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Magnetic Frequency Response of HL-LHC Beam
Screens

M. Morrone, M. Martino, R. De Maria, M. Fitterer and C. Garion

Abstract—Magnetic fields used to control particle beams in
accelerators are usually controlled by regulating the electrical
current of the power converters. In order to minimize lifetime
degradation and ultimately luminosity loss in circular colliders,
current-noise is a highly critical figure of merit of power
converters, in particular for magnets located in areas with high
beta-function, like the High Luminosity Large Hadron Collider
(HL-LHC) insertions. However, what is directly acting upon
the beam is the magnetic field and not the current of the
power converter, which undergoes several frequency-dependent
transformations until the desired magnetic field, seen by the
beam, is obtained. Beam screens are very rarely considered
when assessing or specifying the noise figure of merit, but their
magnetic frequency response is such that they realize relatively
effective low pass filtering of the magnetic field produced by the
system magnet-power converter. This work aims at filling this
gap by quantifying the expected impact of different beam screen
layouts for the most relevant HL-LHC insertion magnets. A well-
defined post-processing technique is used to derive the frequency
response of the different multipoles from multi-physics Finite
Element Method (FEM) simulation results. In addition, a well
approximated analytical formula for the low-frequency range of
multi-layered beam screens is presented.

I. INTRODUCTION

In the framework of the High Luminosity Large Hadron
Collider (HL-LHC) project, numerous components of the ac-
celerator will be upgraded during the third LHC long shutdown
[1], [2]. The main focus lies on the Interaction Region (IR)
of LHC Point 1, where the ATLAS experiment is located,
and Point 5 occupied by the CMS detector. The layout, for
either side of Point 1 or Point 5, is depicted in Fig. 1. New
beam screens will be installed inside the so called inner triplet
(IT) quadrupole magnets, namely Q1, Q2a, Q2b and Q3 (see
Fig. 2), together with the separation-recombination dipoles D1
and D2 [3].

All these magnets are installed at locations with high beta
function and the beam is therefore particularly sensitive to any
changes in the magnetic field of these magnets. The impact
of the field fluctuations due to power supply noise, or the so
called ripple, on the beam lifetime has been studied in the
past in particular at the Super Proton Synchrotron (SPS) at
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CERN [4]–[6] and the Hadron Electron Ring Facility (HERA)
at DESY [7], [8]. In the case of the SPS a tune ripple of
10−4 turned out to be acceptable while experiences at HERA
showed that a tune ripple of 10−5 for low frequencies and
10−4 for high frequencies could lead to a significant decrease
in lifetime. Typically, a few distinct frequencies feature much
higher amplitudes and therefore, the focus of these studies was
also to highlight the impact of a few distinct frequency lines. It
was derived theoretically [7] as well as proven experimentally
[4], [5] that several frequencies in the noise spectrum are
significantly more harmful than a single one. This knowledge
was then applied to the LHC [9] and more recently to the
HL-LHC [10]–[12] resulting in strict tolerances for the noise
generated by the power converters. The HL-LHC studies
aimed at specifying the current and voltage stability of the
IT power supplies. In this case, dynamic aperture simulations
revealed that tune modulations in the range of 10−5 to 10−6

for specific frequencies already lead to a visible decrease
of the dynamic aperture and thus degradation of the beam
lifetime. The minimization of the tune modulation to such
small values, especially for the HL-LHC IT and separation
dipoles where β-functions reach about 20 km (up to 40 km in
pushed configurations), represents a technological challenge.

The detailed analysis of the frequency dependent shielding
effect of the beam screen presented in this paper, was moti-
vated by the need to specify the current and voltage stability of
the power converters for the HL-LHC IR magnet [10]–[13]. In
general, two regimes can be distinguished for power converter
ripples:
• current control: f ≤ f0 the current of the power

converter is directly controlled.
• voltage control: f > f0 the voltage of the power

converter is controlled.
where f0 is a parameter of the power converter regulation
ranging from few hundreds mHz to few Hz for HL-LHC. As it

