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Abstract

Weak capture in muonic hydrogen (µH) as a probe of the chiral properties and nucleon structure pre-
dictions of Quantum Chromodynamics (QCD) is reviewed. A recent determination of the axial-vector
charge radius squared, r2A(z exp.) = 0.46(22) fm2, from a model independent z expansion analysis
of neutrino-nucleon scattering data is employed in conjunction with the MuCap measurement of the
singlet muonic hydrogen capture rate, ΛMuCap

singlet = 715.6(7.4) s−1, to update the induced pseudoscalar

nucleon coupling: ḡMuCap
P = 8.19(84) derived from experiment, and ḡtheoryP = 8.25(25) predicted by

chiral perturbation theory. Accounting for correlated errors this implies ḡtheoryP /ḡMuCap
P = 1.01(8),

confirming theory at the 8% level. If instead, the predicted expression for ḡtheoryP is employed as input,
then the capture rate alone determines r2A(µH) = 0.43(24) fm2, or together with the independent z
expansion neutrino scattering results, a weighted average r2A(ave.) = 0.45(16) fm2. Sources of theoret-
ical uncertainty are critically examined and potential experimental improvements are described that
can reduce the capture rate error by about a factor of 3. Muonic hydrogen can thus provide a precise
and independent r2A value which may be compared with other determinations, such as ongoing lattice
gauge theory calculations. The importance of an improved r2A determination for phenomenology is
illustrated by considering the impact on critical neutrino-nucleus cross sections at neutrino oscillation
experiments.
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4.1 Updated value for the pseudoscalar coupling ḡP and extraction of gπNN . . . . . . . . . . 18
4.2 Determination of r2

A from muon capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Determination of gA and electron-muon universality . . . . . . . . . . . . . . . . . . . . . 19

5 Towards a more precise r2
A 21

5.1 Impact of improved r2
A on accelerator neutrino cross sections . . . . . . . . . . . . . . . . 21

5.2 Other constraints and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Pion electroproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Lepton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.4 Summary of complementary constraints . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Summary and outlook 27

References 29

2



1 Introduction

Muonic hydrogen, the electromagnetic bound state of a muon and proton, is a theoretically pristine atomic
system. As far as we know, it is governed by the same interactions as ordinary hydrogen, but with the
electron of mass 0.511 MeV replaced by the heavier muon of mass 106 MeV, an example of electron-muon
universality. That mass enhancement (∼207) manifests itself in much larger atomic energy spacings and a
smaller Bohr radius of 2.56×10−3Å. This places the muonic hydrogen size about halfway (logarithmically)
between the atomic angstrom and the nuclear fermi (1 fm = 10−5Å) scale.

Those differences make muonic hydrogen very sensitive to otherwise tiny effects such as those due to
proton size and nucleon structure parameters governing weak interaction phenomenology. Indeed, muonic
hydrogen Lamb shift spectroscopy [1, 2] has provided a spectacularly improved measurement of the proton
charge radius that differs by about 7 standard deviations from the previously accepted value inferred from
ordinary hydrogen and electron-proton scattering [3]. (That so called Proton Radius Puzzle is currently
unresolved [4–6]). Similarly, the larger muon mass kinematically allows the weak muon capture process
depicted in Fig. 1,

µ− + p→ νµ + n , (1)

to proceed, while ordinary hydrogen is (fortunately for our existence) stable.

�
W+

p

µ−

n

νµ

Figure 1: Muon capture on the proton, µ−p→ νµn, via charged W boson exchange.

Weak muon capture in nuclei has provided a historically important probe of weak interactions and a
window for studying nuclear structure. In particular, weak capture in muonic hydrogen is a sensitive probe
of the induced pseudoscalar component of the axial current p→ n matrix element which is well predicted
from the chiral properties of QCD. However, early experimental determinations of that pseudoscalar
coupling, ḡP ,1 had, for some time, appeared problematic [7]. All ḡP extractions from ordinary muon
capture in hydrogen suffered from limited precision, while the more sensitive extraction from radiative
muon capture [8] disagreed with ordinary muon capture and the solid prediction of Chiral Perturbation
Theory (χPT) [9–13]. An important underlying contribution to this problem was the chemical activity of
muonic hydrogen, which like its electronic sibling, can form molecular ions, (ppµ)+. The highly spin de-
pendent weak interaction leads to very different capture rates from various muonic atomic and molecular
states. Thus, atomic physics processes like ortho-para transitions in the muonic molecule, which flip the
proton spins, significantly change the observed weak capture rates and often clouded the interpretation
of experimental results in the 55-year history of this field. Unfortunately, the uncertainty induced by
molecular transitions was particularly severe for the most precise measurements which were performed
with high density liquid hydrogen targets, where, because of rapid ppµ formation, essentially capture from
the molecule, not the pµ atom, is observed. This problem was resolved by the MuCap Collaboration at

1The quantity ḡP is defined at the characteristic momentum q20 for muon capture, see Eqs. (8),(23) below.
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the Paul Scherrer Institute (PSI) which introduced an active, in situ, target, where ultra-pure hydrogen
gas served both as the target as well as the muon detector, thus enabling a measurement of the muonic
hydrogen capture rate at low density, where ppµ formation is suppressed. MuCap unambiguously deter-
mined the spin singlet muonic hydrogen capture rate ΛMuCap

singlet = 715.6(7.4) s−1 [14, 15] to 1% accuracy
which, when corrected for an enhancement from radiative corrections [16], and using prevailing form

factor values at the time implied ḡMuCap
P = 8.06(55), in excellent agreement with ḡtheory

P = 8.26(23), the
predicted value.

We note, however, that the determination of ḡP from both experiment and theory required the input
of the axial charge radius squared, traditionally taken from dipole form factor fits to neutrino-nucleon
quasielastic charged current scattering (νµn → µp) and pion electroproduction (eN → eN ′π) data,
which at the time implied the very precise [17] r2

A(dipole) = 0.454(13) fm2. Recently, that small (∼
3%) uncertainty in r2

A has been called into question, since it derives from the highly model dependent
dipole form factor assumption.2 The axial radius, which is central to this paper, governs the momentum
dependence of the axial-vector form factor, by means of the expansion at small q2,

FA(q2) = FA(0)

(
1 +

1

6
r2
Aq

2 + . . .

