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ABSTRACT
We present the first weak lensing calibration of µ?, a new galaxy cluster mass proxy corre-
sponding to the total stellar mass of red and blue members, in two cluster samples selected
from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift 0.1 6 z < 0.33 and 136
Voronoi Tessellation (VT) clusters at 0.1 6 z < 0.6. We use the CS82 shear catalogue and
stack the clusters in µ? bins to measure a mass-observable power law relation. For redMaPPer
clusters we obtain M0 = (1.77 ± 0.36) × 1014h−1M�, α = 1.74 ± 0.62. For VT clusters, we
find M0 = (4.31± 0.89) × 1014h−1M�, α = 0.59± 0.54 and M0 = (3.67± 0.56) × 1014h−1M�,
α = 0.68 ± 0.49 for a low and a high redshift bin, respectively. Our results are consistent,
internally and with the literature, indicating that our method can be applied to any cluster-
finding algorithm. In particular, we recommend that µ? be used as the mass proxy for VT
clusters. Catalogs including µ?measurements will enable its use in studies of galaxy evolution
in clusters and cluster cosmology.
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1 INTRODUCTION

Galaxy clusters are the largest and most massive gravitationally
bound structures in the Universe. They are formed by a large num-
ber of galaxies (usually with one large elliptical central), hot gas and
dark matter evolving in strongly coupled processes. Cluster proper-
ties depend on both the dynamical processes that take place inside
them and on the evolution of the Universe. As such, they can be
used as a powerful tool to probe its content, to study the formation
and evolution of structures, and to test modified gravity theories
(Haiman et al. 2001; Voit 2005; Allen et al. 2011; Kravtsov &
Borgani 2012; Ettori & Meneghetti 2013; Penna-Lima et al. 2014;
Harvey et al. 2015; Menci et al. 2016; Pizzuti et al. 2016).

Galaxy clusters also act as powerful gravitational lenses. Their
intense gravitational fields produce distortions in the shape (shear)
of the background galaxies (sources). Through this effect, we can
assess the mass distribution of the galaxy clusters to use them as

? Contact e-mail: mariaeli@brandeis.edu

cosmological tools (Schneider 2005). At the depths of ongoing and
planned wide-field surveys, it is not possible to measure this signal
from individual clusters, except for themostmassive ones. However,
we can combine the lensing signal of a large number of clusters to
obtain a higher signal-to-noise. This stacking procedure requires
the large statistics enabled by wide-field surveys such as the Dark
Energy Survey1 (DES; Jarvis et al. 2016; Melchior et al. 2017),
the Canada–France–Hawaii–Telescope (CFHT) Lensing Survey2

(CFHTLens; Velander et al. 2014; Ford et al. 2015; Kettula et al.
2015), the Sloan Digital Sky Survey (SDSS; Sheldon et al. 2001;
Simet et al. 2012; Wiesner et al. 2015; Gonzalez et al. 2017; Simet
et al. 2017), and the Kilo-Degree Survey3 (KiDS; de Jong et al.
2013; Kuijken et al. 2015).

Clusters can be identified in several wavelengths such as in X-

1 https://www.darkenergysurvey.org/
2 http://www.cfhtlens.org/
3 http://kids.strw.leidenuniv.nl/
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rays, radio and optical. In particular, the identification in the optical
can be made through the search for overdensities (from matched-
filters to more complex Voronoi tessellations) of multi-band opti-
cally detected galaxies. These multi-band optical cluster catalogues
usually provide good cluster photometric redshifts (photo-z), which
are crucial information for weak lensing measurements.

Observationally, galaxy clusters are ranked not by the mass of
the halo but by some proxy for mass. A mass-observable relation
must be calibrated in order to make the connection between the
observable and the true halo mass. The technique of stacking the
weak lensing signal for many systems within a given observable
interval provides one of the most direct and model independent
ways to accurately calibrate such mass-observable scaling relations.
Many efforts have been made to determine the scaling relations
empirically using an observable mass proxy for the cluster mass.
However, comparing the empirical measurements is challenging
since there are several methods to identify the clusters, which lead
to different cluster samples, and different definitions of the mass
proxy to be used (Johnston et al. 2007; Oguri 2014; Ford et al.
2015; Wen & Han 2015; Wiesner et al. 2015; Simet et al. 2017).

In this work, we use the stacked weak lensing technique on
galaxy clusters identified by two different algorithms to estimate
their mass and to obtain the scaling relations for two different mass
proxies. The clusters are identified by the red-sequence Matched-
filter Probabilistic Percolation4 (redMaPPer; Rykoff et al. 2014)
optical cluster finder and the geometric Voronoi Tessellation5 al-
gorithm (VT; Soares-Santos et al. 2011) in the Sloan Digital Sky
Survey (SDSS) Stripe 82 region. We use the weak lensing shear cat-
alog from the CFHT Stripe 82 Survey (CS82; Moraes et al. 2014;
Erben et al. 2017), which has excellent image quality and thus we
expect our mass estimates to be less affected by shape systematics
than the results obtained from the SDSS data alone (see, e.g. Gon-
zalez et al. in prep.). In our analysis, we obtain the scaling relations
for both the redMaPPer optical richness λ (Rykoff et al. 2012, 2014)
and for a new mass proxy µ?, which is described in two compan-
ion papers (Welch & DES Collaboration 2017; Palmese & DES
Collaboration 2017).

The new mass proxy µ? is defined as the sum of the stellar
masses of cluster galaxies weighted by their membership probabili-
ties. This quantity can be estimated reliably from optical photomet-
ric surveys (Palmese et al. 2016) and shows a tight correlation with
the total clustermass (e.g. Andreon 2012). Palmese&DESCollabo-
ration (2017) perform a matching between redMaPPer DES clusters
and XMM X-ray clusters at 0.1 < z < 0.7 and demonstrate that µ?
has low scatter with respect to X-ray mass observables. They com-
pute the TX–µ? relation, obtaining a scatter of σlnTX |µ? = 0.20,
which is comparable with results found for the redMaPPer richness
estimator λ by Rykoff et al. (2016) using XMM and Chandra X-ray
samples at 0.2 < z < 0.9 and by Rozo & Rykoff (2014) using the
XCS X-ray sample at 0.1 < z < 0.5.

When using the redMaPPer mass-proxy λ, we obtain a M200–
λ relation that is consistent with previous measurements found in
the literature. When using µ? on the same sample our results show
a similar level of uncertainty. Our results for the VT sample in
the same redshift range are consistent (within 1.5σ) with those we
obtain with redMaPPer, showing that our mass calibration is robust
against the specifics of the cluster selection algorithms. Finally, we
extend our analysis to a higher redshift VT sample. We do not see

4 https://github.com/erykoff/redmapper
5 https://github.com/soares-santos/vt

an evolution of the mass-observable relation at the level of precision
of this analysis.