Figure 1: The new layout of the right side of the region close to
Point 1 and Point 5 foreseen for the HL-LHC. The experiment
is on the left side of the figure (not shown) and the rest of the
ring continues on the right. The other side is symmetric with
respect to the interaction point.
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Figure 2: The new Q1 HL-LHC beam screen inserted in the
MQXF magnet. Q2, Q3 magnets have the same cross section
but are equipped with a larger beam screen. The red area
represents the coils and the beam screen is placed in the
aperture surrounded by the cold bore.

will be shown shortly, the transfer function of the beam screen
for the main field component will not introduce any attenuation
up to roughly 10 Hz and therefore the shielding effect of the
beam screen only contributes in the voltage control regime. In
this case, the following model for the transfer function from
the voltage of the power converter to the magnetic field seen
by the beam can be assumed:

B(f) = TBmtoBb
(f)× TItoBm

(f)×
×TVtoI(f)× V (f) (1)

where f is the frequency V (f) the voltage ripple of the
power supply TVtoI(f) the admittance of the circuit as seen
by the power converter, TItoBm

(f) the transfer function from
the input circuit current to the magnetic field, and finally,
TBmtoBb

(f) represents the purely magnetic transfer function
of the cold bore, absorber and beam screen (from the B field
generated by the magnet to the B field seen by the beam). This
paper is devoted to the characterization of TBmtoBb

(f) and to
the best of the authors knowledge a rigorous characterization
of TBmtoBb

(f) has never been presented in literature prior to
this publication.

The paper is structured as follows: Section II is dedicated
to the description of the different HL-LHC beam screens,
the FEM modeling and the simulation details. Section III
presents the post-processing technique used to derive the
frequency behavior of the relevant multipole components. In
Section IV a new analytically approximated formulation is
derived. The novelty of this low-frequency formula compared
to earlier publications [14]–[16] is that it also applies to
multi-layer conductive shells like those constituting the beam
screens foreseen for HL-LHC. Furthermore, TBmtoBb

(f) is
properly defined in multipole terms as is generally done in
magnetic measurements for the DC characterization of particle

accelerator magnets. Finally, a similar study for the LHC
main dipoles and quadrupoles is presented in Section V for
comparative purposes.

II. MODELS AND SIMULATION SETUP

The new beam screen is an octagonally-shaped pipe made
of high nitrogen - high manganese stainless steel (P506) [17]
whose main function is to shield the superconducting magnets
from debris coming from the collisions, screening the cold
mass from beam-induced heating, and ensuring the vacuum
levels required for the beam lifetime. The beam screen is
placed inside the stainless steel (316LN) cold bore of the
new superconducting magnets of type MQXF for Q1 to Q3,
MBXF for D1, and MBRD for D2 [2], [18]. Cross sections
of the different configurations are depicted in Fig. 3 and their
geometrical dimensions are reported in Table I.

The internal side of the assembly is co-laminated with
80 µm of high purity copper (RRR 100) to lower the beam
impedance. On top of the longitudinal flat surfaces of the
beam screen four tungsten-based inserts and four cooling tubes
are placed in an alternate way. The inserts are laid on the
octagonal pipe to avoid detrimental residual stress during the
cool-down [19], while the tubes are laser-welded. The high-
density tungsten-based inserts shield the cold mass from the
collision debris that would otherwise cause the temperature of
the cold mass to rise leading to an undesirable magnet quench.
The temperature of the beam screen is expected to be between
60 K and 80 K while the cold bore is maintained at 1.9 K.
The heat load is therefore intercepted at a higher temperature
level and then transferred to the cooling tubes through small
copper links. The evacuation at higher temperatures lowers
dramatically the energy consumption required by the cryogenic
system and, at the same time, ensures an excellent vacuum
performance provided that the screen is fitted with pumping
slots [20].

Table I: Characteristic angles [deg] and dimensions [mm] of
the beam screens analyzed in this paper, for LHC see Fig. 13.

Beam screens angles and dimensions

Symbol Q1 Q2-Q3-D1 D2 LHC

α 45 54.6 60 52.4
β 22.5 17.7 15 37.6

as 99.7 119.7 86 46.5
ad 99.7 110.7 77 36.9
tha 16 6 - -
tbs 1 1 1 1
ri 68.35 68.35 47 25
re 72.35 72.35 50 26.5

As discussed in [15], [16], [21], the filtering effect of the
beam screen depends on the electrical conductivity σ, where a
larger electrical conductivity leads to a stronger filtering effect
(lower cut-off frequencies).