)
. (2)

In the one-parameter dipole model, the terms denoted by the ellipsis in Eq. (2) are completely specified in
terms of r2

A. However, the true functional form of FA(q2) is unknown, and the dipole constraint represents
an uncontrolled systematic error. We may instead employ the z expansion formalism, a convenient method
for enforcing the known complex-analytic structure of the form factor inherited from QCD, while avoiding
poorly controlled model assumptions. This method replaces the dipole FA(q2) with FA[z(q2)], which in
terms of the conformal mapping variable z(q2), has a convergent Taylor expansion for all spacelike q2. The
size of the expansion parameter, and the truncation order of the expansion necessary to describe data of
a given precision in a specified kinematic range, are determined a priori. This representation helps ensure
that observables extracted from data are not influenced by implicit form factor shape assumptions. Using
the z expansion [18] to fit the neutrino data alone leads to [19] r2

A(z exp., ν) = 0.46(22) fm2 with a larger
(∼ 50%), more conservative but better justified error. As we will discuss below, traditional analyses of
pion electroproduction data have also used a dipole assumption to extract r2

A from FA(q2), and in addition
required the a priori step of phenomenological modeling to extract FA(q2) from data. Since these model
uncertainties have not been quantified, we refrain from including pion electroproduction determinations
of r2

A in our analysis. Similarly, we do not include extractions from neutrino-nucleus scattering on nuclei
larger than the deuteron, in order to avoid poorly quantified nuclear model uncertainties. In this context,
we note that dipole fits to recent ν-C scattering data suggest a smaller r2

A ≈ 0.26 fm2 [20], compared
to historical dipole values r2

A ∼ 0.45 fm2 [17]. This discrepancy may be due to form factor shape biases
(i.e., the dipole assumption), mismodeling of nuclear effects, or something more interesting. Independent
determination of r2

A is a necessary ingredient for resolving this discrepancy. Finally, we do not include
recent interesting lattice QCD results [21–24], some of which suggest considerably smaller r2

A values. As
we shall discuss below in Sec. 5, future improvements on these lattice QCD results could provide an inde-
pendent r2

A value with controlled systematics, that would open new opportunities for interpreting muon
capture. To illustrate the broad range of possible r2

A values, we provide in Table 1 some representative
values considered in the recent literature.

Accepting the larger r2
A uncertainty from the z expansion fit to neutrino data, leads to renewed think-

ing about the utility of precision measurements of muonic hydrogen capture rates for probing QCD chiral
properties. As we shall see, the determination of ḡP becomes ḡMuCap

P = 8.19(84) and ḡtheory
P = 8.25(25),

which are still in good agreement, but with errors enlarged by factors of 1.7 and 3.5, respectively, com-
pared to results using r2

A(dipole) [cf. Eqs. (31),(32) below]. However, taking into account the correlated

uncertainties, the comparison can be sharpened to ḡtheory
P /ḡMuCap

P = 1.01(8).

2The dipole ansatz corresponds to FA(q2) = FA(0)/(1− q2/m2
A)2 with fit mass parameter mA.
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Table 1: Illustrative values obtained for r2
A from neutrino-deuteron quasi elastic scattering (ν-d), pion

electroproduction (eN → eN ′π), neutrino-carbon quasielastic scattering (ν-C), muon capture (MuCap)
and lattice QCD. Values labeled “dipole” enforce the dipole shape ansatz. The value labeled “z exp.”
uses the model independent z expansion.

Description r2
A (fm2) Source/Reference

νd (dipole) 0.453(23) [17]
eN → eN ′π (dipole) 0.454(14) [17]

average 0.454(13)

νC (dipole) 0.26(7) [20]

νd (z exp.) 0.46(22) [19]
MuCap 0.43(24) this work

average 0.45(16)

lattice QCD
0.213(6)(13)(3)(0) [21]
0.266(17)(7) [22]

0.360(36)+80
−88 [23]

0.24(6) [24]

Instead of determining ḡP , one can use the functional dependence of this quantity, ḡP (r2
A), predicted

from χPT to extract r2
A from the singlet capture rate. As we shall show, that prescription currently gives

a sensitivity to r2
A comparable to z-expansion fits to neutrino-nucleon scattering. We use the resulting

value from muon capture to derive a combined weighted average. We also examine how such a method can
be further improved by better theory and experiment, and demonstrate that a factor of ∼3 improvement
in the experimental precision appears feasible and commensurate with our updated theoretical precision.

The axial radius is indispensable for ab-initio calculations of nucleon-level charged current quasielastic
cross sections needed for the interpretation of long baseline neutrino oscillation experiments at |q2| ∼
1 GeV2. Its current uncertainty is a serious impediment to the extraction of neutrino properties from
such measurements. We quantify the impact that an improved muon capture determination of r2

A would
have on neutrino-nucleon cross sections, and discuss the status and potential for other determinations,
particularly from the promising lattice QCD approach.

The remainder of this paper is organized as follows: In Sec. 2 we give an overview and update regarding
the theory of µ-p capture in muonic hydrogen. We first discuss the lowest order formalism. We then outline
the status of radiative corrections and argue for a reduction in the overall theory error on the capture rate
to about ±0.15% based on new considerations. Uncertainties in the input parameters are described, with
particular emphasis on a numerical analysis of the axial charge radius squared and its potential extraction
from the singlet 1S capture rate in µH. Then, in Sec. 3, we describe the experimental situation. After
reviewing the MuCap result, we discuss possible improvements for a next generation experiment that
would aim for a further factor of ∼3 error reduction. In Sec. 4, we discuss what can be learned from
the present MuCap result and an improved experiment. We update the determination of ḡP from the
MuCap measurement using the more conservative z expansion value of r2

A obtained from neutrino-nucleon
scattering. Then, as a change in strategy, using the theoretical expression for ḡP obtained from χPT as
input, r2

A is extracted from the MuCap capture rate and averaged with the z expansion value. Other
utilizations of MuCap results are also discussed. In Sec. 5, we illustrate the impact of an improved r2

A

determination on quasielastic neutrino scattering cross sections and discuss the status of, and prospects
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for, improving alternative r2
A determinations. Section 6 concludes with a summary of our results and an

outlook for the future.

2 Muon capture theory update

The weak capture process, Eq. (1), from a muonic hydrogen bound state is a multi-scale field theory
calculational problem, involving electroweak, hadronic and atomic mass scales. In this section, we review
the essential ingredients of this problem before discussing the status of phenomenological inputs and the
numerical evaluation of the capture rate.

