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Abstract
The study of heavy-light meson masses should provide a way to determine renormalized quark

masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it

is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper,

we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce

a definition of the renormalized quark mass that is free of both scale dependence and renormalon

ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show

how this definition enters a merger of the descriptions of heavy-light masses in heavy-quark effective

theory and in chiral perturbation theory (χPT). For practical implementations of this merger, we

extend the one-loop χPT corrections to lattice gauge theory with heavy-light mesons composed of

staggered fermions for both quarks. Putting everything together, we obtain a practical formula to

describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice

artifacts related to staggered fermions. In a companion paper, we use this function to analyze

lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark

effective theory.
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I. INTRODUCTION

Six of the fundamental parameters of the Standard Model are quark masses, but because
of confinement they can be determined only indirectly via their influence on hadrons. In
order to develop precise predictions of the Standard Model, it is necessary to define the
quark mass in a theoretically sound way, based on quantum field theory, and establish
relations between such definitions and (nonperturbative) quantities that can be measured
in experiments or computed in lattice gauge theory. In this and a companion paper [1], we
focus on the connection to lattice QCD and, in particular, on the relation between the mass
of a heavy-light hadron and the mass, mQ, of the heavy quark bound inside. Here, “heavy”
refers to masses much larger than the scale of QCD: mQ � ΛQCD.

Properties of heavy-light hadrons can be studied with two approximate symmetries: chi-
ral symmetry for the light quarks and spin-flavor symmetry for the heavy quarks. Chiral
symmetry is a symmetry of the QCD Lagrangian in the limit of massless light quarks, while
spin-flavor symmetry is a symmetry of the limit of infinitely massive quarks. These sym-
metries are approximate but very pertinent in suitable kinematic regions. The small effects
of symmetry breaking can be derived with effective field theories: chiral perturbation the-
ory (χPT) for chiral symmetry and heavy-quark effective theory (HQET) for heavy-quark
spin-flavor symmetry.
χPT and HQET can be combined into heavy-meson chiral perturbation theory (HMχPT)

[2–4], which describes the low-momentum interactions of pseudo-Goldstone bosons (π, K
and η) and hadrons containing a heavy quark. Let us use Bx to denote a generic heavy-light
pseudoscalar meson composed of a light quark x and a heavy antiquark Q̄, and B∗x to denote
the corresponding vector meson. The masses of the Bx and B∗x mesons, to first order in
1/mQ and light-quark masses, are [4, 5]

M
B

(∗)
x

= M0 + 2λ1B0mx + 2λ′1B0(mu +md +ms)− dB(∗)
3λ2

2mQ

, (1.1)

where mx is the light valence mass; mu, md, and ms are the light (sea) quark masses; and
mQ is the heavy antiquark mass.1 The physical meaning of the terms in Eq. (1.1) is as
follows. The mass M0 is the spin-averaged heavy-light meson mass in the chiral limit. The
next two terms parameterize the light-quark-mass dependence; here B0 enters the leading-
order relation between the pion mass and the quark masses, m2

π = B0(mu + md). The last
term describes the leading spin-dependent effect; here dB = 1 for pseudoscalar mesons and
dB∗ = −1

3
for vector mesons. In the language of HMχPT, λ1, λ′1, and λ2 are low energy

constants; λ1 and λ′1 are independent of the heavy-quark mass, while λ2 has a logarithmic
dependence on mQ via αs(mQ) [4], as elaborated below. These quantities can be determined
by matching HMχPT to the underlying theories, namely HQET and ultimately QCD.

In HQET, the mass of the Bx (or B∗x) meson is [6]

M
B

(∗)
x

= mQ + Λ +
µ2
π

2mQ

− dB(∗)
µ2
G(mQ)

2mQ

, (1.2)

to first order in 1/mQ. Each term here has a simple physical interpretation: Λ̄ is the
energy of the light quarks and gluons, µ2

π/2mQ is the kinetic energy of the heavy quark in

1 Note that all quark masses can vary in lattice-QCD simulations.
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the meson’s rest frame, and dB(∗)µ2
G(mQ)/2mQ corresponds to the hyperfine energy of the

interaction between the heavy quark’s spin with the chromomagnetic field inside the meson.
Although each quantity corresponds to a term in the effective Lagrangian of HQET [7], for
Eq. (1.2) to be useful in practice, mQ and Λ require a careful definition. The principal new
result of this paper is to propose a new definition with a natural interpretation in HQET,
which in turn hinges on a recent, improved understanding of the overall normalization of
the renormalon [8]. This definition is renormalon-free and scale-independent; we call it the
minimal renormalon-subtracted (MRS) mass.

Note that the kinetic term is free of renormalization, as a consequence of reparametriza-
tion invariance [9–11]. On the other hand,

µ2
G(mQ) = Ccm(mQ)µ̃2

G, (1.3)

where Ccm(mQ), which is known to three loops [12], is the Wilson coefficient of the chromo-
magnetic operator obtained by matching HQET to QCD at scale mQ, and µ̃2

G is the matrix
element of the chromomagnetic interaction operator in HQET.

The HQET quantities on the right hand side of Eq. (1.2) depend on masses of light
quarks. Moreover, the heavy-quark mass mQ depends on the sea-quark masses via two-
and higher-loop diagrams. In this work, we exploit χPT to incorporate contributions from
nonvanishing masses of light quarks. If we set all light quark masses to zero in Eq. (1.2) and
compare to Eq. (1.1), then we find

M0 =

[
mQ + Λ +

µ2
π

2mQ

+ O
(
m−2
Q

)]
chiral limit

, (1.4)

λ2 =

[
1

3
µ2
G(mQ)

]
chiral limit

. (1.5)

The logarithmic dependence of λ2 on mQ is now manifest via Eq. (1.3).

For applications in lattice QCD, it is helpful to modify χPT to include lattice discretiza-
tion errors, especially since lattice-QCD computations often involve an extrapolation in light-
quark masses to the physical up and down masses, and always require a continuum extrap-
olation in lattice spacing. With staggered fermions, the appropriate extension of HMχPT is
known as heavy-meson, rooted, all-staggered chiral perturbation theory (HMrASχPT) [13].
In this paper, we calculate one-loop corrections to heavy-light meson masses within the
framework of HMrASχPT. Together with the MRS mass, these corrections are needed to
analyze lattice-QCD data for masses of heavy-light mesons composed of staggered quarks,
as in Ref. [1].