As σ is inversely proportional to temperature, the worst case
scenario within the scope of this work is set to be at 80 K for
the Q1, Q2 (in the following Q2 will be used both for Q2a
and Q2b), Q3 and D1 magnets. Similarly, a 20 K threshold is
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(a) Q1 beam screen cross section.

(b) Q2-Q3-D1 beam screen cross section.

(c) D2 beam screen cross section.

Figure 3: Different types of beam screens for the IR
quadrupoles.

assumed for the D2 magnet whose beam screen will be kept
at the LHC temperature (i.e. 4.5 K up to 20 K).

A. Physics of the model

The magnetic frequency response of the beam screen is
computed through a two-dimensional numerical model imple-
mented in the commercial FEM platform COMSOL Multi-
physics [22]. The model hinges on the well known Maxwell’s
equations, which are implemented in their differential form.
For clarity, the relevant quantities, symbols, and units are
summarized in Table II.

Table II: Physical quantities of the constitutive equations gov-
erning the beam screen behaviour subject to a time-harmonic
signal.

Quantity Symbol SI unit

Magnetic flux density B1 T

Magnetic field H Am−1

Magnetic vector potential A Wbm−1

Angular frequency ω rad s−1

Frequency f Hz

Electrical conductivity σ Sm−1

Permittivity ε Fm−1

Vacuum permeability µ0 Hm−1

Relative permeability µr

External current density Je Am−2

Such a model was originally developed to assess the
mechanical behavior of the beam screen during a magnet
quench [23]. In this model, the magnet coils generating the
harmonic field have not been accounted for in the FEM
discretization as this would have increased considerably the
complexity and the computational load of the simulation. The
magnetic field input has been considered more conveniently
through the Reduced Magnet Vector Potential (RMVP) formu-
lation [24]. This formulation is based on the magnetic vector
potential by which B can be expressed as:

B = ∇× A. (2)

In turn, the magnetic vector potential is the sum of the reduced
potential, Ared, and the known background field represented
by Aext:

A = Ared + Aext (3)

The strategy is to solve only for Ared.
Therefore, for a time-harmonic study, the governing equa-

tion in the conducting region becomes:

(jωσ − ω2ε)A +∇× (µ−1
0 ∇× A) = Je. (4)

where the external current density Je is 0 for the application
treated in this paper.

B. Boundary conditions

To account for the magnetic-field interactions, it is necessary
to model a medium surrounding the beam screen. Therefore,
a cylindrical domain has been created around the assembly.
Symmetry conditions are used to lower the computational load
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of the magnetic simulations. A quarter of the beam screen is
sufficient to fully characterize the behavior of the assembly.
Fig. 4a and Fig. 4b show the boundary conditions for a quarter
of the beam screen inserted in a dipole and quadrupole magnet,
respectively.

The magnetic insulation boundary condition can be ex-
pressed as

n× A = 0, (5)

and the perfect magnetic conductor boundary condition as

n×H = 0. (6)

The former implies that the magnetic field is zero in the
normal direction to the boundary. Therefore, the field can
only be tangential. The latter has the opposite effect, i.e.
the magnetic field can only be perpendicular to the selected
boundary while the tangential component has to be zero.
Considering the magnetic field distribution of the dipolar field
(see Fig. 4a), B can be truncated along the y-axis by the
magnetic insulation condition and along the x-axis by the
perfect magnetic conductor condition. Instead, the quadrupole
field can be truncated at π

4 and 3
4π angle by the perfect

magnetic conductor conditions (see Fig. 4b). To use the
reduced-field formulation, the total field A has to be equal to
the background field Ab along the outer boundaries of the air
domain (see Fig. 4a–Fig. 4b). This condition translates into:

n× A = n× Ab. (7)

C. Domain discretization

In electromagnetic problems the mesh discretization de-
pends mainly on the skin depth of the physical domains. The
skin depth for a conductive material is:

δ =

√
1

πfµσ
. (8)

It is recommended that at least two linear elements per skin
depth are used to capture the variation of the fields [25]. If
the skin depth is much shorter than the geometrical domain it
can be replaced by an impedance boundary condition. In the
study presented in this paper, the inner copper layer at 20 K
has the highest electrical conductivity, namely 6 ×109 S m−1,
and therefore the shortest skin depth amongst all the beam
screen materials. At 1000 Hz, the highest frequency analyzed
in this study, the skin depth of copper at 20 K is 206 µm
which is larger than the thickness of the copper layer itself
(80 µm). However, considering that the computational time of
the simulations is within a few minutes, two quadratic type
elements are used to mesh the copper layer, as depicted in
Fig. 5.