2.1 Preliminaries

For processes at low energy, E � mW , where mW ≈ 80 GeV is the weak charged vector boson mass, the
influence of heavy particles and other physics at the weak scale is rigorously encoded in the parameters
of an effective Lagrangian containing four-fermion operators. For muon capture the relevant effective
Lagrangian is

L = −GFVud√
2

ν̄µγ
µ(1− γ5)µ d̄γµ(1− γ5)u+ H.c.+ . . . , (3)

where GF and Vud are the Fermi constant and the CKM up-down quark mixing parameter respectively (cf.
Table 2), and the ellipsis denotes effects of radiative corrections. Atomic physics of the muonic hydrogen
system is described by the effective Hamiltonian,

H =
p2

2mr
− α

r
+ δVVP − i

G2
F |Vud|2

2

[
c0 + c1(sµ + sp)

2
]
δ3(r) , (4)

where mr = mµmp/(mµ + mp) is the reduced mass, δVVP accounts for electron vacuum polarization as
discussed below, and sµ, sp are muon and proton spins. The annihilation process is described by an
anti-Hermitian component of H [25]. Since the weak annihilation is a short-distance process compared
to atomic length scales, this anti-Hermitian component can be expanded as a series of local operators.
At the current level of precision terms beyond the leading one, δ3(r), are irrelevant [25]. Relativistic
corrections to the Coulomb interaction in Eq. (4) are similarly irrelevant [26]. In both cases, neglected
operators contribute at relative order v2/c2 ∼ α2, where v is the nonrelativistic bound state velocity.
Electron vacuum polarization enters formally at order α2, but is enhanced by a factor mµ/me making it
effectively a first order correction [27, 28].

Having determined the structure of the effective Hamiltonian (4), the numbers ci are determined by a
matching condition with the quark level theory (3). The annihilation rate in the 1S state is then computed
from H to be

Λ = G2
F |Vud|2 × [c0 + c1F (F + 1)]× |ψ1S(0)|2 + . . . , (5)

where |ψ1S(0)|2 = m3
rα

3/π is the ground state wavefunction at the origin squared and F is the total spin
(F = 0 for singlet, F = 1 for triplet). Equation (5), with ci expressed in terms of hadronic form factors
(cf. Eq. (7) below), exhibits the factorization of the process into effects arising from weak, hadronic and
atomic scales.
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2.2 Tree level calculation

Hadronic physics in the nucleon matrix elements of the vector and axial-vector quark currents of Eq. (3)
is parameterized as:3

〈n|(V µ −Aµ)|p〉 = ūn

[
F1(q2)γµ+

iF2(q2)

2mN
σµνqν − FA(q2)γµγ5 −

FP (q2)

mN
qµγ5

+
FS(q2)

mN
qµ − iFT (q2)

2mN
σµνqνγ

5

]
up + . . . , (6)

where V µ − Aµ = d̄γµu − d̄γµγ5u, and the ellipsis again denotes effects of radiative corrections. For
definiteness we employ the average nucleon mass mN ≡ (mn + mp)/2. The form factors FS and FT are
so-called second class amplitudes that violate G parity and are suppressed by isospin violating quark
masses or electromagnetic couplings [30–33]. They would appear in the capture rate, Eq. (7) below,
accompanied by an additional factor mµ/mN relative to F1 and FA. Similar to isospin violating effects in
F2(0), discussed below in Sec. 2.4, power counting predicts negligible impact of FS and FT at the permille
level; we thus ignore them in the following discussion.

The ci in Eq. (5) are determined by matching the quark level theory (3) to the nucleon level theory (4),
using the hadronic matrix elements (6). This matching is accomplished by enforcing, e.g., equality of the
annihilation rate for µp→ νµn computed in both theories for the limit of free particles, with the proton
and muon at rest. For the coefficients corresponding to singlet and triplet decay rates, this yields [16, 34]

c0 =
E2
ν

2πM2
(M −mn)2

[
2M −mn

M −mn
F1(q2

0) +
2M +mn

M −mn
FA(q2

0)− mµ

2mN
FP (q2

0)

+ (2M + 2mn − 3mµ)
F2(q2

0)

4mN

]2

,

c0 + 2c1 =
E2
ν

24πM2
(M −mn)2

{[
mµ

mN
FP (q2

0)− 2mn

M −mn

(
F1(q2

0)− FA(q2
0)
)

+ (2M + 2mn −mµ)
F2(q2

0)

2mN

]2

+ 2

[
mµ

mN
FP (q2

0) +
2M

M −mn

(
F1(q2

0)− FA(q2
0)
)
−mµ

F2(q2
0)

2mN

]2}
, (7)

where the initial state mass is M ≡ mµ+mp, the neutrino energy is Eν ≡ (M2−m2
n)/2M = 99.1482 MeV,

and the invariant momentum transfer is

q2
0 ≡ m2

µ − 2mµEν = −0.8768m2
µ. (8)

Since the matching is performed with free particle states, the quantities M , Eν and q2
0 are defined inde-

pendent of the atomic binding energy, as necessary for determination of the state-independent coefficients
ci of the effective Hamiltonian (4).4

The amplitudes (7) can also be expressed as an expansion in χPT [12, 35–37]. However, the general
formulas in Eq. (7) allow us to more directly implement and interpret experimental constraints on the
form factors and do not carry the intrinsic truncation error of NNLO χPT derivations (estimated in
Ref. [37] as ±1%). For example, we may take the vector form factors F1, F2 directly from experimental
data, rather than attempting to compute them as part of an expansion in χPT. No approximation is
yet made in Eq. (7), except for neglect of second class currents, as justified above. We investigate below
the restricted application of χPT to express FP (q2

0) in terms of r2
A and other experimentally measured

quantities.

3We choose a convention for the pseudoscalar form factor that is independent of lepton mass: FP (q2) = (mN/mµ)gP (q2),
in terms of gP (q2) used in Ref. [29]. Our sign conventions for FA and FP are such that FA(0) and all other form factors are
positive.

4In particular, a binding energy is not included in the initial-state mass M , but would anyways correspond to a relative
order α2 correction that is beyond the current level of precision.
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Figure 2: Example of an O(α) γW exchange box diagram radiative correction to muon capture.

2.3 Radiative corrections

The electroweak radiative corrections to muon capture in muonic hydrogen, depicted in Fig. 2, were first
calculated in Ref. [16]. Here, we briefly describe the origin of such quantum loop effects and take this
opportunity to update and reduce their estimated uncertainty. The computational strategy relies on
the well known electroweak corrections to (i) the muon lifetime [38, 39], (ii) super-allowed 0+ → 0+ β
decays [38, 40, 41], and (iii) the neutron lifetime [42, 43].

Radiative corrections to weak decay processes in the Standard Model involve ultraviolet divergences
that can be renormalized, yielding finite phenomenological parameters such as the Fermi constant GF
obtained from the measured muon lifetime [39] and the CKM matrix element |Vud| obtained from super-
allowed β decays (see Table 2). In terms of those parameters, the radiative corrections to the neutron
lifetime and the muon capture rate are rendered finite and calculable. We note that the matrix element
of the vector current is absolutely normalized at qµ = 0, corresponding to a Conserved Vector Current
(CVC): F1(0) = 1, up to second order corrections in small isospin violating parameters [44–46]. On the
other hand, the normalization of the remaining form factors appearing in Eq. (7) requires a conventional
definition in the presence of radiative corrections. This definition is specified at q2 = 0 by a factorization
requirement that expresses the total process as a tree level expression times an overall radiative correction.
For example, the neutron decay rate in this scheme involves the factor (1+3g2

A)(1+RC), where (1+3g2
A)

is the tree level expression with FA(0) = gA, and RC denotes the radiative corrections. By the definition
of gA, these corrections are the same for vector and axial-vector amplitudes, but are actually computed
for the vector amplitude. In that way, gA can be obtained from the neutron lifetime, used in conjunction
with Vud via the relationship [41, 42](

1 + 3g2
A

)
|Vud|2τn = 4908.7(1.9) s . (9)

Alternatively, gA can be directly obtained from neutron final state decay asymmetries. We employ the
lifetime method here, because it is currently more precise.