This paper is organized as follows. In Sec. II, we introduce the MRS mass. Then, in
Sec. III, we present the HMrASχPT corrections to the heavy-light meson masses. Section IV
combines the MRS mass with these expressions to provide a practical way to analyze lattice-
QCD data for heavy-light meson masses, which is implemented in a companion paper [1] to
extract the quark masses and the HQET matrix elements Λ and µ2

π. Finally, in Sec. V, we
summarize the results and offer some outlook, both to the removal of higher renormalons
and to applications in quarkonium.
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II. MINIMAL-RENORMALON-SUBTRACTED MASS

Let us return to the HQET description of heavy-light meson masses:

MB(∗) = mQ + Λ +
µ2
π

2mQ

− dB(∗)
µ2
G(mQ)

2mQ

+ · · · . (2.1)

Clearly, the meaning of Λ is connected to the choice of the renormalized mass mQ, and similar
connections persist to the higher orders in the 1/mQ expansion. In the context of HQET,
the most natural choice for mQ is the pole mass, because the pole mass does not depend
on the ultraviolet regulator and therefore has the same physical interpretation in QCD and
HQET. In QCD and other non-Abelian gauge theories, the pole mass is infrared finite [14]
and gauge independent [14, 15] at every order in perturbation theory, but the perturbative
series relating it to a short-distance mass diverges, owing to renormalon effects [16, 17].
Indeed, the leading infrared renormalon implies an intrinsic ambiguity of order ΛQCD in the
definition of the pole mass. The meson mass is unambiguous, so this ambiguity must be
canceled by Λ, which itself is of order ΛQCD. Similar ambiguities from subleading infrared
renormalons link the pole mass in Eq. (2.1) to the higher-order terms [16, 17], such as µ2

π.
Short-distance masses are free of these long-distance effects and are also candidates

for mQ. In interpreting Eq. (2.1), they all leave something to be desired. Consider choosing a
mass-independent renormalization scheme, such as MS, for mQ. Then, a term of order αsmQ

must be absorbed into Λ, which spoils the 1/mQ power counting of HQET [18]. Threshold
masses have been introduced to alleviate this problem. Uraltsev’s kinetic mass [19, 20], the
renormalon-subtracted (RS) mass [21], and the MSR mass [22] all introduce a new factoriza-
tion scale. The 1S mass [23] is based on quarkonium and the potential-subtracted mass [24]
on the heavy-quark potential; they also introduce (at least) one more scale into the study
of heavy-light hadrons. Moreover, the heavy-quark potential is infrared divergent starting
at three loops [25].

Here, we propose a new threshold mass that avoids introducing an additional scale. Our
proposed mass is closely related to the RS mass, and we call it the minimal renormalon-
subtracted (MRS) mass. The RS mass removes the leading-renormalon contribution from
the pole mass along with a finite piece that depends on a renormalization point, νf , such
that (ideally) ΛQCD � νf � mQ. In the MRS mass, the same goal is achieved without a
new νf . We advocate formulating HQET using the MRS mass for the heavy quark, because
it retains the advantages of the pole mass, while circumventing its ambiguity. (We shall
also comment on variations on the MRS mass with similar advantages.) In the construction
of HQET as an effective theory of QCD, the shift from the pole to the MRS mass can be
understood as an application of the notion of a residual mass term [26]. Shifting the (pole)
mass by an amount δm, δm� mQ, does not disrupt the matching of HQET to QCD [18, 27].

Because the pole mass of a quark is infrared finite [14] and gauge independent [14, 15] at
each order in perturbation theory, at any finite N one can write

mpole = m

(
1 +

N∑
n=0

rnα
n+1
s (m) + O(αN+2

s )

)
, (2.2)

where m denotes the MS-renormalized mass self-consistently evaluated at the scale µ = m.
Here, αs is the strong running coupling in a generic mass-independent scheme; the values
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of the coefficients rn depend on this scheme, which is implicit but obvious in the following
equations.

At large orders, the coefficients rn grow like n!, so the series diverges for all αs > 0.
To cope with the divergence, one can employ the method of Borel resummation [28, e.g.]
to interpret a divergent series and replace it with a better-behaved expression. The Borel
sum of a series involves an integration in the Borel plane from a base point to infinity. The
integration path is usually defined on the real axis from the origin to +∞. But, in general,
it is possible to have different integration paths that cannot be deformed to each other.
Particularly, if there are singularities on the positive real axis in the Borel plane, one cannot
attribute an unambiguous Borel sum to the divergent series.

In the case of the pole mass, one finds an ambiguity of order ΛQCD stemming from an
infrared renormalon singularity. Apart from the overall normalization, the full nature of
this singularity, and, hence, the large-n behavior of rn, stems from the running of the gauge
coupling [29]. For the normalization, expansions based on the rn in Eq. (2.2) have been
proposed [8, 21, 22, 30–33]. Because the leading infrared renormalon in the pole mass is
closely related to an ultraviolet renormalon in the self-energy of a static quark [17, 29] and,
similarly, the heavy-quark potential [34, 35], the leading renormalon is independent of m.
Reinterpreting this observation, Ref. [8] shows that, up to an overall multiplicative factor,
the large-n behavior of rn can be obtained from the recurrence relation

an = 2 [β0nan−1 + β1(n− 1)an−2 + · · ·+ βn−1a0] , n ≥ 1, (2.3)

where βn are the coefficients of the beta function

β(αs) =
dαs
d lnµ2

= −α2
s

(
β0 + β1αs + β2α

2
s + · · ·

)
, (2.4)

capturing the running of the coupling with renormalization point µ.
The recurrence relation can be solved in closed form in the scheme with

β (αg(µ)) = −
β0α

2
g(µ)

1− (β1/β0)αg(µ)
. (2.5)

We shall call the scheme implied by Eq. (2.5) “geometric” because it corresponds to changing
the scheme of αs such that βj/β0 = (β1/β0)j, j ≥ 0, and summing the geometric series. We
denote the coupling in this scheme αg and comment on other schemes below. The geometric
scheme, which is very convenient in reducing the algebra, has been employed before in the
literature on renormalons [36, 37, e.g.].

In this scheme, the solution of Eq. (2.3) is [8, Eq. (2.14)],

an = (2β0)n
Γ(n+ 1 + b)

Γ(2 + b)
a0, n ≥ 1, (2.6)

where b = β1/(2β
2
0), and a0 is the initial term in the sequence.2 In a general scheme, the

solution would include further terms that are suppressed by powers of 1/n; see, for instance,
Ref. [8, Eq. (2.5)]. In the geometric scheme, however, these corrections all vanish.

2 Note that Eq. (2.6) is not valid for n = 0. Without this gap in the an, the sequence would not solve

Eq. (2.3).
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Equation (2.5) on its own does not suffice to define the geometric scheme. In addition,
one must specify the finite part dropped in the course of one-loop renormalization from the
bare to the renormalized coupling. Equivalently, we can choose a value for b1 in the relation

1

αg(µ)
=

1

αMS(µ)
+ b1 + b2αMS(µ) + · · · . (2.7)

We choose b1 = 0, which imposes a close relation between the geometric and MS schemes,
as we shall see in Eq. (2.21), below. The other constants bn, n > 1, are chosen so that
the scheme-dependent part of the beta function takes the geometric form, Eq. (2.5): b2 =
β2/β0 − (β1/β0)2, b3 = 1

2
[β3/β0 − (β1/β0)3], etc.