D. Time-domain vs frequency-domain study

The frequency response of the model has been validated
in the time domain for the Q1 beam screen at 10, 100, and
1000 Hz. The comparison has been performed by considering
the norm of the magnetic field at x = 0, y = 49.5 mm. A
sinusoidal time-dependent magnetic field with a magnitude of

(a) Dipole

(b) Quadrupole

Figure 4: Symmetry conditions (in blue and in red) applied on
the straight edges to reduce the modelling domain in case of a
dipolar (a) and quadrupolar (b) magnetic field. The field lines
are shown in gray. For both cases the external vector potential
is applied on the round edge.

1 T has been chosen as the excitation for the time-dependent
study. The same magnitude has been used for the quasi-
static frequency study. After the transients of the time-domain
simulations vanished, an excellent agreement was found for all
frequencies analyzed. Therefore, the study has been efficiently
conducted through a stationary problem in the frequency
domain with complex-valued solutions. The frequencies, in
the range 0.1 to 1000 Hz with a logarithmically spaced grid
of 37 points, have been computed through the direct solver
MUMPS [26]. The memory allocation factor used for such
solver is 1.2 with the pre-ordering algorithm based on the
nested dissection. The relative tolerance for the solver to
converge was set to 10−3. Fig. 6 shows the magnetic field
map of the D1 beam screen at 278 Hz using the stationary
solver.
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Figure 5: Domain discretization of the Q1 beam screen
including the air box. A magnification of the Cu layer is shown
in the box on the left.

E. Contribution of the heat absorber wings

As shown in Fig. 7 for the Q1 beam screen, the heat ab-
sorbers have some geometrical extensions on both sides known
as tungsten wings. As these are not uniformly present along
the beam axis, they require a 3D model. However, an effective
work-around still allowing the use of a 2D simulation was
found in [27]. It consists of defining an equivalent electrical
conductivity related to the numbers of wings along the whole
length of the heat absorber. For the case study presented in
this paper, the geometrical filling ratio of the wings is 20 %,
therefore, the electrical conductivity was also set to 20 % of
the tungsten alloy used in the heat absorbers.

For the D1 and Q2 cases, sharing the same type of beam
screen, the percentage difference in terms of magnetic field
with and without the tungsten wings is given in Fig. 8. The

Figure 6: Magnetic field map around the D1-type beam screen
at 278 Hz. The color map, in T, is normalized to the input
source. The red vectors represent the magnetic field lines.

Figure 7: The new Q1 HL-LHC beam screen.

Figure 8: Percentage difference of the magnetic field between
the D1 (in blue) and Q2-Q3 (in black) beam screens with and
without wings. Q1 is expected to follow the same behavior of
Q2-Q3.

magnitude of the magnetic field has been compared as a
function of the frequency at x = 0, y = 0 of the D1 magnet
and at x = 0, y = 30 mm for the Q2 magnet. It turns out
that for D1 the shielding effect increases monotonically with
frequency. This is due to the extra absorbing material of the
wings. For Q2, at the chosen observation point, the shielding
effect increases slightly up to 200 Hz but then decreases from
200 to 1000 Hz. The difference between these two profiles is
due to the intrinsic distribution of the dipole and quadrupole
magnetic field. However, in the case of the IT, this difference
is deemed negligible for the purpose of this study. The wings
of the heat absorbers are therefore not accounted for in the
frequency response of the IT beam screens.

III. POST-PROCESSING

2D multipole expansions of magnetic fields and the analysis
of relative field components is common practice in studying
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(a) AC multipole analysis for Q1.

(b) AC multipole analysis for Q2-Q3.