In the case of muon capture, we have four form factors all evaluated at q2
0: vector (F1), induced

weak magnetism (F2), axial-vector (FA) and induced pseudoscalar (FP ). We define these form factors to
all have the same electroweak radiative corrections and explicitly compute those corrections for F1(q2

0).
Short-distance corrections (which dominate) correspond to a renormalization of the relevant four-fermion
operator, and are automatically the same for all form factors. Long distance corrections, although not as
important, are incorporated through the form factor definitions in much the same way as gA is renormal-
ized by definition in neutron decay.

Given the above form factor definitions, their common total radiative correction is conventionally

8



written as the sum of three terms,

RC = RC(electroweak) + RC(finite size) + RC(electron VP) , (10)

which we now specify. Neglecting terms of O(E`/mp, q/mp), where E` is the charged lepton energy and q
the momentum transfer,5 the radiative corrections to the vector parts of neutron decay and muon capture
are of the same form, but evaluated at different q2 and with different lepton mass. The RC (electroweak)
radiative corrections to muon capture [16] were obtained from the original neutron decay calculation, but
including higher-order leading log effects denoted by ellipsis in the following Eq. (11):

RC(electroweak) =
α

2π

[
4 log

mZ

mp
− 0.595 + 2C + g(mµ, βµ = 0)

]
+ · · · = +0.0237(10) , (11)

where mZ = 91.1876 GeV, mp = 0.9383 GeV, C = 0.829 [41], and g(mµ, βµ = 0) = 3 log(mp/mµ)− 27/4
was obtained from Eq. (20b) in Ref. [47] by replacing me → mµ, ignoring bremsstrahlung and taking the
βµ = 0 and mµ/mp = 0 limits. The ellipsis in Eq. (11) denotes higher order (in α) corrections enhanced
by large logarithms [42]. These effects have been added to the +2.23% order α correction to obtain the
total +2.37% electroweak radiative correction. The uncertainty has been reduced from 0.4% in Ref. [16] to
0.1%. That reduction is justified by two improvements in the analysis. First, the radiative corrections to
Vud (such as C) are correlated with similar corrections in Eq. (11), and their uncertainties largely cancel.
Second, (ignoring nuclear structure), direct calculation of O(αmµ/mp) corrections to muon capture (that
were ignored in Ref. [16]) were found to cancel and not contribute to the uncertainty in Eq. (11).

Here, we assume that corrections of O(αmµ/mp) due to nuclear structure are parametrized by the
nucleon finite size reduction factor [48]

|ψ1S(0)|2 → m3
rα

3

π
(1− 2αmr〈r〉) , (12)

where 〈r〉 denotes the first moment of the proton charge distribution. Based on a range of model forms
for this distribution, the correction (12) evaluates to

RC(finite size) = −0.005(1) , (13)

where the error spans the central values −0.0044 [31], −0.005 [16], and −0.0055 [35] given in the literature.
We note that the quoted uncertainty may not fully account for possible additional effects of nuclear
structure which could be estimated using a relativistic evaluation of the γ-W box diagrams, but are
beyond the scope of this article.6

The corrections RC(electroweak) and RC(finite size) modify the coefficients ci of the effective Hamil-
tonian (4). The remaining radiative correction, from the electron vacuum polarization modification to
the muonic atom Coulomb potential, is described by δVVP. This contribution amounts to

RC(electron VP) = +0.0040(2), (14)

where the very small uncertainty 0.02% is estimated by the difference between 1.73α/π of Ref. [16, 27]
and 1.654α/π of Ref. [35].

In Eq. (10), we have defined the total radiative correction to include electroweak, finite size and
electron vacuum polarization contributions. In Ref. [16], the finite size correction was treated separately,
and “radiative correction” referred to the sum of our RC(electroweak) and RC(electron VP), amounting
to ∼ 2.8%.
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Table 2: Input parameter values used in this paper. See text for discussion.

Symbol Description Value Source/Reference

GF Fermi coupling constant 1.1663787(6)×10−5 GeV−2 Muon lifetime/PDG [43]
Vud CKM matrix element 0.97417(18)(10) Superallowed β decays [40]
fπ pion decay constant 92.3(1) MeV PDG [43]

gπNN pion nucleon coupling 13.12(10) [49, 50]

expansion parameters for nucleon charged current form factors

r2
1 squared rms radius for F1 0.578(2) fm2 n-e, µH, see text

F2(0) weak magnetic coupling 3.70844 see text
r2

2 squared rms radius for F2 0.707(53) fm2 e-p, e-n, π-N , see text
gA ≡ FA(0) axial coupling 1.2749(9) τn, see text

r2
A squared rms radius for FA 0.46(22)fm2 ν − d [19]

derived nucleon charged current form factors at q2
0

F1(q2
0) vector form factor 0.97578(8) this work

F2(q2
0) weak magnetic form factor 3.5986(82) this work

ḡA ≡ FA(q2
0) axial form factor 1.2503(118) this work

ḡP ≡ mµ
mN

FP (q2
0) pseudoscalar form factor 8.25(25) this work

2.4 Inputs

The relevant inputs used to compute the capture rate are displayed in Table 2. The Fermi constant
GF is determined from the muon lifetime [39] and its uncertainty is negligible in determining the muon
capture rate. The CKM matrix element |Vud| is determined from superallowed β decays [40]. The
uncertainty in Table 2 is divided into a nucleus-independent radiative correction term, 0.00018, and a
second term 0.00010 representing the sum in quadrature of other theoretical-nuclear and experimental
uncertainties. The former radiative correction is strongly correlated with RC(electroweak) in Eq. (11),
and the corresponding uncertainty largely cancels when the muon capture rate is expressed in terms of
|Vud|. This cancellation has been accounted for in our discussion of radiative corrections; in the numerical
analysis the uncertainty contribution 0.00018 to |Vud| is dropped.7

The charged current isovector vector form factors are obtained from the isovector combination of
electromagnetic form factors. Deviations from F1(0) = 1 occur at second order in small isospin violating
quantities. At the quark level these quantities may be identified with the quark mass difference mu −
md and the electromagnetic coupling α. At the hadron level, isospin violation manifests itself as mass
splittings within multiplets, such as isodoublet mn −mp and isotriplet m2