This paper is organized as follows. In Section 2, we de-
scribe the cluster and the lensing shear catalogues. In section 3
we present the methodology for the measurement and modelling
of the stacked cluster masses. We present our results and the de-
rivedmass-calibrations in Section 4. Finally, in Section 5 we present
our concluding remarks. In this paper, the distances are expressed
in physical coordinates, magnitudes are in the AB system (unless
otherwise noted) and we assume a flat ΛCDM cosmology with
Ωm = 0.3 and H0 = 100 h km s−1Mpc−1.

2 CATALOGS IN SDSS STRIPE 82

We work with data on the so-called Stripe 82 region, which is an
equatorial stripe that has been scanned multiple times as part of the
SDSS supernovae search (Frieman et al. 2008), leading to a 5-band
co-add of selected images about two magnitudes deeper than the
main SDSS survey (Annis et al. 2014). Stripe 82 has become a well
studied ∼100 sq-deg scale region, with extensive spectroscopy from
SDSS and other wide-field spectroscopic surveys (Jones et al. 2009;
Drinkwater et al. 2010; Croom et al. 2009a, 2001; Colless et al.
2001; Croom et al. 2004, 2009b; Eisenstein et al. 2011), reaching
fainter magnitudes in smaller regions (Garilli et al. 2008; Newman
et al. 2012; Coil et al. 2011; de la Torre et al. 2013; Le Fèvre
et al. 2013), and a large spectral coverage from several synergistic
surveys (see, e.g. LaMassa et al. 2016; Timlin et al. 2016; Geach
et al. 2017, and references therein), including NIR photometry from
UKIRT Infrared Deep Survey (UKIDSS, Lawrence et al. 2007) and
from a combination of CFHT WIRCam and Visible and Infrared
Survey Telescope for Astronomy (VISTA) VIRCAM data (Geach
et al. 2017). It serves as a precursor of future datasets, and is being
covered by ongoing surveys at higher depths (e.g. DES, HSC6) and
denser wavelength coverage (J-PLUS7; Mendes de Oliveira et al. in
prep.).

In this work we use three catalogues in Stripe 82:

(i) A cluster catalog resulting from the VT algorithm (Soares-
Santos et al. 2011) applied to the SDSS stripe 82 co-add catalog
(Annis et al. 2014) with neural network photometric redshift mea-
surements (Reis et al. 2012).

(ii) A catalog of galaxy clusters identified by the redMaPPer
algorithm (Rykoff et al. 2014) on the SDSS 8th Data Release (DR8;
Aihara et al. 2011).

(iii) A galaxy catalog from the CS82 survey (Erben et al. 2017)
including shape measurements and photometric redshifts from
matched SDSS co-add (Annis et al. 2014) and UKIDSS YJHK
(Lawrence et al. 2007) photometry.

The CS82 survey defines the sky footprint of our analysis
and both cluster catalogues are matched to it. The CS82 photo-zs
were computed by Bundy et al. (2015) with the BPZ code (Benítez
2000). These are more precise than previously available photo-z
measurements (see also Leauthaud et al. 2017; Soo et al. 2017)
and therefore we use them throughout this analysis, namely, in the
computation of membership probabilities, for determining absolute
magnitudes, and in the stacked weak lensing analysis.

6 http://hsc.mtk.nao.ac.jp/ssp/
7 https://confluence.astro.ufsc.br:8443/
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2.1 VT clusters

The VT cluster finder (Soares-Santos et al. 2011) uses a geometric
technique to construct Voronoi cells that contain only one object
each. The cell sizes are inversely proportional to the local density
and a galaxy cluster candidate is defined as a high-density region
composed of small adjacent cells. The rawnumber ofmember galax-
ies, NVT, is thus the number of VT cells. The key point is to estimate
the density threshold to separate an overdensity (a galaxy cluster)
from the background and take into account the projection effects due
to the fact that the Voronoi cells are computed in a 2D-distribution
of objects in the sky. In order to achieve that, the VT algorithm is
built in photo-z shells and uses the two-point correlation function
of the galaxies in the field to determine the density threshold for
detection of the cluster candidates and their significance. Since it is
a geometric technique, there is no need of a priori assumption on
galaxy colours, the presence of a red-sequence or any assumptions
about their astrophysical properties.

In this paper, we use the VT catalogue produced for the Stripe
82 co-add (v1.10; Wiesner et al. 2015). Since that release version,
the VT team has developed an improved membership assignment
scheme and a new mass proxy, µ?. In this work we incorporate
those developments (see section 2.1.1 for details) and add two new
improvements, namely, a defragmentation algorithm and a redefi-
nition of the cluster central galaxy (described in sections 2.1.2 and
2.1.3, respectively). The former mitigates the effect of photometric
redshift shell edges and of multiple density peaks within individual
clusters. The latter allows us to extend the probabilistic approach of
membership to the determination of the central cluster galaxy.

2.1.1 Assigning the new mass proxy µ?

NVT performs poorly as a mass proxy, as shown by the scatter in
the richness-mass relation presented in Saro et al. (2015). The new
mass proxy, µ?, is based on a probabilistic membership assignment
scheme (Welch & DES Collaboration 2017)8 and on measurements
of stellar masses (Palmese &DES Collaboration 2017)9. In particu-
lar, Palmese & DES Collaboration (2017) showed that the scatter in
the µ? to X-ray temperature relation is comparable to that of other
mass proxies for an X-ray selected sample and that it allows inter-
esting cluster evolution analyses, having a clear physics meaning of
the cluster stellar mass.

The first step in computing µ? is to compute the membership
probability Pmem for each cluster galaxy

Pmem = Pz · Pr · Pc, (1)

where the three components represent the probability of the galaxy
being a member given its redshift (Pz ), its distance from the cluster
centre (Pr ) and its colour (Pc):

• Pz is the integrated redshift probability distribution of each
galaxy within a ∆z = 0.1 window of the cluster.
• Pr is computed assuming a projected Navarro-Frenk-and-

White profile.
• Pc is determined via Gaussian mixture modeling of the galaxy

colour distribution with two components, red sequence and blue
cloud; it is defined as the sum of the probability that the galaxy
colour is drawn from either the blue or red component.

8 https://github.com/bwelch94/Memb-assign
9 https://github.com/apalmese/BMAStellarMasses

For membership assignment purposes we use a subsample of
the galaxy catalog cut at Mr < −19. That subsample is volume
limited over our redshift range. We calculated the absolute magni-
tudes using kcorrect v4_2 (Blanton & Roweis 2007) taking the BPZ
photo-z as the galaxy redshift. We constructed a grid of g − r , r − i,
and i − z colours from the templates in kcorrect and chose the clos-
est to the observed galaxy colours. That chosen template provides
the K-correction from observed i band to rest-frame r-band, which,
together with our chosen cosmology, allows us to calculate Mr .