The value of the overall normalization a0 is needed in order to specify that rn ∼ an as
n→∞. In the literature, it is more common to work with R0 = a0/(1 + b). (Elsewhere, R0

is denoted Nm [21] or N [8, 29].) Thus, we work with the sequence

Rn ≡ R0(2β0)n
Γ(n+ 1 + b)

Γ(1 + b)
, n ≥ 0, (2.8)

even though it is Eq. (2.6)—and not Eq. (2.8)—that solves the recurrence relation. Refer-
ence [8, Eq. (2.22)] provides a series solution for R0 in the geometric scheme:

R0 =
∞∑
k=0

r′k
Γ(1 + b)

Γ(2 + k + b)

1 + k

(2β0)k
, (2.9)

where
r′k = rk − 2 [β0krk−1 + β1(k − 1)rk−2 + · · ·+ βk−1r0] (2.10)

with the rk of Eq. (2.2). Note that the r′k are free of the leading pole-mass renormalon in
any scheme [8], but when evaluating r′k for Eq. (2.9) the geometric scheme must be used
for the rk. Because the leading renormalon cancels in the r′k, they grow slowly enough such
that the series in Eq. (2.9) converges.

To tame via Borel summation the leading-renormalon divergence on the right-hand side
of Eq. (2.2), the pole mass can be expressed as

mpole = m+m

∫ ∞
0

dt e−t/αg(µ)

∞∑
n=0

[rn −Rn +Rn]
tn

n!
, (2.11)

where the rn are in the geometric scheme. In the following, our manipulations overlook the
subleading renormalons and other sources of divergence (such as instanton contributions),
taking the attitude that the method could be generalized to handle them, and-or their
practical implications are not important. With this proviso in mind, we rewrite the pole
mass as

mpole = m

(
1 +

∞∑
n=0

[rn −Rn]αn+1
g (m)

)
+ J (m), (2.12)

J (µ) ≡ µ

∫ ∞
0

dt e−t/αg(µ)

∞∑
n=0

Rn

n!
tn. (2.13)
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In Eq. (2.12), the power series in αg with [rn−Rn] is better-behaved than that in Eq. (2.2),
because it is free of the leading infrared renormalon [21].

Let us now examine the second term in Eq. (2.12), J (µ), which contains the leading
infrared renormalon. Plugging Eq. (2.8) into the series inside the integral, one finds

∞∑
n=0

Γ(n+ 1 + b)

Γ(1 + b)n!
zn =

1

(1− z)1+b
, (2.14)

where z = 2β0t. Here, following the convention in performing a Borel sum, a power series is
summed in its region of validity, |z| < 1, and then extended by analytic continuation. Thus,

J (µ) =
R0

2β0

µ

∫ ∞
0

dz
e−z/(2β0αg(µ))

(1− z)1+b
. (2.15)

A full definition must specify the path of integration in the complex z plane and the branch
cut for the multivalued function (1− z)−(1+b).

Our strategy is to divide the integral into two pieces:

J (µ) = JMRS(µ) + δm, (2.16)

where

JMRS(µ) =
R0

2β0

µ

∫ 1

0

dz
e−z/[2β0αg(µ)]

(1− z)1+b
, (2.17)

δm =
R0

2β0

µ

∫ ∞
1

dz
e−z/[2β0αg(µ)]

(1− z)1+b
. (2.18)

Because the integration in JMRS(µ) lies within the unit disk, it does not depend on the
contour. In both pieces, the integral is defined first for Re b < 0 and by analytic continuation
elsewhere. As discussed below, the first term, JMRS, is unambiguous; the full ambiguity of
the leading renormalon is contained in δm.

In δm, the explicit µ dependence and implicit dependence via αg(µ) cancel. This feature
can be shown, and the branch cut moved into a prefactor, by setting z = 1 + 2β0αg(µ)x,
yielding

δm = (−1)1+b R0

2β0

µ
e−1/[2β0αg(µ)]

[2β0αg(µ)]b

∫ ∞
0

dx x−b−1e−x

= −(−1)b
R0

21+bβ0

Γ(−b)Λg, (2.19)

where (−1)b = e±iπb if the contour is set slightly above (+) or below (−) the positive real
axis. Remarkably, the conventional [38–40] constant of integration introduced when solving
Eq. (2.5) appears:

Λg = µ
e−1/[2β0αg(µ)]

[β0αg(µ)]b
. (2.20)

This constant is independent of µ to all orders, so, as announced, δm does not depend on µ.
Moreover, owing to the choice b1 = 0 in Eq. (2.7), it also follows, to all orders [38, 39], that

Λg = ΛMS. (2.21)
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Finally, the overall normalization of the renormalon, R0, is the same in both schemes [41],
and indeed in any scheme such that b1 = 0.

At this point, we can present the main result of this section, namely a new proposal for
the mass to be used in setting up HQET and, thus, Eq. (2.1). Reference [21] introduces the
renormalon-subtracted (RS) mass, which in our notation can be written

mRS(νf ) ≡ mpole − J (νf ), (2.22)

clearly removing the renormalon ambiguity.3 Our proposal is to subtract the minimal piece
of J (µ) that removes the renormalon, namely δm:

mMRS ≡ mpole − δm, (2.23)

= m

(
1 +

∞∑
n=0

[rn −Rn]αn+1
g (m)

)
+ JMRS(m). (2.24)

We call mMRS the minimal renormalon-subtracted (MRS) mass, because it removes only the
part of J (µ) that is ambiguous. Equation (2.23) should be considered a formal, intuitive
definition (both terms are ambiguous), while Eq. (2.24) gives a rigorous (apart from sublead-
ing renormalons and similar obstacles, overlooked in this analysis) and, thus, operational
definition. As the notation suggests, and as Eq. (2.19) shows, the difference in using mMRS

instead of mpole amounts to a shift by an amount δm ∼ ΛMS � mQ, which does not disrupt
the 1/mQ expansion [18, 27].

To evaluate mMRS, one can proceed as follows. First, one can carry out the integration
in Eq. (2.17), obtaining

JMRS(m) =
R0

2β0

me−1/[2β0αg(m)]Γ(−b)γ?
(
−b,−[2β0αg(m)]−1

)
, (2.25)

where γ?(a, w) ≡ [w−a/Γ(a)]
∫ w

0
dt ta−1e−t is the limiting function of the incomplete gamma

function [49]. In practice, the power series

Γ(−b)γ?(−b,−y) =
∞∑
n=0

yn

n!(n− b)
(2.26)

converges quickly. This series can be derived from Eq. (2.17) by changing variables to
x = 1 − z, expanding ex/y in powers of x, and integrating term-by-term. Next, the sum in
Eq. (2.24) is carried out to the order available, taking care to be consistent with the scheme.
The rn are used directly in Eq. (2.24) and also in the Rn via R0 [Eq. (2.9)]. Because the
sequence corresponding to the leading infrared renormalon has been removed, the power
series for the MRS mass is better-behaved than the uninterpreted series, Eq. (2.2). As
shown in Sec. IV, Eqs. (4.10)–(4.12), the better behavior is realized in practice.

This concludes the derivation and implementation of the MRS scheme for the quark mass.
We end this section with a few interesting and useful remarks.