Figure 9: AC multipole analysis for the beam screens of the
HL-LHC triplet quadrupoles at 80 K.

(a) AC multipole analysis for D1 at 80 K.

(b) AC multipole analysis for D2 at 20 K.

Figure 10: AC multipole analysis for the beam screens of the
HL-LHC separation-recombination dipoles.

imperfections of accelerator magnets [28]. In this analysis, a
formalism as well as practical equations are developed in order
to define and extract relative field components for time varying
fields in the frequency domain based on simulation data.

A. Frequency-dependent multipole analysis

A 2D translation-invariant, quasi-static magnetic field
(Bx(x, y, t), By(x, y, t)) can be expressed in a source-free
region using a 2D multipole expansion defined by:

By(x, y, t) + iBx(x, y, t) =
∞∑
n=1

(Bn(t) + iAn(t))
(x+ iy)n−1

Rn−1
, (9)

where Bn, An are the multipole components featuring an ex-
plicit time dependence since∇·B = 0 and∇×B = µε∂tE ≈ 0
at low frequency. R is a convenient reference radius (typically

2/3 of the magnet aperture). For brevity, ((9)) can be rewritten
using complex quantities, yielding:

B(z, t) =
∞∑
n=1

Cn(t)
zn−1

Rn−1
, (10)

where B(z, t) = By(x, y, t) + iBx(x, y, t), Cn(t) = Bn(t) +
iAn(t) and z = x+ iy.

If the magnetic field B(z, t) is calculated in M points
{zk} = z0, . . . , zM−1 uniformly placed on a circle of radius
R, ((10)) simplifies to:

Bk(t) = By(xk, yk, t) + iBx(xk, yk, t)

=
∞∑
n=1

Cn(t)ei2πk(n−1)/M , (11)

where zk = xk + iyk = R · ei2πk/M for k = 0, . . . , (M − 1).
Under the assumption that multipole components of order

larger than M/2 can be neglected (M = 64 has been used
in the following analysis to avoid any risk of aliasing effects)
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and M is a multiple of 2, the multipole components of the
order up to M/2 can be efficiently extracted from simulations
by applying a Fast Fourier Transform (FFT) on the complex
signal {B0(t), . . . ,BM−1(t)} because:

Cn(t) ' 1

M

M−1∑
k=0

Bk(t)e−i2πk(n−1)/M . (12)

If the field is periodic with a frequency f also the multipole
coefficients are periodic. The multipole components for each
frequency f can be extracted from the fields calculated by a
frequency domain simulations. The fields are normally given
in the terms of in-phase (I) and quadrature (Q) components
which are defined by:

By(x, y, t) =

<
{(
BI
y(x, y, f) + jBQ

y (x, y, f)
)
ej2πft

}
, (13)

Bx(x, y, t) =

<
{(
BI
x(x, y, f) + jBQ

x (x, y, f)
)
ej2πft

}
, (14)

in which the complex variable j is used as the imaginary
unit of the complex plane related to the frequency domain
to distinguish it from i, related to complex plane associated
to the 2D fields, and < denotes the real part of the complex
fields.

Each multipole component will have an amplitude and a
phase, therefore each multipole could be denoted by an I and
Q component (BI

n(f), BQ
n (f), AI

n(f), AQ
n (f) ) or amplitude

and phase components in a complex number:

B̄n(f) = BI
n(f) + jBQ

n (f) (15)

Ān(f) = AI
n(f) + jAQ

n (f). (16)

Since the time dependence is separable from the spatial de-
pendence, the multipole analysis can be carried out separately
for I and Q components of the field, resulting in I and Q
components of each multipole coefficients as defined below:

BI
y(x, y, f) + iBI

x(x, y, f) =
∞∑
n=1

(
BI
n(f) + iAI

n(f)
) (x+ iy)n−1

Rn−1
, (17)

BQ
y (x, y, f) + iBQ

x (x, y, f) =
∞∑
n=1

(
BQ
n (f) + iAQ

n (f)
) (x+ iy)n−1

Rn−1
, (18)

or using complex variables

BI(z, f) =
∑∞
n=1 CI

n(f) z
n−1

Rn−1 , (19)