After computing the membership probabilities for each galaxy
i within 3 Mpc of each cluster j, we compute their stellar masses
assuming that every member galaxy is at the redshift of its host,
M?,i(zj ). Because the cluster redshifts have smaller uncertainties
than individual galaxies, this minimizes the uncertainties on M?,i

measurements. Stellar masses are computed using a Bayesianmodel
averaging method (BMA, see e.g. Hoeting et al. 1999). With this
method, we take into account the uncertainty on model selection
by fitting a set of robust, up to date stellar population synthesis
(SPS) models and averaging over all of them. In this work we use
the flexible stellar population synthesis (FSPS) code by Conroy &
Gunn (2010) to generate simple stellar population spectra. Those
are computed assuming Padova (Girardi et al. 2000, Marigo &
Girardi 2007, Marigo et al. 2008) isochrones and Miles (Sánchez-
Blázquez et al. 2006) stellar libraries with four differentmetallicities
(Z = 0.03, 0.09, 0.0096 and 0.0031). We choose the four-parameter
star formation history described in Simha et al. (2014). Finally, once
the stellar masses are computed, we define the new mass proxy as
the sum of the individual galaxy stellar masses weighted by their
membership probability:

µ? =
∑
i

Pmem,iM?,i . (2)

The membership assignment and µ? computation methods
were applied only to VT clusters with NVT > 20, to avoid poorly
detected galaxy groups. After applying the CS82 mask and a photo-
metric redshift cut at z < 0.6, where the VT sample is most reliable,
we obtain a sample of 136 clusters, which are used throughout this
analysis.

2.1.2 Investigating cluster fragmentation

Fragmentation of large clusters into smaller components in the VT
catalogue is one of the sources of scattering in the observable-
mass relation. We uncovered the issue by performing cylindrical
matching (angular separation θ < 1 arcmin and∆z < 0.05) between
redMaPPer and VT catalogs. This comparison showed some cases
where one redMaPPer cluster was split into two ormoreVT clusters.

When applied to a cluster fragment, the newprobabilisticmem-
bership method will result in a full-fledged list of members, as the
probabilities are computed out to 3 Mpc radius. This is a designed
feature. For two fragments located near each other, the result will be
two instances of the same cluster with slightly different membership
probabilities. In that case, only one instance should be maintained
in the catalogue. In order to ensure that, we developed a defrag-
mentation method using the membership probabilities Pmem. For a
given pair of cluster candidates, we define the "true" cluster as the
one for which

∑
Pmem is the largest.

In practice we first attribute a flag for each cluster in the catalog
as if they were all unique real clusters (cluster_frag=1). Then,
we rank them by mass proxy and compute the angular separation
between each other. If the separation is smaller than the largest R200
between the two and the redshift difference is ∆z < 0.05, those

MNRAS 000, 1–12 (2017)
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clusters are considered to be two instances, i and j, of a fragmented
pair. We compute the summation of the member probabilities of the
fragmented clusters i and j as Pi =

∑
Pi

mem and Pj =
∑

P j
mem,

respectively. We then match their members list (in our membership
scheme, clustersmay sharemembers) and then compute the quantity
Pmatch =

∑
Pi,match

mem =
∑

P j,match
mem for the matched members. Once

we have these quantities we compute the fractions

fi j =
Pmatch

Pi
and fji =

Pmatch
Pj

. (3)

Since Pmatch is the same for both, the only difference is in the
denominator. If fi j 6 fji , then i is kept in the catalog while j is
removed (i.e. set cluster_frag=0). We apply this procedure to
VT clusters in the range 0.1 6 z < 0.6 and we find that ∼ 16 per
cent of the clusters were affected by this issue. This is therefore a
non-negligible correction and future versions of VT catalog should
have this new procedure applied to them before being released.

2.1.3 Redefining the cluster central galaxy

The brightest cluster galaxy (BCG) is a good proxy for the centre
of the cluster and that fact is used in several cluster finding methods
(e.g., Koester et al. 2007; Hao et al. 2010; Oguri 2014). The original
VT algorithm, however, takes a purely spatial approach and defines
the cluster central galaxy as the one inside the highest density VT
cell. After computing µ? we redefine the central cluster galaxy as
the member galaxy with maximum probability of membership. The
probability P?cen that this newly defined central galaxy is the true
centre of the cluster is proportional to its membership probability:

P?cen ∝ max(Pmem). (4)

Although not normalized, this centring probability is analogous to
that of the redMaPPer algorithm.

2.2 redMaPPer clusters

The redMaPPer cluster finder (Rykoff et al. 2014) uses multi-band
colours to find overdensities of red-sequence galaxies around can-
didate central galaxies. In SDSS data, redMaPPer uses the five
band magnitudes (ugriz) and their errors to spatially group the red-
sequence galaxies at similar redshifts into cluster candidates. For
each red galaxy, redMaPPer estimates its membership probability
(pmem) following a matched-filter technique. At the end, for each
identified cluster, redMaPPer will return an optical richness esti-
mate λ (the total sum of the pmem of all galaxies that belong to that
cluster), a photo-z estimate zλ, and the positions and probabilities
of the five most likely central galaxies (Pcen).

In this work we use the most recent version of the SDSS
redMaPPer public catalog (v6.3; Rykoff et al. 2016), which covers
an area of 104 deg2, down to a limiting magnitude of i = 21 for
galaxies. The full sample of redMaPPer clusters in the catalog has
0.08 . zλ < 0.6 and 20 . λ < 300. After restricting the catalog
to the ∼ 170 deg2 of the CS82 footprint, we restrict our mass
measurements to the low redshift bin 0.1 6 zλ < 0.33 to enable
comparison with previous SDSS weak lensing measurements and
because the redMaPPer cluster catalog from single epoch SDSS
data is most reliable at these redshifts. The redMaPPer sample used
in this work, after all selection criteria are applied, contains 230
clusters.

We compute µ? as well for the redMaPPer clusters, employ-
ing the same steps described in section 2.1.1. This means that new

membership probabilities are computed for every cluster and en-
ables direct comparison between the ∆Σ profiles obtained for λ and
µ?, as discussed in section 4.1. The defragmentation step was not
needed for redMaPPer.