It is interesting to examine the asymptotic expansions for JMRS and mMRS, because they
underscore a key feature of asymptotic expansions: the same expansion can hold for more
than one quantity. As a function of αg, JMRS(m) has a convergent expansion in powers

3 For some practical applications of the RS mass, see Ref. [21, 42–48].
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of 1/αg(m), but it is not an analytic function about αg(m) = 0. Its power expansion leads
to the asymptotic expansion

JMRS(m) ∼ m

∞∑
n=0

Rnα
n+1
g (m), as αg(m)→ 0. (2.27)

The ambiguous function J (m), given in Eq. (2.13), has the same asymptotic expansion
as JMRS(m), because its ambiguous component δm is exponentially small in 1/αg(m) and,
thus, not visible to conventional asymptotics. (See Ref. [50] for a discussion on exponentially
small terms in asymptotic calculations.) Similarly, putting Eqs. (2.24) and (2.27) together
for the MRS mass, one finds

mMRS ∼ m+m

∞∑
n=0

rnα
n+1
g (m), as αg(m)→ 0, (2.28)

which is the same series as the asymptotic expansion of the pole mass. Note that with
suitable changes to the Rn and rn, Eqs. (2.27) and (2.28) may be extended to any renor-
malization scheme.

Another method to fix the ambiguity of the pole mass is the so-called principal value
(PV) prescription [29, 30, 48, e.g.], which removes the ambiguous imaginary part of mpole:

mPV ≡ Rempole (2.29)

= mMRS − cos(πb)
R0

21+bβ0

Γ(−b)Λg. (2.30)

Like mMRS, mPV also contains no subtraction scale. The PV mass has the advantage that
it remains finite when b tends to a positive integer or zero. We prefer the MRS scheme,
because the PV scheme entails an arbitrary decision to replace the multivalued factor (−1)b

with its real part. In the MRS mass, on the other hand, all ambiguity is swept into δm and
absorbed into the residual mass of HQET, as discussed below.

As just implied, the MRS mass is not ideal when b tends to a non-negative integer, in
which case δm is no longer of order Λg. Suppose, for example, b → 0. Then, we can use a
variant MRS′ such that:

mMRS′ = mpole − δm′, (2.31)

δm′ = δm− R0

2β0b
Λg, (2.32)

JMRS′(m) = JMRS(m) +
R0

2β0b
Λg, (2.33)

which introduces a term chosen to cancel the n = 0 term in Eq. (2.26) as b → 0. Other
variants could remove the singular term in Eq. (2.26) as b tends to any positive integer.

With the MRS mass for heavy quarks, we can now revisit the discussion in Sec. I on
resolving the problem of ambiguities in HQET. We reconstruct the HQET Lagrangian using
the MRS mass for the heavy quark and setting the corresponding residual mass4 to the

4 Our residual mass δm is minus the residual mass introduced in Ref. [26].
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ambiguous term δm. Then, M0 in Eq. (1.4) reads

M0 =

[
mMRS + δm+ Λ +

µ2
π

2mMRS

+ O
(
m−2

MRS

)]
chiral-limit

,

=

[
mMRS + ΛMRS +

µ2
π

2mMRS

+ O
(
m−2

MRS

)]
chiral-limit

, (2.34)

where ΛMRS = Λ + δm is a well-defined quantity, because it is associated with two well-
defined quantities, M0 and mMRS. We do not attribute the MRS scheme to µ2

π in Eq. (2.34),
because, as defined here, the MRS scheme does not subtract subleading renormalons in
the pole mass, such as the one canceled by µ2

π. Renormalon-free definitions of Λ in other
schemes, such as PV and MRS′, follow by analogy with Eq. (2.34).

Finally, it is worth recording the relations between the RS and MRS schemes:5

mRS(νf ) = mMRS − JMRS(νf ), (2.35)

ΛRS(νf ) = ΛMRS + JMRS(νf ), (2.36)

which follow immediately from Eqs. (2.22) and (2.23), with JMRS(νf ) evaluated as described
in and below Eq. (2.25).

III. HEAVY-LIGHT MESON MASSES IN STAGGERED χPT

In this section, we discuss the corrections to heavy-light meson masses from the “pion
cloud,” using heavy-meson rooted all-staggered chiral perturbation theory (HMrASχPT),
which was developed to compute these corrections for heavy-light decay constants [13].
HMrASχPT incorporates aspects of staggered fermions into standard HMχPT [2–5], in
particular the extra pseudo-Goldstone bosons arising from the four fermion species, or tastes,
that emerge from each staggered fermion field in the continuum limit. For the sea quarks,
HMrASχPT also accounts for taking the fourth root of the staggered determinant, which is
done to simulate one flavor per staggered fermion field.

The light pseudoscalar sector of the leading order HMrASχPT Lagrangian includes terms
to describe the breaking of SU(4) taste symmetry at order a2 [51]. For example, a light
pseudoscalar meson with flavors x and y and mesonic taste Ξ has, at the tree level [52,
Eq. (18)],

m2
xyΞ

= B0(mx +my) + a2∆Ξ (3.1)

with ∆P = 0, where P is the so-called pseudoscalar taste. (The full set of 16 mesonic tastes is
given the labels {I, V, T, A, P}, corresponding to multiplets of (1, 4, 6, 4, 1), respectively [53].)
In contrast, the heavy-light sector of the leading-order HMrASχPT Lagrangian—and also
the one-loop heavy-light meson propagator—are taste invariant [13, Eq. (27) and (151)].
Therefore, all taste violations in the heavy-light meson masses at next-to-leading order
(NLO) come from the NLO terms in the HMrASχPT Lagrangian, treated at the tree level;
see, for instance, Eqs. (125) and (127) and Tables I and II in Ref. [13]. Because these
terms can be added straightforwardly, we drop the taste index of heavy-light mesons, for
convenience, and we neglect the tree-level lattice corrections to their masses, which can be
restored at the end, as required.

5 Equation (2.35) provides an alternative way to calculate the RS mass, similar to that used in Ref. [48].
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The leading corrections to heavy-light meson masses come from two sources: a one-loop
contribution from the self energy of the heavy-light meson, and the tree-level contributions
from the parts of the HMrASχPT Lagrangian that explicitly break the chiral symmetry
of the light quarks and the spin-flavor symmetry of the heavy quarks. The corresponding
terms in the effective Lagrangian are

L0 = M0 Tr
(
HH

)
, (3.2)

L1 = −iTr
(
HHv·←D

)
+ gπ Tr

(
HHγµγ5Aµ

)
, (3.3)

Lm = 2λ1B0 Tr
(
HHM+

)
+ 2λ′1B0 Tr

(
HH

)
Tr
(
M+

)
− λ2

4mQ

Tr
(
HσµνHσµν

)
, (3.4)

where M0 from Eq. (1.4) is included for convenience.6 Here H is a heavy-meson field for
pseudoscalar and vector mesons, M+ = 1

2
[σMσ + σ†Mσ†] with M = diag(mu,md,ms),

σ = exp(iΦ/2f), σµν = (i/2)[γµ, γν ], v
µ is the four-velocity of HQET, Dµ = ∂µ − iVµ,