π± −m
2
π0 [44–46]. As shown in

Ref.[44], first-order isodoublet mass splitting corrections vanish in F1(q2) and F2(q2), for general q2, while
first order isotriplet ones cancel in F1(0) but contribute in F1(q2) for q2 6= 0 and in F2(q2) for all values of
q2. Estimating these corrections to be of O([m2

π+ −m2
π0 ]/m2

ρ) = 2.1× 10−3, where mρ ≈ 770 MeV is the
ρ meson mass (representing a typical hadronic mass scale), we note that in F1(q2

0) they are accompanied
by the further suppression factor q2

0 r
2
1/6 = −2.4×10−2, so they amount to −5×10−5. Corrections to the

isospin limit in F1(q2
0) are thus negligible at the required permille level. In the case of F2(q2

0), we note that
in the expression for the singlet capture rate [Eq. (20) below], a 2.1×10−3 correction to the F2 term within

5For the kinematics of muon capture, E`/mp ∼ q/mp ∼ mµ/mp.
6The finite size ansatz (12) becomes exact in the large-nucleus limit, rnucleus � rweak, where rnucleus ∼ rE,p is the nuclear

(proton) charge radius and rweak ∈ (r1, r2, rA) denotes a weak vector or axial radius.
7The muon capture rate could be expressed directly in terms of β decay observables, such as the neutron lifetime, where

|Vud| does not appear explicitly.
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square brackets amounts to 6.67× 10−4, while the total contribution from the four form factors is 4.217.8

Thus, a 2.1×10−3 isotriplet mass splitting correction to F2(q2
0) induces a 2×6.67×10−4/4.217 = 3.2×10−4

correction to the singlet capture rate, which is also negligible at the permille level.
Neglecting these small corrections, the Dirac form factor is thus normalized to F1(0) = 1. The Pauli

form factor at zero momentum transfer is given by the difference of the proton and neutron anomalous
magnetic moments: F2(0) = κp − κn, where κp = 1.79408 and κn = −1.91436 are measured in units of
e/2mN . This leads to F2(0) = 3.70844. Note that since the PDG [43] expresses both proton and neutron
magnetic moments in units of e/2mp, our value for F2(0) differs from a simple difference of magnetic
moments quoted there by a factor mN/mp = 1.00069.

The q2 dependence of the form factors is encoded by the corresponding radii, defined in terms of the
form factor slopes:

1

Fi(0)

dFi
dq2

∣∣∣∣
q2=0

≡ 1

6
r2
i . (15)

Curvature and higher-order corrections to this linear approximation enter at second order in small pa-
rameters q2

0/Λ
2 ∼ m2

µ/m
2
ρ, where Λ is a hadronic scale characterizing the form factor. These corrections

may be safely neglected at the permille level. Isospin violating effects in the determination of the radii
may be similarly neglected. The Dirac-Pauli basis F1, F2 is related to the Sachs electric-magnetic basis
GE , GM by GE = F1 + (q2/4m2

N )F2, GM = F1 +F2. In terms of the corresponding electric and magnetic
radii,9

r2
1 = r2

E,p − r2
E,n −

3

2m2
N

F2(0) , r2
2 =

1

F2(0)
(κp r

2
M,p − κn r2

M,n − r2
1) . (16)

The neutron electric radius is determined from neutron-electron scattering length measurements, r2
E,n =

−0.1161(22) fm2 [43]. The proton electric radius is precisely determined from muonic hydrogen spec-
troscopy, rE,p = 0.84087(39) fm [2]; this result remains controversial, and is 5.6σ discrepant with the value
rE,p = 0.8751(61) obtained in the CODATA 2014 adjustment [51] of constants using electron scattering
and ordinary hydrogen spectroscopy. We take as default the more precise muonic hydrogen value, but
verify that this rE,p puzzle does not impact the capture rate at the projected 0.33% level. The magnetic
radii are less well constrained. We adopt the values rM,p = 0.776(38) fm [43] and rM,n = 0.89(3) fm [52].10

Currently, the most precise determination of gA comes indirectly via the neutron lifetime, τn, used in
conjunction with Vud = 0.97417(10)(18) obtained from super-allowed nuclear β decays [40–42]. Correlating
theoretical uncertainties in the electroweak radiative corrections to τn and Vud,

11 reduces the uncertainty
in Eq. (9) to 1 + 3g2

A = 5172.4(1.1) s/τn.12 For the PDG average [43], τn = 880.2(1.0) s, one finds
gA = 1.2749(9), the value we use throughout this text. That average includes a PDG scale factor of 1.9
which primarily reflects a lifetime disagreement between trapped neutron decays and free neutron beam

8The additional suppression may be traced to a factor mµ/mN appearing in the coefficients of F2 relative to F1 in Eq. (7).
A similar power counting applies to the second class form factors, FS and FT in Eq. (6), that we have neglected in our
analysis.

9The isovector form factors can be written in the form Fi = Fi,p−Fi,n(i = 1, 2), GE = GE,p−GE,n, GM = GM,p−GM,n,
where the subscripts p and n refer to the proton and neutron contributions. The electric and magnetic radii are defined
analogously to Eq. (15) in terms of the slopes of GE,p, GE,n, GM,p and GM,n. For the neutron, with GE,n(0) = 0,
r2E,n ≡ 6 G′E,n(0).

10This PDG value for rM,p represents the z expansion reanalysis [53] of A1 collaboration electron-proton scattering data [54].
A similar reanalysis of other world data in Ref. [53] obtained rM,p = 0.914(35) fm. We verify that this rM,p discrepancy does
not impact the capture rate at the projected 0.33% level. For rM,n, we adopt the value from the z expansion reanalysis [52]
of GM,n extractions, combined with dispersive constraints (see also Ref. [55]). The larger uncertainty encompasses the PDG
value, 0.864+0.009

−0.008 fm, obtained by averaging with the dispersion analysis of Ref. [56].
11The first, 1.8 × 10−4, uncertainty on |Vud| in Table 2 is correlated with the 1.9 s uncertainty on the right hand side of

Eq. (9). These uncertainties cancel.
12The formula relating gA and τn [42] is based on a neutron decay phase space factor f = 1.6887 (cf. Ref. [57]).
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decay in flight [58]. The direct neutron decay asymmetry PDG gA average [43], 1.2723(23), is lower; but
most more recent experiments find values close to 1.276.