2.3 CS82 weak lensing catalog

We use the shape measurements from the CS82 survey, which is a
joint Canada–France–Brazil project using MegaCam at CFHT and
is specially designed to study the weak and strong lensing effects
(Erben et al. 2017). The survey has 173 MegaCam pointings in
the i′ band covering an effective area of 127 deg2 (after masking
to avoid bright stars, satellite tracks and other image artefacts) to
a limiting magnitude of 24 and mean seeing of 0.6 arcsec (Leau-
thaud et al. 2017) providing excellent imagining quality for precise
shapemeasurements. The shape estimates were obtained with Lens-
fit code (Miller et al. 2007) that performs a Bayesian profile-fitting
of the surface brightness to obtain an unbiased estimate of the shear
components from the average ellipticities. The code was tested in
simulations and real data (Kitching et al. 2008; Miller et al. 2013),
achieving very good results (Kitching et al. 2012) and became a suit-
able tool for precise shape estimates in surveys with the imagining
quality of CS82.

Lensfit was applied to the masked imaging data following the
same pipeline as the CFTHLenS collaboration (Miller et al. 2013)
and applying the shear calibration factors and testing the systemat-
ics in the same way as Heymans et al. (2012). For each source, an
additive calibration correction factor c2 is applied to the ε2 shear
component and a multiplicative shear calibration factor as a func-
tion of the signal-to-noise ratio and size of the source, m(νSN, r), is
also computed. Besides that, the Lensfit shear measurements were
also compared with other independent shear calibration methods
(Reyes et al. 2012; Melchior et al. 2014; Clampitt & Jain 2015) by
Leauthaud et al. (2017) who have found that a largely unknown and
unaccounted for bias in the Lensfit measurements is an unlikely pos-
sibility. From the Lensfit output catalog we select the objects with
weight w > 0, FITCLASS = 0 and MASK 6 1. These quantities
are computed by Lensfit, where w is an inverse variance weight for
each source, FITCLASS is a star/galaxy separation flag to remove
stars and select galaxies with well-measured shapes and MASK is
a flag that indicates the quality of the photometry, where for most
of the weak lensing analysis MASK 6 1 is a robust cut to apply,
as shown by Erben et al. (2013). We also select only galaxies with
magnitudes 20 6 i′ 6 24.7, with the upper value corresponding
to the limit to which the shear measurements were accurately cal-
ibrated in the CFHT images (Heymans et al. 2012; Miller et al.
2013).

The BPZ photometric redshift catalogue includes, in addition
to the photo-zs and errors, the parameterBPZ_ODDS that varies be-
tween 0 to 1 and indicates catastrophic redshift errors. We removed
from our source galaxy sample all objects with BPZ_ODDS 6 0.5.
According to Hildebrandt et al. (2012) and Benjamin et al. (2013)
the photo-z of the sources degrade at zs > 1.3, which could be a
concern for our measurements. However, Leauthaud et al. (2017)
performed a test computing the CS82 lensing signal with and with-
out this redshift cut and have shown no statistically significant shift
in the signal. Therefore we do not apply any restriction on the max-
imum value of zs so as to maximize the number of background
sources. Finally, after applying all the aforementioned cuts we ob-
tained a final catalogue with 2 809 764 sources, which give an
effective weighted galaxy number density of neff = 4.5 galaxies
arcmin−2.

MNRAS 000, 1–12 (2017)
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Figure 1. Redshift distributions of the redMaPPer (purple) and VT (orange)
clusters used in our analysis. For our measurements we selected the redMaP-
Per sample in a low redshift bin (0.1 6 zlow < 0.33) and the VT sample in
two redshift bins (0.1 6 zlow < 0.33 and 0.33 6 zhigh < 0.6).

Previous weak lensing measurements using the CS82 source
catalog have been performed, e.g. by Shan et al. (2014); Li et al.
(2014); Hand et al. (2015); Liu et al. (2015); Li et al. (2016);
Battaglia et al. (2016); Leauthaud et al. (2017); Shan et al. (2017);
Niemiec et al. (2017), making this lensing catalog well tested for
different applications.

3 METHODOLOGY

We measure the mass-observable relation from the stacked lensing
signal of redMaPPer and VT clusters using the CS82 shear cata-
logue. For the stacking of the lenses, we define bins of redshift and
observable mass proxy.

In Figure 1 we show the redshift distributions for redMaPPer
and VT clusters used in our stacked measurements highlighting
the boundaries of the low and high z bins. For the low redshift
bin we follow Simet et al. (2017, hereafter S17), and define 0.1 6
zlow < 0.33. We have 230 redMaPPer clusters at those redshifts,
with 20 6 λ 6 128.7. The corresponding range of µ? for these
clusters is 3.82 × 1012M� 6 µ? 6 13.85 × 1012M� . For the VT
sample we have 41 clusters in the low-redshift bin. We also consider
a higher redshift bin, 0.33 6 zhigh 6 0.6, for which there are 95
clusters in the catalog. The VT clusters in these two redshift bins
lie within the range 1.47 × 1012M� 6 µ? 6 16.53 × 1012M� .

Inside each redshift bin, we separate the samples into four mass
proxy bins, in such a way that we have a similar number of clusters
in each bin. For the redMaPPer catalog we repeat this procedure
twice, once for λ and once for µ? (see Table 1). The stacking in λ
allows us to compare our mass-richness results with S17 and other
measurements reported in the literature. The binning in µ? will
enable us to compute the first mass-calibration of the redMaPPer
cluster using this new mass proxy. Table 2 shows the z and µ? bins
for the VT catalog.

3.1 The stacked cluster profiles

For any distribution of projected mass it is possible to show that
the azimuthally averaged tangential shear γt at a projected radius R
from the centre of the mass distribution (Miralda-Escude 1991) is
given by

γt (R) =
∆Σ

Σcrit
≡ Σ(< R) − 〈Σ(R)〉

Σcrit
, (5)

Table 1. Binning scheme and properties of the redMaPPer cluster sample.
We use the same low redshift bin as S17, but for the binning in λ we use a
different scheme where we have a similar number of clusters in each of the
four richness bins. Here µ? is given in units of 1012M� .