Vµ = i
2
(σ†∂µσ + σ∂µσ

†), Aµ = i
2
(σ†∂µσ − σ∂µσ

†), and gπ is the H-H∗-π coupling. The
matrix field Φ contains the 16n2 − 1 pseudo-Goldstone bosons for n staggered light flavors,
and f is the decay constant of these bosons (in the chiral limit). As discussed elsewhere [52],
Φ also contains the flavor-taste singlet η′I , which is removed by taking mη′I

to infinity, relative
to the pseudo-Goldstone boson masses, once these contributions have been isolated. For full
details of the notation, see Refs. [13, 52, 54]. In Eq. (3.4), we follow the normalization of
Ref. [55] for λ1 and λ′1 and of Ref. [56] for λ2, but with opposite sign so that our λ2 > 0.
Further, in Eq. (3.4), we use the power counting adopted in Ref. [56]; mq ∼ 1/mQ with mq

being a generic light quark mass.
The heavy-light mesons carry both light flavor and taste indices. As mentioned above,

the taste index is unnecessary at this order, so we write Bx and B∗x for pseudoscalar and
vector mesons, respectively, with light valence flavor x. Their masses are then

MBx = M0 + 2λ1B0mx + 2λ′1B0 TrM− 3λ2

2mQ

+ δMBx , (3.5a)

MB∗x = M0 + 2λ1B0mx + 2λ′1B0 TrM+
λ2

2mQ

+ δMB∗x , (3.5b)

where the three terms after M0 are the tree-level corrections, which are immediate from
Eq. (3.4), and δM

B
(∗)
x

is the one-loop correction from the pion cloud.

To obtain δM
B

(∗)
x

, one must evaluate the one-loop self energy on shell. Although the

flavor and hyperfine splittings in the heavy-meson propagator are formally subleading in mq

and 1/mQ, respectively, it is quantitatively sensible to include them. In practice, both the
flavor splittings (e.g., MDs −MD ≈ 99 MeV) and hyperfine splittings (e.g., MD∗ −MD ≈
144 MeV) are not much different than the pion mass, so they influence the behavior of the
nonanalytic terms in the one-loop contribution.

The self energy in HMrASχPT has already been computed in Ref. [13], which in turn
relies on Ref. [54]. There the self energy is used to obtain the wave-function renormalization
needed to compute the one-loop corrections to the heavy-light decay constants. (Some steps
are not spelled out in Refs. [13, 54], so we rederived the self energy from scratch.) Let us
first consider the case in which the three light sea quarks have distinct masses, i.e., 1+1+1.

6 One can choose the generators of heavy-quark flavor symmetry to be compatible with a nontrivial heavy-

quark mass matrix mQ [7, Sec. III]. Also, the µ2
π term could, if desired, be moved from L0 to Lm.
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We find

δMBx

∣∣∣
1+1+1

= − 3g2
π

16π2f 2

{
1

16

∑
S,Ξ

K1(mSxΞ
,∆∗ + δSx) (3.6)

+
1

3

∑
j∈M(3,x)

I

∂

∂m2
XI

[
R

[3,3]
j (M(3,x)

I ;µ
(3)
I )K1(mj,∆

∗)
]

+

(
a2δ′V

∑
j∈M(4,x)

V

∂

∂m2
XV

[
R

[4,3]
j (M(4,x)

V ;µ
(3)
V )K1(mj,∆

∗)
]

+ [V → A]

)}
,

δMB∗x

∣∣∣
1+1+1

= − g2
π

16π2f 2

{
1

16

∑
S,Ξ

(
K1(mSxΞ

,−∆∗ + δSx) + 2K1(mSxΞ
, δSx)

)
(3.7)

+
1

3

∑
j∈M(3,x)

I

∂

∂m2
XI

[
R

[3,3]
j (M(3,x)

I ;µ
(3)
I )K∗1(mj,−∆∗)

]

+

(
a2δ′V

∑
j∈M(4,x)

V

∂

∂m2
XV

[
R

[4,3]
j (M(4,x)

V ;µ
(3)
V )K∗1(mj,−∆∗)

]
+ [V → A]

)}
,

where S runs over the three light sea flavors (u, d, s); Ξ runs over 16 meson tastes; mSxΞ

and mXΞ
are masses of mesons with taste Ξ and, respectively, flavor S̄x and x̄x; and δ′V (δ′A)

is the (axial) vector hairpin low-energy constant.
The notation for the loop functions is

K1(m,∆) = ∆J1(m,∆), (3.8)

K∗1(m,∆) = K1(m,∆) + 2K1(m, 0) = K1(m,∆) +
4π

3
m3, (3.9)

J1(m,∆) =

(
2

3
∆2 −m2

)
ln

(
m2

Λ2
χ

)
+

4

3

(
∆2 −m2

)
F
(m

∆

)
− 10

9
∆2 +

4

3
m2, (3.10)

F (1/x) =


−
√

1− x2

x

(
π

2
− tan−1 x√

1− x2

)
, if |x| ≤ 1,

√
x2 − 1

x
ln
(
x+
√
x2 − 1

)
, if |x| ≥ 1.

(3.11)

In Eq. (3.10), Λχ is the renormalization scale of χPT. The residue symbols originating from
the hairpin diagrams take two sets of masses as arguments:

R
[n,k]
j ({m}; {µ}) =

∏k
i=1(µ2

i −m2
j)∏n

r=1|r 6=j(m
2
r −m2

j)
. (3.12)

The sets needed in Eqs. (3.6) and (3.7) are

µ
(3)
Ξ = {mUΞ

,mDΞ
,mSΞ

}, for Ξ ∈ {I, V, A}, (3.13)

M(3,x)
I = {mXI

,mπ0
I
,mηI}, (3.14)

M(4,x)
Ξ = {mXΞ

,mπ0
Ξ
,mηΞ

,mη′Ξ
}, for Ξ ∈ {V,A}. (3.15)
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Here, UΞ, DΞ, and SΞ denote ūuΞ, d̄dΞ, and s̄sΞ mesons, respectively, while π0
Ξ, ηΞ, and η′Ξ

denote the eigenstates after mixing among neutral mesons is taken into account. Only the
flavor-taste singlet η′I receives a large mass related to the axial anomaly and, as mentioned
above, has been removed.

Finally, we have the hyperfine and flavor splittings. ∆∗ = 2λ2/mQ is the lowest-order
hyperfine splitting, and δSx is the lowest-order flavor splitting between heavy-light mesons
with light quarks of flavor S and x. δSx can be written in terms of pion masses as

δSx = 2λ1B0(mS −mx) ≈ λ1(m2
SSP
−m2

XP
), (3.16)

where P again denotes pseudoscalar taste.
In lattice-QCD simulations, the up and down sea-quark masses are often taken equal,

which is then denoted as a (2 + 1)-flavor sea. Throughout this paper, we write ml ≡
1
2
(mu +md). For the 2 + 1 case, we find

δMBx

∣∣∣
2+1

= − 3g2
π

16π2f 2

{
1

16

∑
S,Ξ

K1(mSxΞ
,∆∗ + δSx) (3.17)

+
1

3

∑
j∈M(2,x)

I

∂

∂m2
XI

[
R

[2,2]
j (M(2,x)

I ;µ
(2)
I )K1(mj,∆

∗)
]

+

(
a2δ′V

∑
j∈M̂(3,x)

