied, relative to the uncertainty. One can see that the weights
make the biggest difference for the 0.7 < z < 0.8 bin, which is the redshift
range with the greatest stellar contamination. The thick solid line displays
the BAO feature in similar units, (wBAO −wno BAO)/σw , for the second
tomographic bin as an example (different bins show similar BAO strength
but displaced slightly in the angular coordinate). The systematic weights
only modify the underlying smooth shape, and do not have a sharp feature
at BAO scales. Bottom panel shows the ratio of correlations for each bin,
which provides additional information on the absolute size of the correc-
tions (in this case we only plot up to scale with no zero crossings of w).

BAO feature at this scales we also display in thick solid black line
the theoretical angular correlation function with and without BAO,
for the second tomographic bin for concreteness, relative to the sta-
tistical errors. The corrections are all at the same level (or smaller)
than the expected BAO signal.

The weights have the largest impact in terms of clustering am-
plitude for the redshift bin 0.7 < z < 0.8, which is the redshift
range with the largest stellar contamination (∼ 4%, see Table 3), al-
though never exceeding one σw. For the remaining bins the change
in the correlation functions are within 1/4 of σw. We can assess
quantitatively the total potential impact of the weights by calculat-
ing χ2

sys = ∆w(θ)tC−1∆w(θ); the square-root of this number is
an upper bound in the impact, in terms of number of σ’s, that the
weights could have on the determination of any model parameter.

In the range 0.45 deg < θ < 4.95 deg, with 16 data-points,
we find χ2

sys = 0.1, 1.35, 0.2 and 0.5 respectively for each tomo-
graphic bin separately (showing that for example best-fit bias de-
rived solely from the 2nd tomographic bin can be shifted by more
than one sigma if weights are uncorrected for). More interestingly,
for the four bins combined and including the full covariance matrix,
we find χ2

sys = 1.35. This implies a maximum impact of 1.16σ in
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Figure 10. Angular correlation function in four redshift bins, for galaxies selected with zDNF−MOF. Symbols with error bars show the clustering of galaxy
sample corrected for the most relevant systematics. Dashed line displays a model using linear theory with an extra damping of the BAO feature due to
nonlinearities, and a linear bias fitted to the data (whose best fit value is reported in the inset labels). We consider 16 data-points and one fitting parameter in
each case (dof=15). Note that the points are very covariant, which might explain the visual mismatch in the first tomographic bin that nonetheless retains a
good χ2/dof .

Figure 11. Angular cross-correlation functions of the four tomographic bins in 0.6 < zphoto < 1.0, see Fig. 10, for galaxies selected according to
zDNF−MOF. The model prediction shown with dashed lines assumes a bias equal to the geometric mean of the auto-correlation fits, i.e. bij =

√
bibj ,

and is basically proportional to the overlap of redshift distributions, which are shown in the bottom right panel.
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a derived global parameter such as the angular diameter distance
measurement. This maximum threshold is well above the actual
impact of the weights inDA/rs found in DES-BAO-MAIN, which
is 0.125σDA/rs (see Table 5 in that reference). We consider this an
indication that the particular shape of the BAO feature is not easily
reproducible by contaminants, and is therefore largely insensitive to
such corrections, which is consistent with previous analyses (Ross
et al. 2017b).

Figure 10 displays the auto-correlation function (including ob-
servational systematic weights) of 4 tomographic bins of width
∆zphoto = 0.1 between 0.6 6 zphoto 6 1.0. Data at z > 0.8
appear to show significant BAO features. Best fit biases, derived
1σ errors and their corresponding χ2 values are reported as inset
panels and in Table 3. The model displayed assumes linear the-
ory and the MICE cosmology6 (Fosalba et al. 2015; Crocce et al.
2015), with an extra damping of the BAO feature, see DES-BAO-
θ-METHOD for details. The χ2/dof are all of order∼ 1 or better,
showing that these are indeed good fits given the covariance of the
data. In Table 3 we also report best fit bias values for a split of the
sample into four tomographic bins using the BPZMOF photo-z,
showing no discrepancies.