Mean z λ range Mean λ No. of clusters

0.249 [20, 23.42) 21.72 59
0.244 [23.42, 28.3) 25.64 59
0.247 [28.3, 39.7) 32.90 59
0.249 [39.7, 145) 58.06 53

Mean z µ? range Mean µ? No. of clusters

0.228 [0, 4.15) 3.40 59
0.252 [4.15, 5.20) 4.72 59
0.251 [5.20, 6.84) 5.97 59
0.259 [6.84, 14) 8.41 53

Table 2. Binning scheme and properties of the VT cluster sample. We
separate in two redshift bins and choose the µ? bins so as to have a similar
number of clusters in each of the four bins. Here µ? is in units of 1012M� .

z range Mean z µ? range Mean µ? No. of clusters

[0.1, 0.33)

0.220 [0, 5.78) 4.42 11
0.279 [5.78, 7.59) 6.84 11
0.278 [7.59, 10.55) 8.60 10
0.290 [10.55, 17) 11.45 9

[0.33, 0.6)

0.457 [0, 5.38) 4.17 28
0.428 [5.38, 6.58) 5.94 24
0.410 [6.58, 8.90) 7.57 24
0.380 [8.90, 17) 11.03 19

where Σ(R) is the projected surfacemass density at radius R, Σ(< R)
is the mean value of Σ within a disc of radius R, 〈Σ(R)〉 is the
azimuthally averaged Σ(R) within a ring of radius R and Σcrit is the
critical surface mass density expressed in physical coordinates as

Σcrit =
c2Ds

4πGDlDls
, (6)

where Dl and Ds are angular diameter distances from the observer
to the lens and to the source, respectively, and Dls is the angular
diameter distance between them.

From Equation 5 we can compute the surface density contrast
∆Σ over several lenses with similar physical properties (e.g. redshift,
richness) to increase the lensing signal and reduce the effect of
substructures, uncorrelated structures in the line of sight, shape
noise and shape variations of individual halos.

In practice we use the inverse variance weight w from Lensfit
to optimally weight shear measurements, accounting for shape mea-
surement error and intrinsic scatter in galaxy ellipticity. Then, for a
given lens i and a given source j, the inverse variance weight for ∆Σ
is derived for Equation 5 and expressed as wls,i j = wjΣ

−2
crit,i j . The

quantity wls is used to compute ∆Σ trough a weighted sum over all
lens-source pairs

∆Σ =

∑Nl

i=1
∑Ns

j=1 wls,i j × γt,i j × Σcrit,i j∑Nl

i=1
∑Ns

j=1 wls,i j

, (7)

where Nl is the number of cluster lens and Ns is the number of
source galaxies.

We compute ∆Σ in 20 logarithmically spaced radial bins from
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R ∼ 0.1 h−1 Mpc to R ∼ 10 h−1 Mpc. In Miller et al. (2013) it was
pointed out that amultiplicative correction for the noise bias needs to
be applied after stacking the shear. This correction can be computed
from the multiplicative shear calibration factor m(νSN, r) provided
by Lensfit. An often used expression for this correction (Velander
et al. 2014; Hudson et al. 2015; Shan et al. 2017; Leauthaud et al.
2017) is given by

1 + K(zl) =
∑Nl

i=1
∑Ns

j=1 wls,i j [1 + m(νSN,i j, ri j )]∑Nl

i=1
∑Ns

j=1 wls,i j

, (8)

and the calibrated lensing signal is computed as

〈∆Σcal〉 = ∆Σ

1 + K(zl)
. (9)

In order to reduce the dilution of the lensing signal due to un-
certainties in the photo-zs that can cause some background sources
to be placed as foreground sources and vice-versa, we impose that
zs > zl + 0.1 and zs > zl + σ95/2 where zl is the lens redshift, zs
is the source redshift and σ95 is the 95 per cent confidence limit
on the source redshift provided by BPZ. These cuts were validated
by Leauthaud et al. (2017), who have found that the lensing signal
is invariant over a range of lens-source separation cuts, suggesting
that dilution caused by foreground or physically associated galaxies
is not a large concern for CS82 weak lensing measurements (see
their Appendix A1 for more details).

We compute the weak lensing signal ∆Σ from Eq. (9) in 20
logarithmic bins in the range (0.1 − 10)h−1 Mpc. As the errors on
the weak-lensing signals are expected to be dominated by shape
noise, we do not expect a noticeable covariance between adjacent
radial bins and we treat them as independent in our analyses. The
error bars in our lensing signals are obtained by bootstrapping on the
individual clusterswith N = 100 resamplings in each stack.Vitorelli
et al. (2017) have tested several bootstrap resampling values (e.g.
N = 50, 150, 200, 300) and found no significant variation of the
error bars down to R . 4 Mpc.

We computed the cross-component of the lensing signal (∆Σ×)
and found no evidence of spurious correlations in the weak-lensing
signals, i.e. the ∆Σ× measurements are consistent with zero.

3.2 Profile-fitting

To model the average lensing signal around each lens and then ob-
tain their mass estimates we use a model with two components: a
perfectly centred dark matter halo profile and a miscentring term
where the assumed centre does not correspond to the dynamical
centre of the dark matter halo. For the first term we assume the clus-
ters are well modeled by spherical Navarro–Frenk–White (NFW;
Navarro et al. 1996) haloes, on average, in which the 3-dimensional
density profile is given by

ρ(r) = δcρcrit

r
rs

(
1 + r

rs

)2 , (10)

where rs is the cluster scale radius, δc is the characteristic halo over-
density, ρcrit = 3H2(z)/8πG is the critical density of the universe
at the lens redshift and H(z) is the respective Hubble parameter.

In this paper we use as cluster mass the mass M200 contained
within a radius r200 where the mean mass density is 200 times
the critical density of the universe. The scale radius is given by
rs = r200/c200, where c is the so-called concentration parameter.
In our fitting procedure we follow van Uitert et al. (2012); Kettula

et al. (2015) and use the concentration-mass scaling relation from
Duffy et al. (2008) given by

c200 = 5.71 ×
(

M200
2 × 1012h−1

)−0.084
× (1 + z)−0.47. (11)

Bartelmann (1996); Wright & Brainerd (1999) provide an analyti-
cal expression for the projected NFW profile, ∆ΣNFW and we use
a Python implementation10 of these results for our profile-fitting
procedure.

The central galaxy of a cluster is usually very bright but is
not necessarily the BCG. For instance, Rykoff et al. (2016) pointed
out that only ∼ 80 − 85 per cent of the redMaPPer central galaxies
are BCGs and Zitrin et al. (2012) show that some BCGs present an
offset from the centre of their host darkmatter halo. Thismiscentring
affects the observed shear profile (Yang et al. 2006; Johnston et al.
2007; Ford et al. 2014). We follow the correction scheme presented
in Johnston et al. (2007); Ford et al. (2015); Simet et al. (2017) to
account for this effect. If the 2-dimensional offset in the lens plane
is Rs , the azimuthal average of the profile is

Σmisc(R) =
∫ ∞

0
dRsP(Rs)Σ(R|Rs), (12)

where

Σ(R|Rs) =
1

2π

∫ 2π

0
dθΣ

(√
R2 + R2

s + 2RRs cos θ
)
. (13)

In other words, the angular integral of the profile Σ(R) is shifted by
Rs from the centre. We also use a probability distribution for Rs

given by

P(Rs) =
Rs

σ2
off

exp

(
−1

2
R2
s

σ2
off

)
, (14)

which is an ansatz, assuming the mismatching between the centre
and Rs follows a 2-dimensional Gaussian distribution. We use the
Python implementation11 of Ford & VanderPlas (2016) to compute
the miscentring term. The width of the miscentring distribution
(σoff) is fixed as 0.4h−1 Mpc for simplicity. As noted in S17, this is
an expected value for clusters with mass ∼ 1014M� .