Our knowledge about the functional form of FA(q2) relies primarily on neutrino-deuteron scattering
data from bubble chamber experiments in the 1970’s and 1980’s: the ANL 12-foot deuterium bubble
chamber experiment [59–61], the BNL 7-foot deuterium bubble chamber experiment [62], and the FNAL
15-foot deuterium bubble chamber experiment [63, 64]. As mentioned in the Introduction, the original
analyses and most follow-up analyses employed the one-parameter dipole model of the axial form factor.
A more realistic assessment of uncertainty allows for a more general functional form. Using a z expansion
analysis [19], the uncertainty on the axial radius is found to be significantly larger than from dipole fits,

r2
A(z exp., ν) = 0.46(22) fm2 . (17)

This value may be compared to a fit of scattering data to the dipole form, r2
A(dipole, ν) = 0.453(23) fm2 [17].

Note that the value r2
A(dipole) = 0.454(13) fm2 quoted in the Introduction is obtained by averaging this

neutrino scattering result with an extraction from pion electroproduction [17], r2
A(dipole, electro.) =

0.454(14) fm2. As observed in Ref. [18], the electroproduction extraction is also strongly influenced by
the dipole assumption. A more detailed discussion of the electroproduction constraints is given in Sec. 5,
with the conclusion that further control over systematics is required in order to provide a reliable r2

A

extraction. The pion decay constant fπ and pion nucleon coupling gπNN , along with r2
A, are used to

determine the induced pseudoscalar form factor [11]

FP (q2
0) =

2mNgπNNfπ
m2
π − q2

0

− 1

3
gAm

2
N r

2
A + . . . , (18)

where mπ = 139.571 MeV is the charged pion mass. Two loop χPT corrections, indicated by the ellipsis
in Eq. (18), were estimated to be negligible, as long as the low energy constants involved remain at
natural size [13]. fπ is determined from the measured rate for π− → µ−ν̄µ(γ), and its uncertainty is
dominated by hadronic structure dependent radiative corrections. For gπNN we take as default the value
gπNN = 13.12(6)(7)(3) = 13.12(10) [49, 50], where the first two errors are attributed to pion-nucleon
scattering phase shifts and integrated cross sections, respectively, entering the Goldberger-Miyazawa-
Oehme (GMO) sum rule for gπNN . The third error is designed to account for isospin violation and was
motivated by evaluating a subset of χPT diagrams. Other values include gπNN = 13.06(8) from partial
wave analysis of nucleon-nucleon scattering data [65]; and gπNN = 13.14(5) [66], gπNN = 13.150(5) [67]
from partial wave analysis of pion-nucleon scattering data. That range of values is covered by the error
given in Table 2.

2.5 Numerical results

Employing the radiative corrections given above, the full capture rates become

Λ = [1 + RC] Λtree = [1 + 0.0277(10)(2)− 0.005(1)] Λtree , (19)

where Λtree is the tree level expression for the chosen spin state. We have displayed a conventional
separation of the radiative corrections in Eq. (19), where the first +2.8% includes the electroweak and
electron vacuum polarization corrections, and the second −0.5% is the finite size correction. Inserting the
relevant quantities from Table 2, the singlet 1S capture rate is given by

Λsinglet = 40.226(56) [F1(q2
0) + 0.08833 F2(q2

0) + 2.63645 ḡA − 0.04544 ḡP ]2 s−1 , (20)

where the quantities ḡP and ḡA are defined below and the relative uncertainty ur = 1.4×10−3 in the
prefactor of Eq. (20) quadratically sums the relative uncertainties ur(RC) = 1.40×10−3 and ur(Vud) =
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0.20 ×10−3.13 In the discussion above, we define ur = δX/X as the relative uncertainty in the considered
quantity X having an uncertainty δX. The relative uncertainty in X induced by parameter p with
uncertainty δp is ur(p) = X−1(∂X/∂p)δp.

As a next step, we evaluate the form factors at the momentum transfer q2
0 relevant for muon capture.

For the vector form factors, we expand to linear order using Eq. (15),

F1(q2
0) = 0.97578(8) , F2(q2

0) = 3.5986(82) . (21)

For the axial form factor we have

ḡA ≡ FA(q2
0) = 1.2503 (118)r2

A
(9)gA = 1.2503(118) , (22)

with the uncertainty dominated by ur(r
2
A) = 9.4× 10−3. Finally, the pseudoscalar form factor predicted

by χPT is

ḡP ≡
mµ

mN
FP (q2

0) = 8.743 (67)gπNN (9)fπ − 0.498 (238)r2
A

= 8.25(25) , (23)

where the contribution from the pole and higher order term in Eq.(18) are shown separately. While the
pole term dominates the value for ḡP , the uncertainty is actually dominated by the non-pole term, due
to the rather dramatically increased uncertainty in r2

A.
We exhibit the sensitivity to the axial form factors by inserting the relatively well known vector form

factors in Eq. (20) to obtain

Λsinglet = 67.318(94)
[
1.00000(56) + 2.03801 ḡA − 0.03513 ḡP

]2
s−1 . (24)

At the central values for ḡA and ḡP , the uncertainty in this equation from the remaining inputs is δΛsinglet =
1.03 s−1, corresponding to a relative error ur=1.44×10−3, which is still dominated by RC, with a minor
contribution from ur(F2)=0.3×10−3. At this point the traditional approach would be to insert ḡA and ḡP
in the equation above and to specify the uncertainties in Λsinglet arising from these two axial form factors.
However, as both ḡA and ḡP depend on the axial radius squared r2

A, which is not well known, they cannot
be treated as independent input quantities. To avoid their correlation, we express Λsinglet in terms of the
independent input parameters (gA, r2

A, gπNN ):

Λsinglet = 67.318(94) [1.00000(56)− 0.02341(3) gπNN + (2.03801− 0.05556 r2
A) gA]2 s−1 , (25)

with r2
A in units of fm2. Using the current knowledge of these independent input quantities from Table 2,

we obtain our best prediction for the muon capture rate in the singlet and triplet hyperfine states of
muonic hydrogen as

Λsinglet = 714.8 (7.0) s−1 , (26)

Λtriplet = 12.09 (52) s−1 . (27)

We have employed the same methodology as above for Λsinglet to obtain Λtriplet. The total relative
uncertainty for Λsinglet, ur(Λsinglet) = 9.8×10−3, is calculated as the quadratic sum of ur(RC) = 1.4×10−3,
ur(gπNN ) = 1.4×10−3, ur(gA) = 1.1×10−3, ur(r

2
A) = 9.5×10−3 and a negligible uncertainty from fπ.

Assuming no uncertainty in r2
A, the prediction for Λsinglet would have a more than 4 times smaller error

of 1.66 s−1.