V

∂

∂m2
XV

[
R

[3,2]
j (M̂(3,x)

V ;µ
(2)
V )K1(mj,∆

∗)
]

+ [V → A]

)}
,

δMB∗x

∣∣∣
2+1

= − g2
π

16π2f 2

{
1

16

∑
S,Ξ

(
K1(mSxΞ

,−∆∗ + δSx) + 2K1(mSxΞ
, δSx)

)
(3.18)

+
1

3

∑
j∈M(2,x)

I

∂

∂m2
XI

[
R

[2,2]
j (M(2,x)

I ;µ
(2)
I )K∗1(mj,−∆∗)

]

+

(
a2δ′V

∑
j∈M̂(3,x)

V

∂

∂m2
XV

[
R

[3,2]
j (M̂(3,x)

V ;µ
(2)
V )K∗1(mj,−∆∗)

]
+ [V → A]

)}
,

with sets

µ
(2)
Ξ = {mLΞ

,mSΞ
}, for Ξ ∈ {I, V, A}, (3.19)

M(2,x)
I = {mXI

,mηI}, (3.20)

M̂(3,x)
Ξ = {mXΞ

,mηΞ
,mη′Ξ

}, for Ξ ∈ {V,A}, (3.21)

where LΞ, analogously to Eq. (3.13), denotes an l̄lΞ meson. In the continuum limit of full
QCD (where the light valence quark is one of the sea quarks), the nonanalytic terms in
these expressions agree with the corresponding results, Eqs. (A6), (A7), (A8) and (A9),
in HMχPT [57]; there are unimportant differences in the analytic terms, stemming from a
different choice of counterterms.

As they stand, the expressions for δM
B

(∗)
x

are not completely independent of the chiral

scale Λχ, but this dependence can be absorbed into counterterms. Most of these are the
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same as in continuum HMχPT, and they are formally of higher order in the χPT expansion.
An interesting example is suppressed by a2 and can be handled via

δM
B

(∗)
x
→ δM

B
(∗)
x

+ λa2a2 3g2
π

16π2f 2

[
∆̄
∑
S

δSx + dB(∗)∆∗
(
3∆̄− 1

3
∆I + δ′V + δ′A

)]
, (3.22)

where dB(∗) = 1(−1
3
), and the nearly7 Sx-independent quantities

a2∆I = m2
SxI
−m2

SxP
, (3.23)

a2∆̄ =
1

16

∑
Ξ

(
m2

SxΞ
−m2

SxP

)
(3.24)

stem from the taste splittings in the logarithmic terms in K1; cf. Eqs. (3.8) and (3.10). The
remaining Λχ dependence can be absorbed into λ1, λ′1 and higher order counterterms in
continuum HMχPT.

Finite-volume effects can be incorporated into δM
B

(∗)
x

by substituting K1(m,∆) with

its finite-volume counterpart. Equation (92) of Ref. [59] gives the finite-volume version of
J1(m,∆). With Eq. (3.8), we then find, for a spatial volume L3,

K1(m,∆)→ K1,FV(m,∆) = K1(m,∆) + δK1(m,∆, L), (3.25)

where

δK1(m,∆, L) = −m
2

3
∆δ1(mL)− 16π2m

2 −∆2

3
JFV(m,∆, L), (3.26)

with δ1(mL) and JFV(m,∆, L) given, respectively, in Eqs. (84) and (86) of Ref. [59].

IV. SYNTHESIS

In this section, we combine our results from the previous two sections, deriving the HQET
and χPT descriptions of heavy-light meson masses, into a practical form. In addition, we
comment on the effect of the nonzero charm quark mass in the relation between the MS and
MRS masses.

Let us first fix notation for quark masses associated with currently available lattice-QCD
ensembles with 2+1+1 flavors of quarks [58]. We use m′l, m

′
s and m′c to denote the simulation

masses of the light, strange and charm quarks, respectively. We also use ml = 1
2
(mu +md),

ms and mc to denote the tuned values of the corresponding quarks. As in Sec. III, we use

B
(∗)
x to denote a generic all-staggered heavy-light pseudoscalar (vector) meson with light

valence quark x and heavy valence antiquark h̄.
Putting Eqs. (1.4), (1.5), and (3.5) together, using the MRS mass for the heavy quark,

and spelling out the dependence on light quark masses and lattice spacing, we have

M
B

(∗)
x

(mx; {m′l,m′l,m′s}; a) =

[
mh,MRS + ΛMRS +

µ2
π − dB(∗)µ2

G(mh)

2mh,MRS

]
chiral-limit

(4.1)

+ 2λ1B0mx + 2λ′1B0(2m′l +m′s) + δM
B

(∗)
x

(mx; {m′l,m′l,m′s}; a),

7 These splittings are empirically nearly flavor independent (see, e.g., Ref. [58, Fig. 6]), which can be

understood because the flavor dependence vanishes at leading order in staggered χPT [52].
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where the last term is given by the suitable expression from Eqs. (3.6), (3.7), (3.17), or (3.18).
In Eq. (4.1), the HQET matrix elements ΛMRS, µ2

π and µG(mh) appear in the SU(3) chiral
limit, which is not interesting in practice. Therefore, we rewrite Eq. (4.1) as

M
B

(∗)
x

(mx; {m′l,m′l,m′s}; a) = mh,MRS + ΛMRS +
µ2
π − dB(∗)µ2

G(mh)

2mh,MRS

+ 2λ1B0mx (4.2)

+ 2λ′1B0(2m′l +m′s) + δM
B

(∗)
x

(mx; {m′l,m′l,m′s}; a)− C(∗),

where
C(∗) = 2λ1B0mq + 2λ′1B0(2ml +ms) + δM

B
(∗)
q

(mq; {ml,ml,ms}; 0) (4.3)

is the continuum, physical quark-mass limit of the χPT corrections. By construction, then,
the formula reduces to

M
B

(∗)
q

(mq; {ml,ml,ms}; 0) = mh,MRS + ΛMRS +
µ2
π − dB(∗)µ2

G(mh)

2mh,MRS

(4.4)

for a = 0, tuned sea-quark masses, and mq takes one of the values 1
2
(mu +md), mu, md, or

ms, depending on the light flavor of interest. The resulting values of ΛMRS, µ2
π and µ2

G(mh)
are now appropriate for calculations within HQET.

From HQET power counting, it may seem that chiral corrections may be moved arbitrarily
between the HQET matrix elements and the heavy quark mass. It is crucial, however, that
the heavy-quark mass be defined so that it does not depend on the hadron of which it is a
constituent. More formally, the heavy-quark mass should be a singlet under chiral symmetry
and appear in all hadron masses in a way consistent with HQET. Therefore, it is necessary
to use HMχPT to separate all low-energy light-quark mass effects from MB(∗) to obtain M0,
and then to use HQET to separate M0 into mh,MRS, ΛMRS, and µ2

π/2mQ. In this way, all
chiral corrections are absorbed into ΛMRS, µ2

π, µ2
G, etc. in Eq. (4.4).