Our complete theoretical modeling for ∆Σ, considering the
centred halo and miscentring terms, is given by

∆Σ
theo = pcc∆ΣNFW + (1 − pcc)∆Σmisc. (15)

In Table 3 we present a summary of the systematics considered
in this paper, both for obtaining the weak lensing signal ∆Σ and in
the profile fitting.

In addition to the contribution from single (centred and mis-
centred) cluster halos, a variety of studies in the literature have
pointed out the need to consider other terms to better model the
measured profile. These often include a point mass term for a possi-
ble stellar-mass contribution of the central galaxies and a so-called
2-halo term due to neighbouring halos (i.e., due to the large-scale
structure of the Universe). In this work, we avoid these two con-
tributions as we are only interested in measuring M200 and we do
not have enough precision to fit for many free parameters in each
mass-proxy bin. For this sake, we perform the model-fitting in a
restricted radial range. We follow S17 and use Rmin = 0.3 h−1 Mpc
as the inner radius limit to avoid problems with the selection of
background galaxies and the increased scatter due to the low sky

10 https://github.com/joergdietrich/NFW
11 https://github.com/jesford/cluster-lensing
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Table 3. Summary of the systematics we are take into account in the measurements of the lensing signal and in the profile-fitting. Note that since we apply a
radial cut in innermost and outer range, following the same procedure as S17, our measurements are not affected by the central point mass and the 2-halo terms.

Systematic: Summary:

Shear measurement Apply multiplicative shear calibration m(νSN, r)
Apply additive calibration correction factor c2 to ε2 component

Photometric redshifts Apply zs > zl + 0.1 and zs > zl +
σ95

2

Remove BPZ_ODDS 6 0.5 to reduce systematic errors due to catastrophic outliers

miscentring Apply same correction as Yang et al. 2006; Johnston et al. 2007; Shan et al. 2017

area, and also to reduce the effects of the point mass contribution
(see also Mandelbaum et al. 2010). We define a richness-dependent
outer limit in the range Rmax ' (2.5 − 3.5) h−1 Mpc to avoid the
2-halo contribution. S17 shows that the results are insensitive to the
specific values of Rmax for a wide range of values.

Finally, for each sample in the radial range mentioned above,
we perform the profile-fitting via Bayesian formalism and Monte
Carlo Markov Chain (MCMC) method to compute the posterior
distribution Pr(M200, pcc |∆Σobs) and then obtain the best estimate
for the cluster mass. Following Vitorelli et al. (2017), we use a
flat prior for the mass (1012h−1M� < M200 < 1015h−1M�) and
a Gaussian prior on the miscentring term, N(pcc; Pcen, σPcen ), for
0 < pcc < 1, where Pcen and σPcen are the mean and standard
deviation of the highest centring probabilities Pcen. We use the
same modeling approach for P?cen, in both the redMaPPer and VT
catalogs.

In Figure 2 we show the weak lensing profiles for the redMaP-
Per clusters. We present the measured signal (black dots) and the
best fits using Pcen in the Gaussian prior for miscentring (purple
solid line) and using P?cen in the prior (orange dashed line). We also
show the centred halo contribution (purple dotted-dashed line) and
themiscentring term (purple dotted line) from Eq. (15) as computed
in the Pcen prior case. The dotted vertical lines correspond to Rmax
and Rmin, which define the range were the fit is performed.We show
the low redshift sample in bins of λ (in the top panel) and µ? (in
the bottom).

We see from Figure 2 that the best fit results using Pcen and
P?cen are very similar, validating the use of P?cen for the miscentring
correction, and in particular its application to the VT clusters. In
Figures 3 and 4we show the profile-fitting results for the VT clusters
in the low and high redshift samples in bins of µ?. The best-fit values
of the two parameters for all cases considered here are presented
in Table 4. In our analyses we use M200 relative to critical matter
density (hereafter M200c) of the Universe, however, to enable the
comparison with other works in the literature, it is useful to express
the results in terms of M200 relative to the mean density (M200m).
To convert from M200c to M200m we use the Colossus code12

(Diemer 2015). In Table 4 we show the results in terms of both
mass definitions.

4 RESULTS

From the weak lensing masses in Table 4 we obtain a mass calibra-
tion for redMaPPer clusters and compare with the current results
from the literature. We then apply the same methodology to obtain

12 https://bitbucket.org/bdiemer/colossus

the mass-observable scaling relation for the new mass proxy µ?,
both for the redMaPPer and VT clusters.

In this work, the mass-richness relation for the redMaPPer
mass proxy λ is given by the power law expression

〈M200 |λ〉 = M0

(
λ

λ0

)α
, (16)

where λ0 is a fixed pivot richness and the normalization M0 and the
slope α are the free parameters.

For the new mass proxy we fit a power-law relation to the mass
obtained in the µ? bins akin to Equation (16):

〈M200 |µ?〉 = M0

(
µ?

µ0
?

)α
, (17)

where the pivot value µ0
? is chose as the median value of the proxy

in each sample.

4.1 redMaPPer mass-richness relation

To validate our mass estimates we make a comparison with S17,
which uses the same redMaPPer catalogue in the same low redshift
bin to compute a mass-richness relation. However, the analysis in
S17 is not limited to the SDSS Stripe 82 region, which implies
that they have more statistics than us. On the other hand, our shape
measurements are made in better quality images than SDSS and
using the state-of-the-art code Lensfit, which enables us to have a
good SNR for our lensing signal to make this comparison.