3 Muon capture experiment update

Precise measurements of muon capture in hydrogen are challenging, for the following reasons [7, 68]. (i)
Nuclear capture takes place after muons come to rest in matter and have cascaded down to the ground

13As discussed above, a large part of the uncertainty in Vud cancels with the corresponding uncertainty in radiative
corrections to muon capture.
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Fi g ur e 3: ( c ol or o nli n e). R e a cti o n s e q u e n c e aft er m u o n s st o p i n h y dr o g e n. Tri pl et st at e s ar e q ui c kl y
q u e n c h e d t o t h e si n gl et µ H gr o u n d st at e. I n c olli si o n s, ( p p µ ) ort h o- m ol e c ul e s ar e f or m e d pr o p orti o n al t o
t h e h y dr o g e n d e n sit y φ a n d t h e f or m ati o n r at e λ p p . Ort h o- m ol e c ul e s c a n c o n v ert t o p ar a- m ol e c ul e s wit h
t h e p o orl y- k n o w n r at e λ o p . R e pr o d u c e d fr o m [7 ].

st at e of m u o ni c at o m s. A s e x e m pli fi e d f or t h e c a s e of µ H i n E q. ( 5 ), t h e c a pt ur e r at e i s pr o p orti o n al t o
t h e s q u ar e of t h e m u o ni c w a v ef u n cti o n at t h e ori gi n, 1 4 |ψ 1 S ( 0)|2 , w hi c h, aft er s u m mi n g o v er t h e n u m b er
of pr ot o n s i n a n u cl e u s of c h ar g e Z , l e a d s t o a st e e p i n cr e a s e of t h e c a pt ur e r at e wit h ∼ Z 4 , s u c h t h at
t h e m u o n c a pt ur e a n d d e c a y r at e s ar e c o m p ar a bl e f or Z ∼ 1 3. F or µ H, w h er e Z = 1, t hi s a m o u nt s t o a
s m all c a pt ur e r at e of or d er 1 0 − 3 c o m p ar e d t o m u o n d e c a y, a s w ell a s d a n g er o u s b a c k gr o u n d fr o m m u o n
st o p s i n ot h er hi g h er Z m at eri al s, w h er e t h e c a pt ur e r at e f ar e x c e e d s t h e o n e i n µ H. (ii) O n t h e n or m al
at o mi c s c al e µ H at o m s ar e s m all a n d c a n e a sil y p e n etr at e t h e el e ctr o ni c cl o u d t o tr a n sf er t o i m p uriti e s
i n t h e h y dr o g e n t ar g et g a s, or t o f or m m u o ni c m ol e c ul ar i o n s (p p µ ) + . T h e f or m er i s s u e r e q uir e s t ar g et
p uriti e s at t h e p art- p er- billi o n l e v el. T h e l att er pr o bl e m, d e pi ct e d i n Fi g. 3 , h a s b e e n a pri m ar y s o ur c e
of c o nf u si o n i n t h e p a st, a s t h e h eli cit y d e p e n d e n c e of w e a k i nt er a cti o n s i m pli e s l ar g e di ff er e n c e s i n t h e
c a pt ur e r at e s fr o m t h e p o s si bl e st at e s. T h e r at e s f or t h e t w o at o mi c h y p er fi n e µ H st at e s ar e gi v e n i n
E q s. ( 2 6 ,2 7 ), w hil e t h e m ol e c ul ar r at e s c a n b e c al c ul at e d a s

Λ o r t h o = 5 4 4 s − 1 , ( 2 8)

Λ p a r a = 2 1 5 s − 1 , ( 2 9)

u si n g t h e m ol e c ul ar o v erl a p f a ct or s gi v e n i n E q. ( 1 1) of R ef. [ 7 ].1 5 T o i nt er pr et a s p e ci fi c e x p eri m e nt al
c a pt ur e r at e, t h e fr a cti o n al p o p ul ati o n of st at e s f or t h e gi v e n e x p eri m e nt al c o n diti o n s h a s t o b e pr e ci s el y
k n o w n, w hi c h i s e s p e ci all y pr o bl e m ati c f or hi g h d e n sit y t ar g et s. (iii) Fi n all y, m u o n c a pt ur e i n h y dr o g e n
l e a d s t o a n all n e utr al fi n al st at e, n + ν , w h er e t h e 5. 2 M e V n e utr o n i s h ar d t o d et e ct wit h w ell- d et er mi n e d
e ffi ci e n c y.

3. 1 M u C a p e x p e ri m e n t: s t r a t e g y a n d r e s ul t s

O v er t h e p a st t w o d e c a d e s, t h e µ 3 H e e x p eri m e nt, t h e M u C a p a n d l at er t h e M u S u n c oll a b or ati o n h a v e
d e v el o p e d a n o v el a cti v e t ar g et m et h o d b a s e d o n hi g h pr e s s ur e ti m e pr oj e cti o n c h a m b er s ( T P C) fill e d wit h
p ur e 3 H e, ultr a- p ur e h y dr o g e n ( 1 % of li q ui d h y dr o g e n ( L H 2 ) d e n sit y) or cr y o g e ni c d e ut eri u m g a s ( 6 % of
L H 2 d e n sit y), r e s p e cti v el y, t o o v er c o m e t h e a b o v e c h all e n g e s. T h e fir st e x p eri m e nt [ 7 1 ], b e n e fiti n g fr o m
t h e c h ar g e d fi n al st at e, d et er mi n e d t h e r at e f or µ + 3 H e → t + ν wit h a n u n pr e c e d e nt e d pr e ci si o n of 0. 3 % a s
1 4 9 6 .0 ± 4 .0 s − 1 . T h e m o st r e c e nt e xtr a cti o n [7 2 ] of ḡ P fr o m t hi s r e s ult gi v e s ḡ P = 8 .2( 7), wit h u n c ert ai nti e s

1 4 C o m p a r e R ef. [ 6 9 ] f o r c o r r e c ti o n s r el e v a nt f o r c a p t u r e a n d m u o n- el e c t r o n c o n v e r si o n i n h e a v y n u cl ei.
1 5 We d o n o t e s ti m a t e u n c e r t ai nti e s f o r t h e m ol e c ul a r r a t e s, a s a r eli a bl e e r r o r e v al u a ti o n a t t h e p e r mill e l e v el s h o ul d i n cl u d e

a m o d e r n c o n fi r m a ti o n of t h e o ri gi n al c al c ul a ti o n of t h e ( p p µ ) + s p a c e a n d s pi n s t r u c t u r e [ 7 0 ].
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due to nuclear structure theory. Additional uncertainties would enter if the new r2
A(z exp., ν) is taken

into account.16

MuCap measured Λsinglet in the theoretically clean µH system to extract ḡP more directly. The original

publication [14] gave ΛMuCap
singlet = (714.9 ± 5.4stat ± 5.1syst) s−1, which was slightly updated based on an

improved determination of the (ppµ) molecular formation rate λpp [15] to its final value

ΛMuCap
singlet = (715.6± 5.4stat ± 5.1syst) s−1 . (30)

The scientific goal of MuSun [7, 73] is the determination of an important low energy constant (LEC),
which characterizes the strength of the axial-vector coupling to the two-nucleon system and enters the
calculation of fundamental neutrino astrophysics reactions, like pp fusion in the sun and νd scattering in
the Sudbury Neutrino Observatory [74].