One can use Eq. (1.3) to express µ2
G(mh) in terms of Ccm(mh) and µ̃2

G, which are the Wil-
son coefficient and matrix element of the chromomagnetic operator in HQET, respectively.
Equivalently, one can express it as

µ2
G(mh) =

Ccm(mh)

Ccm(mb)
µ2
G(mb). (4.5)

When lattice-QCD data are not available for the B∗ mass (as in Ref. [1]), one can use the
experimental value of the hyperfine splitting, MB∗ −MB, as a prior on the value of µ2

G(mb).
Because µ2

G(mb) provides the first term in the 1/mh expansion for the physical quantity
MB∗ − MB, any renormalon ambiguity must be suppressed by at least another factor of
1/mh. This is not the case for µ2

π, because it is not closely related to any physical quantity,
as we discuss briefly below.

A further practical step is to exploit the identity8

mr,MS(µ)

mh,MS(µ)
=
amr,0

amh,0

+ O(a2), (4.6)

8 The left-hand side of Eq. (4.6) holds with any mass-independent renormalization scheme, and the right-

hand side relies on the remnant chiral symmetry of staggered fermions.
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where am0 is the bare staggered-fermion mass in lattice units, and the subscript r denotes
a reference mass. In Eq. (4.2), we trivially rewrite

mh,MRS =
mr,MS(µ)

mh,MS(µ)

amh,0

amr,0

mh,MRS = mr,MS(µ)
mh

mh,MS(µ)

mh,MRS

mh

amh,0

amr,0

. (4.7)

The factors in the last expression are, respectively, a convenient fit parameter for lattice-
QCD applications, a factor depending on αs and the mass anomalous dimension to run
between mh and a fixed scale µ, an expression given in Sec. II, and a variable that is an
input to lattice QCD. The third factor depends on mh only through αg(mh), as is easily seen
in Eqs. (2.24) and (2.25). A different renormalization scheme, besides MS, would amount
to substituting the appropriate coefficients for the rn in Eq. (2.24), and another renormalon
subtraction, besides MRS, would amount to substituting the appropriate prescription for
the J function.

Let us now address an important detail in the perturbative series relating the MS and
MRS definitions of the renormalized quark mass. The relation between the MS mass and
the pole mass (and hence the MRS mass) is known through order α4

s, but the order-α4
s

term is known only for massless sea quarks. The effect of nonzero sea-quark masses is
available through order α3

s [60, 61]. For the up, down, and strange quarks, the effects of
nonzero masses of quarks can be neglected in perturbative QCD. For the charmed sea quark,
however, the nonzero mass does affect the heavy-quark mass at the current precision. A bit
more generally, let us consider QCD with nl massless quarks, one charm quark of mass
0 < mc < mh, and nh heavy quarks of mass mh. The relation between the pole and MS
mass of the nh heavy quarks is usually first reported with nl + 1 + nh active quarks; see, for
example, Ref. [62]. The result, however, is usually expressed and used with nl + 1 flavors of
active quarks, absorbing the heavy-quark loops into the running of αs. Although the gauge
coupling is converted to run with nl + 1 active flavors, the heavy-quark mass customarily
remains in the nl + 1 + nh scheme.

When studying the relation between the MS and RS masses, Ref. [46] found a better-
behaved expansion if the charm-quark contribution is also decoupled from the renormalon-
subtracted series and added back separately. This can be explained by the fact that the
charm-quark mass cuts off the infrared momenta that generate factorially growing contri-
butions [63]. In this vein, one can rewrite Eq. (2.24) as

mh,MRS = mh

(
1 +

∞∑
n=0

[
r(nl)
n −R(nl)

n

]
αn+1
s (mh;nl)

)
+ J (nl)

MRS(mh) + ∆m(c), (4.8)

where αs(mh;nl) is the value of the gauge coupling with nl active quarks and the charm quark

decoupled at scale µ = mc; the superscript (nl) in r
(nl)
n , R

(nl)
n and J (nl)

MRS(mh) indicates that
they correspond to the theory with nl active quarks; and ∆m(c) includes the contribution of
the charmed quark as well as effects that are generated from matching to the nl-flavor αs.
More details are provided at the end of this section. Note that, even though the charmed
quark is removed from the perturbative series, the MS mass mh in Eq. (4.8) remains in the
(nl + 1 + nh)-flavor scheme. In the calculation of the MRS mass, we then set

R
(3)
0 = 0.535± 0.010, (4.9)

which is the overall normalization of the leading infrared renormalon in the pole mass with
three massless active quarks [8]. The value agrees with other estimates in the literature:
0.563(26) [46], 0.537 (no error quoted) [64], and 0.526(12) [32].
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To see how these manipulations work in practice, let us now investigate numerically the

relation between the MRS and MS masses for nl = 3, R
(3)
0 = 0.535, and nh = 0 (which is

appropriate for 2+1+1-flavor lattice QCD). Exploiting four-loop calculations in Ref. [62],
we have

r(3)
n = (0.4244, 1.0351, 3.6932, 17.4358, . . .), (4.10)

R(3)
n = (0.5350, 1.0691, 3.5966, 17.4195, . . .), (4.11)

for n = 0, 1, 2, 3, . . .. Their differences

r(3)
n −R(3)

n = (−0.1106, −0.0340, 0.0966, 0.0162, . . .) (4.12)

are much smaller; consequently, the series in powers of αs in Eq. (4.8) can be considered to
be a well-behaved series through order α4

s. This good behavior indicates that the subleading
infrared renormalon is not an immediate problem in computing the MRS mass. In principle,
this renormalon is canceled by a corresponding renormalon in µ2

π, so Eq. (4.12) also suggests
that µ2

π will be numerically stable in the MRS scheme. This outcome is not surprising,
because the effect of this renormalon is known to be small in Lorentz-invariant regularization
schemes [65].

Let us return to Eq. (4.8) and give the explicit expression for ∆m(c), which is denoted
δmc in Ref. [46]. The key equation is Eq. (2.15) in Ref. [46]; in our notation,

∆m(c) =
(
δm

(1)
(c,+) + δm

(1)
(c,dec)

)[αs(mh;nl)

π

]2

+
(
δm

(2)
(c,+) + δm

(2)
(c,dec)

)[αs(mh;nl)

π

]3

, (4.13)

where the coefficients δm
(1)
(c,+), δm

(1)
(c,dec), and δm

(2)
(c,dec) are given in Eqs. (2.6), (2.16), and (2.17)

of Ref. [46], and the coefficient δm
(2)
(c,+) is presented in Ref. [61]. Because the quarks that are

heavier than the charm quark are (still) quenched in lattice-QCD simulations, we cannot
directly use the expressions provided in Ref. [46]. As above, we use nh to denote the number
of dynamical heavy quarks with mass mh; then, for nl = 3 and arbitrary nh, one has

δm
(2)
(c,dec) =mh

[
−115981

11664
− 29π2

24
+

61π4

1944
− 11

81
π2 ln 2 +

2

81
π2 ln2 2 +

ln4 2

81
(4.14)