As a further test of the clustering signal, as well as the tails of
the photo-z distributions, we show in Fig. 11 the cross-correlation
between different bins. The overploted models were derived using
the redshift distributions of the corresponding bins and assume a
bias equal to the geometric mean of the tomographic bins,

wij(θ) = b2ij

∫ ∫
dz dz̃ni(z)nj(z̃)D(z)D(z̃)ξ(rθ) (9)

where r2
θ = r(z)2 + r(z̃)2 − 2r(z)r(z̃) cos θ and b2ij = bibj .

In Eq. (9) we denote ξ the spatial correlation function computed
in linear theory at z = 0. The error bar displayed and the re-
ported χ2 values are obtained with a theoretical covariance ma-
trix designed to match the Halogen mocks covariance of the auto-
correlations (i.e. matching the bias and shot noise and area of
the mocks). Detailed formulae and tests of this theory covariance
are given in a companion paper, DES-BAO-θ-METHOD (see also
Crocce, Cabré & Gaztañaga (2011); Ross et al. (2011b); Salazar-
Albornoz et al. (2014)). However when we test the χ2 values of
the auto-correlations against the best-fit model7 using this theory
covariance instead of the one derived from the mocks we find con-
siderably larger χ2 values: ri ≡ χ2

i,theory−cov/χ
2
i,mocks−cov =

1.46, 1.37, 1.37, 1.47 for auto-correlations in bin i = 1 to 4, re-
spectively. We propagate this uncertainty to the cross-correlations
by dividing χ2

ij,theory−cov by√rirj .
Overall the cross-correlations show a good match to the

model, which is sensitive to the tails of the redshift distributions and
the geometric mean bias. The χ2/dof are ∼ 1. The non-adjacent
bin 1×3 (where the expected clustering signal is negligible) shows
an excess correlation on very large-scales. This most probably in-
dicate a residual systematic and not a problem of the photo-z dis-
tributions.

The large χ2 values in some of the cross-correlations (bins

6 We make this choice throughout the DES-Y1 BAO analysis because the
MICE N-Body simulation was used to calibrate the Halogen mock galaxy
catalogues. MICE cosmology assumes a flat concordance LCDM model
with Ωmatter = 0.25, Ωbaryon = 0.044, ns = 0.95, σ8 = 0.8 and
h = 0.7.
7 The best-fit bias and error from the theory covariance or the mocks one
are consistent with each other, however the χ2 values are only so to about
40%.

Figure 12. Three-dimensional correlation function binned in projected pair
separations. We use projected separations because radial pairs are damped
due to photo-z mixing. The dashed line is the best fit model assuming linear
bias and a smeared BAO feature, as discussed in detail in DES-BAO-MAIN.

2 × 3 and 3 × 4) are driven by the non-diagonal structure of the
covariance matrix rather than a mismatch between the best-fit bias
of the cross-correlation bij compared to the geometrical mean of
the auto-correlation biases. For example, for 2× 3 the best-fit bias
from w2×3 is only 2% larger than

√
b2b3 (and the corresponding

χ2 change sub-percent). On the other hand, the χ2 of the cross-
correlation drops to 0.4 if we only consider a diagonal covariance
matrix. Similarly χ2

3×4 drops to 1.28 from 2 using a diagonal co-
variance matrix. Overall, we conclude there is a fairly good match
between the implications of the overlap of redshift distributions and
the cross-correlation clustering signal.

In Figure 12 we show ξ(sperp) which is the three-dimensional
correlation function binned only in projected physical separations.
To compute this correlation we converted (photometric) redshift
and angles to physical distances assuming MICE cosmology. This
yields a three-dimensional map of the galaxies in comoving coordi-
nates. Random points are distributed in this volume with the same
angular distribution as the angular mask defined in section 5, and
used for w(θ), and drawing redshifts randomly from the galaxies
themselves. Pair counts are then computed and binned in projected
separations. A full detail of such procedure is given in DES-BAO-
MAIN as well as in Ross et al. (2017a). The modeling displayed in
Fig. 12 projects the real space three-dimensional correlation func-
tion into photometric space assuming Gaussian photometric red-
shift errors per galaxy, provided in Table 3 as σ68. It also assumes
a linear bias betweeen the galaxies and the matter field.