BQ(z, f) =
∑∞
n=1 CQ

n (f) z
n−1

Rn−1 . (20)

When analyzing the field imperfections of a magnet, it is
furthermore convenient to express higher order multipoles
relative to the main multipole leading to:

B̄n(f) = BI
n(f) + jBQ

n (f)

b̄n(f) = B̄n(f)/B̄N (0)
(21)

Ān(f) = AI
n(f) + jAQ

n (f)

ān(f) = Ān(f)/B̄N (0)
(22)

where B̄N (0) is the main DC field component (e.g. B̄1(0)
for a dipole, B̄2(0) for a quadrupole), B̄n(f), Ān(f) are the
absolute AC multipole field components, and b̄n(f) and ān(f)
are the relative AC multipole field components.

B. Relative multipole frequency responses

Fig. 9 and Fig. 10 (and also Fig. 14 for LHC) show the
amplitude and phase of the AC relative field components
resulting from the beam screen of each IR magnets. For the
symmetry of field and geometry b̄1(f), b̄3(f), b̄5(f) have the
largest amplitudes for dipoles and b̄2(f), b̄6(f), b̄10(f) have
the largest amplitudes for quadrupoles. Other components have
negligible amplitudes or appear as numerical noise in the
processed data. The analysis has been validated by computing
the multipole components for different reference radii and
verifying how the ideal multipole scaling with radius hold
between the different curves. Main field components scale
exactly to numerical precision as the reference radius for
low frequency with small deviations of the order of 10−3

at high frequency. Higher orders are less precise but still
acceptable in the whole spectrum. The ratio between different
reference radii calculated from the ratio of the multipole
components is always within 10−3 of the expected value. The
shielding effect of the beam screen and the cold bore is clearly
visible on the main field component with different cut-off
frequencies (see Table IV). Higher order multipole amplitudes
in general increase initially with frequency as the shielding
is not homogeneous in the region due to the geometry of the
conductors that carry the eddy currents. They then decrease
at high frequencies as the cold bore (normally contributing
less to the shielding) reduces the field that generates the eddy
currents in the beam screen.

IV. APPROXIMATED ANALYTICAL FORMULATION

A simplified analytical derivation was firstly presented in
[14] for the case of a cylindrical, infinitely thin (and in-
finitely long) conductive shell.That formulation, which also
took into account the magnet’s multipole order, aims at eval-
uating TBmtoBb

(f) from a beam pipe (as well as obtaining
an equivalent circuit model [15]) and it has been used to
estimate the potential effects of the HL-LHC beam screen [13].
The expression presented for the cut-off frequency was then
generalized to an arbitrary cross-section in [16] assuming a
thin (but not infinitely thin) conductive shell and dipolar field,
together with experimental results for its validation. In this
section, this formula will be further extended to more complex
shape of the beam screen and validated with the simulation
results obtained taking the complex geometry and material
layering into account.

A. Low-frequency transfer function derivation

An analytical derivation, different from those found in
citeeddy˙current˙mult˙shafer and [16] is presented here for the
case of dipole field in order to better highlight its validity
range. An infinitely long cylindrical thin conductive shield
with a B field orthogonal to its axis is considered. A closed-
form analytical solution exists for the shielding efficiency
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(SE) of such a simplified structure, as reported in [29].
However, for the scope of this low-frequency characterization
and assuming that the shield thickness ∆ is small compared to
the average radius ρ̄0 of the structure (averaged between inner
and outer radii) the following expression holds for |γ∆|� 1
[29]:

SE ≈

∣∣∣∣∣1 +
1

2

(µr − 1)
2

µrρ̄0
∆ +

ρ̄0

2µr
∆γ2

∣∣∣∣∣ (23)

where γ ≈
√
j2πfµ0µrσ = (1+j)/δ. For the structure under

analysis clearly µr ≈ 1, so the shielding efficiency can be
further simplified to:

SE ≈ |1 + jπfµ0ρ̄0σ∆| . (24)

As the attenuation introduced by the beam screen is simply
the inverse of the shielding efficiency, the magnitude of the
frequency response is then given by:

|T (f)| ≈
∣∣∣∣ 1

1 + jπfµ0ρ̄0σ∆

∣∣∣∣ =

∣∣∣∣ 1

1 + jf/fcut

∣∣∣∣ . (25)

T (f) will be used in the following as a shorthand for
TB˙mtoB˙b(f). (25) represents the frequency response of a single
pole low-pass filter with a cut-off frequency:

fcut =
1

µ0πρ̄0∆σ
. (26)

This equation is identical to that presented in [16] for a dipole.