In Figure 5 we show our best-fit M200m versus λ relation
(orange solid line) and its 2σ confidence intervals (orange shaded
regions). We show, for comparison, the S17 mass-richness relation
(green solid line). Using the same pivot richness as S17, λ0 = 40,
we find M0 = (2.46 ± 0.44) × 1014h−1M� and α = 1.18 ± 0.38
while they have obtained M0 = (2.21 ± 0.22) × 1014h−1M� and
α = 1.33+0.09

−0.10. Additionally, we present the mass-richness relation
obtained by (Melchior et al. 2017, blue dashed line) for clusters
identified with redMaPPer in the DES Science Verification data,
with shears measured on that same data, in a similar low redshift bin
(0.2 < zlow < 0.4). Their results, converted to our units and pivot
λ0 = 40, are M0 = (2.21±0.35)×1014h−1M� and α = 1.12±0.20.
We also compare our results to the mass-richness relation for the
red sequence based CAMIRA code of Oguri (2014). The CAMIRA
code was applied to the same SDSS DR8 data and has its own
richness estimator, N̂cor. In order to convert their result to our units,
we first performed a cylindrical match between our sample and their
catalog to find themean relation between N̂cor and λ. Our cylindrical
match uses a search radius of 1 arcmin and∆z = 0.05.We found 339
matched clusters from which we derived the CAMIRA-redMaPPer
richness scaling relation N̂cor = Aλ with A = 0.819 ± 0.009. The
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Figure 2. The ∆Σ measurements and the profile-fitting results for the stacked redMaPPer clusters in the low redshift interval in four observable mass proxy
bins. In the top panel we show the results for the binning using λ and in the bottom panel the results for binning in µ? (in units of 1012M�). The fit to the
models is performed for the radial bins within the two vertical dotted lines. The purple solid line shows the best-fit results for a combination of NFW and
miscentring term, using the information of Pcen as a prior for the miscentring offset. The orange dashed line shows the best-fit using P?cen as the information
for the prior when performing the fit. The dashed-dotted and dotted lines show the contribution of the two terms to the best fit profile: the centred NFW profile
pcc∆ΣNFW (purple dashed-dotted) and the miscentring term (1 − pcc)∆Σmisc (purple dotted).
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Figure 3. The ∆Σ measurements and the profile-fitting results for the stacked VT clusters in the low redshift interval in four bins of µ? (in units of 1012M�).
The fit is performed for the radial bins within the two vertical dotted lines. The orange solid line shows the best-fit using P?cen in the prior for the miscentring
offset in the fit. The dashed and dotted lines show the contribution of the two terms to the best fit profile: the centred NFW profile (orange dashed) and the
miscentring term (orange dotted).

mass calibration for CAMIRA is obtained for M200vir, which we
convert to M200m usingColossus, andwe converted their calibration
to the pivot λ0 = 40 as well. We find that their converted results
are M0 = (2.53 ± 0.30) × 1014h−1M� and α = 1.44 ± 0.27 (red
double-dashed line). These results are summarized in Table 5.

Despite using different data and slightly different approaches,
we see that our mass measurements are in excellent agreement with
those results from the literature, which validates our methodology
to obtain average mass estimates from the stacked weak lensing
signal.

As mentioned, we also computed µ? for the redMaPPer clus-
ters. We fit the power-law relation of Equation (17) with pivot value

µ0
? = 5.16 × 1012M� . We find M0 = (1.77 ± 0.36) × 1014h−1M�

and α = 1.74 ± 0.62. In Figure 6 we show the best fit M200m × µ?
relation (orange solid line) and its 2σ confidence intervals (orange
shaded region) for the zlow interval.

4.2 VT – µ? mass-calibration

In Figure 7 we show M200m×µ? for VT clusters in the zlow interval,
following the same approachwe used to calibrate themass as a func-
tion of µ? in the redMaPPer cluster sample. The orange solid line
is the best-fit result and the orange shaded regions are the 2σ confi-
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Figure 4. Same as the previous figure, but for the interval 0.33 6 zhigh < 0.6 of the VT clusters in bins of µ? (intervals in units of 1012M�).

Table 4. Best-fit results for redMaPPer clusters in Figure 2 and for VT clusters in Figures 3 and 4. In the fitting we use a concentration-mass relation from
Duffy et al. (2008) to fix c200 and we fix the width of miscentring distribution as σoff = 0.4h−1 Mpc. Our final model has just two free parameters, the mass
M200 (computed using the critical density and converted to the mean density with Colossus) and the fraction of clusters that is correctly centred pcc. For the
redMaPPer clusters, we use the mean and standard deviation (σ) of Pcen in a Gaussian prior for pcc, while for the VT clusters we use the mean and σ of P?cen
for the Gaussian prior. The values of µ? that define each stack are given in units of 1012M� .

z M200c (1014h−1M�) M200m (1014h−1M�) pcc

redMaPPer

20 6 λ < 23.42

0.1 6 z < 0.33

0.83 ± 0.23 1.08 ± 0.30 0.83 ± 0.11
23.42 6 λ < 28.3 1.30 ± 0.38 1.71 ± 0.49 0.75 ± 0.13
28.3 6 λ < 39.7 1.30 ± 0.27 1.71 ± 0.35 0.86 ± 0.10
39.7 6 λ < 145 2.90 ± 0.55 3.84 ± 0.71 0.71 ± 0.12

0 6 µ? < 4.15

0.1 6 z < 0.33

0.59 ± 0.19 0.77 ± 0.25 0.86 ± 0.10
4.15 6 µ? < 5.20 1.60 ± 0.42 2.10 ± 0.54 0.75 ± 0.13
5.20 6 µ? < 6.84 1.50 ± 0.36 1.97 ± 0.47 0.75 ± 0.13
6.84 6 µ? < 14 2.90 ± 0.52 3.82 ± 0.67 0.77 ± 0.11

VT

0 6 µ? < 5.78

0.1 6 z < 0.33

2.40 ± 0.65 3.20 ± 0.85 0.82 ± 0.10
5.78 6 µ? < 7.59 2.50 ± 0.49 3.27 ± 0.63 0.91 ± 0.04
7.59 6 µ? < 10.55 5.20 ± 1.10 6.86 ± 1.42 0.89 ± 0.03
10.55 6 µ? < 17 3.80 ± 0.92 4.97 ± 1.18 0.88 ± 0.04

0 6 µ? < 5.38

0.33 6 z < 0.6

2.50 ± 0.92 3.09 ± 1.13 0.75 ± 0.12
5.38 6 µ? < 6.58 2.40 ± 0.90 2.99 ± 1.11 0.79 ± 0.09
6.58 6 µ? < 8.90 3.30 ± 0.81 4.15 ± 1.00 0.82 ± 0.07
8.90 6 µ? < 17 5.50 ± 1.00 7.01 ± 1.25 0.86 ± 0.04

Table 5. Comparison of the redMaPPer mass-richness relation in the zlow
bin with three recent results from the literature. The normalization M0 from
Melchior et al. (2017) is converted to our units. We also have to convert M0
from Oguri (2014) to our units and find a relation between their richness
N̂cor and λ. All calibrations are computed or converted to the pivot λ0 = 40.