The bias recovered from the three-dimensional projected clus-
tering at a mean redshift of 0.8 is b = 1.83± 0.06, consistent with
the one from w(θ) tomography. In addition we stress that this clus-
tering estimate includes all cross-correlations of the data. The fact
that it is matched by the theory modeling, which in turn includes a
characterisation of the redshift distributions per galaxy, represents
also an additional consistency check of reliability of the photomet-
ric redshifts.
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8 CONCLUSIONS

This paper describes the selection of a sample of galaxies, opti-
mised for BAO distance measurements, from the first year of DES
data. By construction, this sample is dominated by red and lumi-
nous galaxies with redshifts in the range 0.6 < z < 1.0. We have
extended the selection of red galaxies beyond that of previously
published imaging data used for similar goals in SDSS by Padman-
abhan et al. (2005) to cover the higher redshift and deeper data
provided by DES.

We compute the expected magnitudes of galaxy templates in
the four DES filters and identify the (i− z) and (z− i) color space
to select red galaxies in the redshift range of interest. The actual
selection in color and magnitude is defined using the BAO dis-
tance measurement figure-of-merit as a guiding criteria. Remark-
ably, the resulting forecast matches the results obtained in DES-
BAO-MAIN with the final analysis. The global flux limit of the
sample is iauto < 22, although we later introduce a sliding mag-
nitude cut to limit ourselves to brighter objects towards lower red-
shifts.

We consider three different photo-z catalogues, with two dif-
ferent photometric determinations. We showed that the typical
photo-z uncertainty (in units of 1 + z) goes from 2.3% to 3.6%
from low to high redshift, for DNF redshifts using MOF photom-
etry, and slightly worse for BPZ with MOF photometry. Hence
the former constitutes our primary catalogue in DES-BAO-MAIN,
while the later is used for consistency. Redshift estimations based
on COADD photometry turned out to be worse than those derived
from MOF photometry by 10%−20%. Our final sample is made of
1.3 million red galaxies across 1336 deg2 of area, largely contained
in one compact region (SPT).

We study and mitigate, when needed, observational system-
atics traced by various survey property maps. Of these, the most
impactful is the stellar contamination, which we find nonetheless
bound to < 4%. Also i-band mean seeing and g-band depth are
relevant. We define weights to be applied to the galaxies when
computing pair counting to remove the relations between galaxy
number density and large scale fluctuations in those survey prop-
erties. We show that none of these corrections have an impact on
BAO measurements, mainly because they can eventually modify
the broad-shape of the correlation functions but do not introduce a
characteristic localised scale as the BAO.

Lastly we characterised the two-point clustering of the sam-
ple, which is then used in DES-BAO-MAIN to derived distance
constraints. We find the auto-correlations to be consistent with a
bias that evolves only slightly with redshift, from 1.8 to 2. The bias
derived from the tomographic analysis is consistent with the one fit-
ted to the whole sample range with the 3D projected distance anal-
ysis. Furthermore we investigate the cross-correlation between all
the tomographic bins finding clustering amplitudes matching ex-
pectactions, although with poor χ2-values in some cases. Overall
this is a further test of the assumed redshift distributions.

This paper serves the purpose of enabling for the fist time BAO
distance measurements using photometric data to redshifts z ∼ 1.
These measurements achieve a precision comparable to those con-
sidered state-of-the-art using photometric redshift to this point (Seo
et al. 2012), as well as those from WiggleZ (Blake et al. 2011),
which are both limited to z ∼ 0.65. These BAO results are pre-
setend in detail in DES-BAO-MAIN. While this paper was com-
pleted, the third year of DES data was made available to the collab-
oration, totalling 3 to 4 times the area presented here, and similar or
better depth. Hence we look forward to that analysis, which should

already yield a very interesting counter-part to the high precision
low-z BAO measurements already existing.
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Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015, MNRAS, 448,

2987
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