B. Generalization of the approximated formula

According to [14] the cut-off frequency for an nth order
multipole field is:

f0 = nfcut. (27)

Only the cold bore can be approximated as an infinitely long
cylinder for which (27) immediately applies. The expression
for the cut-off frequency in (26), however, can also be rewritten
in terms of the annulus area occupied by the shielding material
with conductivity σ:

f0 =
2n

µ0Aσ
(28)

where A = 2πρ̄0∆ is the cross-section area of the shield. On
the other hand, the eddy currents for a 2n order magnet have
an intensity proportional to |cosnθ| as shown in [21]. The Aσ
product can be calculated as follows:

Aσ =

∫ 2π

0

ρ̄0∆σ · k|cosnθ|·dθ. (29)

It is straightforward to determine that the proportionality
constant k must be equal to π

2 in order, for (29) to be equal to
2πρ̄0∆σ. Considering the actual octagonal shape of the beam
screen and the different materials that constitute it, a weighted
average area-conductivity product of the cross section of the
structure can be evaluated as follows:
• using an equivalent circular approximation with radius
ρ̄φ for each side of the octagon and then correct for the
area with a factor Fφ = sin (φ/2)/φ/2 (ratio between the
actual length of the side and the length of the arc; this

applies for both φ = α and φ = 2β in Fig. 3, only for β
and in Fig. 13);

• for each sector forming the (∆σ)φ product as∑
jφ

∆jφσjφ where jφ represents the different material
layers within the angle φ;

• integrating (∆σ)φ over 2π, sector by sector, weighing
with π

2 |cosnθ|;
• adding the conductivity product of the cold bore to the

estimated one Âσ = 2πρ̄CB∆CBσ316LN + ÂσBS (the
cold bore area-conductivity product representing a small
fraction of the overall one).

By symmetry of the structure the general formula for the
equivalent area-conductivity product can be easily expressed
as:

ÂσBS = 4
π

2

[(
c
(n)
β + c

(n)

β̄

)
F2β ρ̄β (∆σ)β +

c(n)
α Fαρ̄α (∆σ)α

]
.

(30)

The constants introduced are:

c
(n)
β =

∫ β

0

|cos(nθ)|dθ;

c(n)
α =

∫ β+α

β

|cos(nθ)|dθ;

c
(n)

β̄
=

∫ π
2

β+α=π
2−β
|cos(nθ)|dθ. (31)

Since the area-conductivity product of the cold bore is much
smaller than one of the beam screen, its cut-off frequency
alone is much larger; one can alternatively think that higher
order multipole components of the field would experience the
filtering due to the the cold bore whereas the main component
would experience mostly the attenuation due to the beam
screen.

C. Numerical Validation

It must be pointed out here that the approximated formula in
(23) is valid for |γ∆|<< 1 which is a safe assumption for the
−3 dB point. In order to also guarantee accuracy for higher
frequencies, a more general formula would be needed, but
this outgoes the scope of this paper. It can be stated, however,
that as (23) is in turn derived from first order Taylor series
of terms in sinh (γ∆) and cosh (γ∆), the filtering effect at
higher frequencies is going to be stronger than what can be

Table III: Conductivities of materials used for the evaluation
of f̂0 at their relative temperatures.

Material Conductivity [S/m] Temperature [K]

σ316LN 1.81× 106 1.9
σP506 1.81× 106 20
σP506 1.71× 106 80
σW 2.25× 107 80
σCu 4.43× 108 80
σCu 5.99× 109 20
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(a) D1 at 80 K

(b) D2 at 20 K

Figure 11: Amplitude of the Transfer Function of the HL-LHC
Separation-Recombination Dipoles.

calculated by means of (25); this holds true for magnets of
any order.