M0(1014h−1M�) α

This work 2.46 ± 0.44 1.18 ± 0.38
Simet et al. 2017 2.21 ± 0.22 1.33+0.09

−0.10
Melchior et al. 2017 2.21 ± 0.35 1.12 ± 0.20
Oguri et al. 2014 2.53 ± 0.30 1.44 ± 0.27

dence intervals for thisVT sample. The pivot is µ0
? = 7.30×1012M�

and we find M0 = (4.31±0.89)×1014h−1M� and α = 0.59±0.54.
For comparison, we show as purple shaded regions the same 2σ

confidence intervals obtained for the redMaPPer clusters shown in
Figure 6. We see a good agreement at this confidence level, despite
the fact that the cluster samples are significantly different. Actually
if we consider the VT and redMaPPer data points altogether, i.e.
if we combine the VT µ? bins and corresponding masses and the
redMaPPer µ? bins and respective masses, we obtain a power-law
fit as good as the one for the VT points only. In other words the
redMaPPer mass-µ? relation is compatible to the VT one.

We present the mass-calibration results for the zhigh inter-
val of VT clusters in Figure 8. The orange solid line and orange
shaded regions are the best-fit and the 2σ confidence intervals, re-
spectively. We have used a pivot µ0

? = 6.30 × 1012M� and find
M0 = (3.67 ± 0.56) × 1014h−1M� and α = 0.68 ± 0.49. As pre-
viously mentioned, we were able to extend our analysis of the VT
sample to the higher redshift range 0.33 < z < 0.6 because the VT
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Figure 5. Comparison of the mass-richness relations of redMaPPer clusters
in the zlow interval. The adopted zlow interval is the same for S17 (green solid
line) and this work (orange solid line). Melchior et al. (2017, blue dashed
line) work in the range 0.2 6 z < 0.4 while Oguri (2014, red double-
dashed line) use the range 0.1 < z < 0.3 for its low redshift interval. We
show the 2σ confidence intervals (orange shaded region) for the cluster
mass M200m as a function of the richness λ from this work. The value of
the normalizations and slopes are shown in Table 5.
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Figure 6. Mass-calibration with 2σ confidence intervals for redMaPPer
clusters binned in µ? in the zlow interval. For the mass estimates we apply
the miscentring correction. In the mass–µ? relation we adopt the median of
µ? as the mass proxy pivot, µ0

? = 5.16 × 1012M� .

3 5 7 9 11 13
µ [1012M¯]

1013

1014

1015

M
2
00
m

[h
−

1
M
¯
]

VT clusters on CS82, 0. 1 z< 0. 33

M0 =(4. 31± 0. 89)× 1014h−1M¯,
α=0. 59± 0. 54

Figure 7. Mass-calibration with 2σ confidence intervals (orange shaded
regions) for VT clusters binned in µ? in the zlow interval. Miscentring
corrections were applied in the mass estimates. In the mass-richness relation
the pivot is µ0

? = 7.30 × 1012M� . For comparison, we also present the 2σ
confidence intervals (purple shaded regions) for the redMaPPer zlow clusters.
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Figure 8. Same as previous figure but for the zhigh interval and pivot µ0
? =

6.30 × 1012M� .

clusters were identified in the SDSS co-add data, which is deeper
than SDSS single epoch data used to identify the redMaPPer sam-
ple. In addition, the CS82 shear catalog is still reliable for lenses
at these redshifts. The results of the all mass-µ? calibrations are
summarized in Table 6.
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Table 6. Summary of mass-µ? calibration for redMaPPer (RM) and VT
clusters obtained from this work. We present the normalization M0 and
slope α values by fitting the Equation 17 as well the proxy pivot µ0

? adopted
for each sample, i.e. RM clusters at 0.1 6 zlow < 0.33 and VT clusters in the
same RM low redshift bin as well as a high redshift bin 0.33 6 zhigh < 0.6.

Sample µ0
?(1012M�) M0(1014h−1M�) α

RM zlow 5.16 1.77 ± 0.36 1.74 ± 0.62
VT zlow 7.30 4.31 ± 0.89 0.59 ± 0.54
VT zhigh 6.30 3.67 ± 0.56 0.68 ± 0.49

5 DISCUSSION

We perform a weak lensing mass calibration of µ?, a cluster mass
proxy that includes information about galaxies regardless of their
colour. Unlike the empirically determined red sequence–basedmass
proxies, µ? is physically motivated: the stellar mass inside a dark
matter halo can be expected to trace the dark matter halo mass.
Furthermore, it turns out that the stellar mass is a relatively robust
observable (see Conroy 2013, and references therein) and indepen-
dent of the history of the formation of the red sequence. The redshift
at which the red sequence forms in clusters is not currently known,
and at high enough redshifts redMaPPer will become increasingly
incomplete in terms of finding dark matter halos. Additionally, stel-
lar masses are easier to model in simulations than the red sequence
(e.g., Roediger et al. 2017).

It is natural to use awell-studied sample of clusters in the devel-
opment of a new mass proxy and to use a well-studied mass proxy
to validate our methodology. We have measured the redMaPPer
λ-mass scaling relation and showed results consistent with similar
scaling relations reported in the literature. We then performed the
scaling relation measurement on the same redMaPPer clusters bin-
ning on µ? instead of λ. The most direct comparison between the
two scaling relations is made at the pivot point: the slope and the
mass at the pivot point are consistent between the λ and µ? proxies.

Since we applied the methodology on the same clusters in
measuring both scaling relations, our results can be directly inter-
preted. Imagine a scenario in which all cluster members are in the
red sequence. There would be a maximal correlation between λ

and µ? as all red galaxies have very similar mass-to-light ratios.
The scaling relations would, therefore, be nearly identical. If we
change the scenario to include blue galaxies and compute a λ-like
proxy, the slope of the λ-like proxy with mass would be shallower
because the luminosity of the blue galaxies is most often driven by
single star formation events and the high luminosity of young mas-
sive stars, and large numbers of low luminosity galaxies would be
pushed above the threshold. If the µ? proxy were similarly affected
by blue galaxies our measured slope would be shallow. The fact
that our measurements of the scaling relations in redMaPPer are so
close to each other indicate that the stellar mass in these systems is
tracing dark matter mass with not much worse scatter than λ. In low
z clusters it is known that nearly all members are red and therefore
our results are not surprising here. At high redshift, however, this
is not true. A red-sequence selected high z sample might show a
significant difference between λ and µ?mass calibrations as the red
sequence begins to form.

We explore the applicability of our methodology to colour
agnostic cluster finders by performing the scaling relation measure-
ment of VT clusters. The results are again consistent with those
obtained for the redMaPPer clusters in this redshift range, as ex-
pected, indicating that our methods hold for other cluster selection

algorithms. A clear result of our work is the recommendation that
µ? be incorporated as the mass proxy for VT clusters.
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