+
8

27
Li4(1

2
)− 511

216
ζ(3)− ln z2

(
377

96
+
π2

27
ln 2− 1

18
ζ(3)− 1

27
ln z2

)
+

nh
11664

(
5917− 864ζ(3)− 468π2 − 432π2 ln z2 + 3861 ln z2

)]
− 1

3
δm

(1)
(c,+) ln z2,

where z = m′c/mh, and m′c is the simulation charmed-quark mass. To obtain this expression
from Ref. [46], results in Refs. [66, 67] are needed to restore the nh dependence. Equa-
tion (4.14) reduces to Eq. (2.17) of Ref. [46] for nh = 1. For analysis of lattice-QCD data
with 2+1+1 flavors of sea quarks, one should set nh = 0. Further, to avoid the lengthy

expressions for δm
(1)
(c,+) and especially δm

(2)
(c,+), we use the approximate expressions provided
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in Eqs. (3.2) and (3.4) of Ref. [61]. We find numerically, for nl = 3 and nh = 0,

δm
(1)
(c,+) = m′c

(
1.596− 0.6285z + 0.1777z2

)
, (4.15)

δm
(1)
(c,dec) = −mh [1.0414 + 0.4444 ln z] , (4.16)

δm
(2)
(c,+) = m′c

[
19.987 + 2.824z + 1.288z2 −

(
13.644 + 2.788z − 0.0343z2

)
ln z
]
, (4.17)

δm
(2)
(c,dec) = −mh

[
22.312 +

(
8.227 + 1.064z − 0.419z2 + 0.118z3 − 0.148 ln z

)
ln z
]
. (4.18)

The relations for δm
(2)
(c,+) and δm

(2)
(c,dec) change slightly for nh = 1:

δm
(2)
(c,+) = m′c

[
19.987 + 3.028z + 1.141z2 −

(
13.644 + 2.788z − 0.0343z2

)
ln z
]
, (4.19)

δm
(2)
(c,dec) = −mh

[
22.29 +

(
8.296 + 1.064z − 0.419z2 + 0.118z3 − 0.148 ln z

)
ln z
]
, (4.20)

which may prove useful at a later date.

V. SUMMARY AND OUTLOOK

As we show in a companion paper [1], the theoretical developments in this paper provide
a new way to determine the quark masses as well as HQET matrix elements such as Λ
and µ2

π.9 With extremely precise lattice-QCD data for the heavy-light pseudoscalar-meson
correlation functions [68], Ref. [1] yields some of the most precise determinations of all quark
masses (other than the top quark). We find there that the fits of the lattice-QCD data are
much more convenient with the MRS mass than with alternatives. The key is that we do
not have to choose a renormalization scale, such as νf for the RS scheme, while preserving
the natural structure of HQET. We have tried the HQET fits with the RS mass and found
that we had to introduce three scales in all, νf < µ < mh, with µ being used for αs [69].
In addition, the end results for mc and mb depend on νf more than one would like. These
experiences prompted us to reexamine the idea of renormalon subtraction, leading to the
MRS scheme. With the available data, we also found more stable fits to the mh dependence
when using a wide range of data for mx and m′l. This experience prompted us to derive the
HMrASχPT expressions in Sec. III.

The idea to fit the HQET formula, Eq. (1.2), to lattice-QCD data to obtain Λ̄ and µ2
π

has been tried before. The first attempt [70] used lattice perturbation theory to convert the
bare lattice mass to the pole mass. In addition to suffering from the renormalon ambiguity,
the conversion was (and usually will be) limited to order αs. Closer in spirit is the recent
work [71] using nonperturbative renormalization of the lattice quark mass, together with
the kinetic scheme [19, 20] in Eq. (1.2). The conversion from the kinetic to the MS scheme
is known to (only) two loops [72]. With the MRS scheme, one can use the four-loop relation
between the MS mass and the pole mass [62] and, in the future, any higher-order terms that
may be obtained.

For lattice QCD with staggered sea and valence quarks, we augment the MRS scheme with
χPT for staggered fermions. Similar procedures can be applied with other lattice fermion

9 The data used in Ref. [1] lack the vector-meson masses. An ideal analysis would include them, in order

to obtain information on µ2
G as well.
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formulations. For example, χPT for Wilson fermions addresses chiral-symmetry breaking
from the dimension-five Wilson term in a way consistent with that of the mass term.

One can, in principle, extend the definition of the MRS mass by subtracting sequences of
higher and higher renormalons from the perturbative series and collecting their unambiguous
contributions into a generalization of the function JMRS(m). The key is to split the Borel
integral, as in Eqs. (2.17) and (2.18), into unambiguous and ambiguous pieces, and sweep
the ambiguity into δm. With some imagination and work, it may be possible to extend the
MRS idea beyond renormalon singularities to nonperturbative saddle points, i.e., instantons.
One may then speculate that the remaining series in powers of αs could acquire a nonzero
radius of convergence. Clearly, such a step will require generalizations of Ref. [8], or other
approaches such as direct investigation of divergences in the Borel plane, and, thus, remains
a conjecture at this stage.

How might this work? As explained in Ref. [73], “an asymptotic series . . . is a compact
encoding of a function, and its divergence should be regarded not as a deficiency but as
a source of information about the [underlying] function.” The crucial point here is that,
equipped with the overall normalization [8], we could decode the divergence due to the
leading infrared renormalon in the pole mass. Then we could recover the contribution of this
renormalon in the form of the nonperturbative function JMRS(m), which has a convergent
expansion in powers of the reciprocal of αs(m), rather than in powers of αs(m) itself.

The MRS scheme should also be useful in other phenomenological settings—the extra
scale(s) of alternative short-distance masses require more choices, making uncertainty esti-
mation difficult. For example, the rate of inclusive semileptonic B decay is proportional to
m5
b,pole, multiplied by a perturbative series that cancels the renormalon ambiguities [27, 74].

Using instead the MRS scheme for mass and corrections, one would have the product of two
unambiguous expressions.

In theoretical treatments of quarkonium, the heavy-quark potential contains a renormalon
ambiguity canceled by 2mpole [34, 35]. An immediate alternative is the MRS scheme, moving
the minimal renormalon from the mass to the potential. A first application could be in
the extraction of αs from the comparison of the static energy computed in perturbation
theory with lattice QCD, as implemented with a different renormalon subtraction scheme
in Ref. [44]. It would be also interesting to use the MRS mass to examine the quarkonium
spectrum, for example to determine the quark mass, either along the lines of Refs. [75–77]
or using lattice QCD.

Another application may be the gluelump mass [78], which arises in the short-range
treatment of hybrids [47, 48, 79]. As an adjoint-representation analog of Λ, the gluelump
mass either contains a renormalon (as in Ref. [48, Eq. (6)]) or depends on an artificial scale
(as in some other subtraction schemes). The MRS approach could be extended to provide
a physical definition, making possible a direct lattice-QCD calculation along the lines of
our companion determination of quark masses and ΛMRS [1]. Similar quantities can be
formulated in baryons and tetraquark states with one or more heavy quarks. Although all
examples mentioned here are closely related to the renormalons in the pole mass and-or
heavy-quark potential, renormalons appear in other contexts in QCD, and the MRS scheme
may be useful in those areas too.
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