From (30) and the constants in 31 the cut-off frequency can
be estimated both for dipole and quadrupole configurations as:

f̂0 =
2n

µ0Âσ
. (32)

Table IV: Estimation of f̂0 for the different cases studied and
comparison with numerical fit of the simulated data (assuming
single pole behavior).

Magnet f̂0 Fit Error

D1 45.4 Hz 51.7 Hz −12.0 %

D2 13.3 Hz 12.7 Hz +4.7 %

Q1 29.7 Hz 31.1 Hz −4.5 %

Q2-Q3 66.8 Hz 66.9 Hz −0.1 %

This equivalent cut-off frequency can then be calculated
for all configurations of the beam screen in terms of the
dimensions reported in Table I and conductivities listed in
Table III ( [30]–[32]). The results are summarized in Ta-
ble IV together with a single pole fit of the relative multipole
frequency response obtained in simulations. For comparison,
the simulation results together with the applied and analytical
formulas are shown in Fig. 11–12. In Fig. 12a it can be
observed that the simulated frequency response, in blue, drops

(a) Q1 at 80 K

(b) Q2-Q3 at 80 K

Figure 12: Amplitude of the Transfer Function of the HL-LHC
Quadrupoles.

significantly faster after 100 Hz. This is probably due to the
16 mm thick tungsten-based heat absorbers on the ρβ sides
which conflicts with the assumption |γ∆|<< 1.

V. LHC MAIN MAGNETS

For comparison, the simulation results of the LHC main
dipoles and quadrupoles are presented in this section. The
obtained results are also deemed interesting in order to better
understand in which frequency range the ripple of the currently
installed LHC power converters can impact the long term
stability of the beam. The LHC beam screen is illustrated in
Fig. 13. For this geometry the formula in (30) simplifies to:

ÂσBS = 4
π

2

[
c
(n)

β̄
F2β ρ̄β (∆σ)β + c(n)

α ρ̄α (∆σ)α

]
, (33)

as the beam screen is actually circular within the angle α.
The results for the cut-off frequency are summarized in

Table V based on the simulations shown in Fig. 15, and the
AC multipole analysis depicted in Fig. 14. As it can be seen
from Table V, the accuracy of f̂0 is very good.

VI. CONCLUSION & FUTURE WORK

The magnetic transfer function of a beam screen has been
rigorously defined according to the magnet type. Specific
2D FEM simulations in the frequency domain have been
performed for different HL-LHC beam screen layouts and
validated against those evaluated in the time domain. All simu-
lations were performed at the maximum tolerated temperature,
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Figure 13: LHC beam screen cross section.

(a) LHC Main Bending at 20 K.

(b) LHC Main Quadrupole at 20 K.

Figure 14: AC multipole analysis for the beam screens of the
LHC.

which represents the worst case scenario in terms of a current

(a) LHC Main Dipoles at 20 K

(b) LHC Main Quadrupoles at 20 K

Figure 15: Amplitude of the Transfer Function of the LHC
Main Magnets.

Table V: Estimation of f̂0 for the LHC main dipoles and
quadrupoles and comparison with numerical fit of the sim-
ulated data (assuming single pole behavior).

Magnet f̂0 Fit Error

Dipole 22.3 Hz 23.8 Hz −6.3 %

Quadrupole 45.5 Hz 46.9 Hz −3.0 %

ripple being transferred to the magnetic field and then affecting
the beam. The post-processing technique proposed in this
paper allowed the evaluation and comparison of the frequency
response of the HL-LHC beam screen configurations as well
as those of LHC main dipoles and quadrupoles. An easy-to-
use approximated formula for the single pole cut-off frequency
has also been generalized for the case of a multi-layer beam
screen and non-cylindrical geometry. Its accuracy was tested
against simulated data resulting in a good agreement for
both dipoles and quadrupoles. Such a validated formula can
therefore be used to quickly assess the cut-off frequency at
different temperatures or the impact of different geometries
and materials without requiring a complete simulation and
the subsequent post-processing. Furthermore, the proposed de-
scription is deemed to fully characterize TBmtoBb

(f). As such,
it is considered an important contribution for the specification
of power converter performance for the HL-LHC. Future work
will focus on the characterization of the full transfer function
from power converter voltage to the magnetic field applied to
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the particles.
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