As muon capture involves a characteristic momentum transfer of the order of the muon mass, extrac-
tions of form factors and LECs from all of these experiments are sensitive to the modified theoretical
capture rate predictions or uncertainties implied by the use of the new r2

A(z exp., ν).

y
x

z

Figure 4: (color online) Simplified MuCap detector model. Reproduced from [29].

In view of potential further improvements, let us analyze in some detail how MuCap achieved its
high precision 1% measurement. Fig. 4 illustrates the basic concept. Muons are detected by entrance
detectors, a 500-µm thick scintillator (µSC) and a wire chamber (µPC), and pass through a 500-µm-thick
hemispherical beryllium pressure window to stop in the TPC, which is filled with ultrapure, deuterium-
depleted hydrogen gas at a pressure of 1.00 MPa and at ambient room temperature. Electrons from muon
decay are tracked in two cylindrical wire chambers (ePC, green) and a 16-fold segmented scintillator array
(eSC, blue). The experimental strategy involves the following key features.

Low density and suppressed ppµ formation: As the target has only 1% of liquid hydrogen density,
molecule formation is suppressed and 97% of muon capture occurs in the µH singlet atom, providing

16We refrain from updating this result with new form factors. As the calculation uses tritium decay as input, changes in
form factors at q2=0 are expected to cancel, but the uncertainty in the momentum dependence enters via r2A.
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unambiguous interpretation of the signal.
Lifetime method [75]: The observable is the disappearance rate λ− of negative muons in hydrogen,

given by the time between muon entrance and decay electron signal. The capture rate is extracted as the
difference Λsinglet ≈ λ−−λ+, where λ+ is the precisely known positive muon decay rate [39]. Contrary to
the traditional method of detecting capture neutrons from process (1) which requires absolute efficiencies,
only precise time measurements are needed, albeit at large statistics.

Selection of muon stops in hydrogen by tracking: The TPC [76] tracks the incident muons in three
dimensions to accept only hydrogen stops sufficiently far away from wall materials with higher capture
rate. Its sensitive volume is 15 × 12 × 28 cm3, with an electron drift velocity of 5.5 mm/µs at a field
of 2 kV/cm in vertical y-direction. The proportional region at the bottom of the chamber was operated
at a gas gain of 125 – 320, with anode (in x-direction) and cathode (in z-direction) wires read out by
time-to-digital converters using three different discriminator levels.

Ultra-pure target gas: Target purity of ∼ 10 ppb was maintained with a continuous circulation and
filter system [77]. The TPC allowed in-situ monitoring of impurities by observing charged nuclear recoils
from µ− + O → νµ + N∗, in the rare (≈10−6) cases of muon transfer to impurities. Isotopically pure
protium was produced onsite [78] and verified by accelerator mass spectroscopy [79]. In total, 1.2× 1010

decay events were accepted with muons stopping in the selected restricted fiducial volume.

3.2 Conceptual ideas towards a 3-fold improved muon capture experiment

The 3-fold uncertainty reduction over MuCap implies a precision goal of δΛsinglet ∼ 2.4 s−1 which, for
definiteness, we assume equally shared between δΛsinglet(stat) = δΛsinglet(syst) = 1.7 s−1. Achieving this
goal is no small feat, and we hope that the motivation for a low-q2 measurement of the axial form factor
outlined in this paper will stimulate further innovative experimental ideas. However, in the remainder
of this section we follow the more conservative approach to consider incremental improvements to the
MuCap strategy only. We note that MuCap was a pioneering experiment developing a new technology,
so it is likely that a next generation experiment can be further optimized, based on the lessons learned.

3.2.1 Statistics

A reduction of the 5.4 s−1 MuCap statistical uncertainty to 1.7 s−1 requires about a 10-fold increase in
statistics. Typically, such order of magnitude advances in nuclear/particle physics experiments require
concerted upgrades in beam and detector performance.

MuCap accepted only events with a single muon entering the TPC separated from neighboring muons
by at least Tobs = 25 µs. This eliminated combinatorial distortions to the measured time spectra. In the
PSI continuous beam with a rate Rµ, the rate for those single muon events would be Rµe

−Rµ2Tobs only,
which is limited to roughly 7 kHz. Thus a muon-on-request scheme was developed (c.f. Fig. 4): A muon
in the beam scintillator µSC triggered a fast kicker [80], which deflects the beam for the measuring period
Tobs to avoid muon pile-up. With Rµ = 65 kHz, µSC had a pile-up free rate of 22 kHz, of which a fraction
εfid ≈ 0.3 stopped in the fiducial volume of the TPC selected for physics analysis. Including the electron
detection efficiency of εe = 0.5 and deadtime losses, the rate for accepted events was Racc ∼ 2 kHz.

To increase this rate, it is certainly worthwhile to explore whether the experiment could run with
multiple muons in the TPC. If this idea leads to unacceptable systematic complications, the single muon
concept could still be preserved by increasing the muon stopping efficiency from εfid = 0.3 → 0.9 and
the electron detection efficiency εe = 0.5→ 0.7, together with supplemental improvements in data taking
efficiency. The resulting rate increase of about 4.5 yields Racc ∼ 9 kHz, so that 12 × 1010 events can be
collected in 6 months of data taking (including typical up-time fractions for beam and experiment).

We consider 3 main upgrades to reach this goal. i) Minimize any material traversed by the muon
beam, so that the beam momentum can be decreased from 34 MeV/c to 29 MeV/c, which reduces the

16



muon range by nearly a factor 2.17 Since longitudinal range straggling, as well as part of the transverse
expansion of the beam, scales with the total range, a much more compact stopping volume can be realized.
The evacuated muon beam pipe should be directly connected to the TPC entrance flange, with the beam
detectors reduced to a 200 µm-thin µSC operating in vacuum with modern silicon photomultiplier (SiPM)
technology and the Be window diameter reduced, so that it can be made thinner. The beam to air windows
and the wire chamber are eliminated, the latter replaced by a retractable beam spot monitor, which is
only used during beam tuning and for systematic studies, but does not add material during production
data taking. The beam pipe should be designed as a safety containment volume in case of a breach of
the Be window, by placing an additional thin window or fast interlock in an upstream focus. In the first
focus downstream of the kicker, another thin scintillator might serve as the beam trigger to minimize
kicker delay. ii) With a collimated beam impinging on µSC and the detector itself positioned as close as
possible to the TPC, a stopping efficiency εfid approaching unity can be expected for muons seen by this
detector. iii) As the beam rate for negative muons drops steeply with momentum, more powerful PSI
beams, existing or under development, should be considered.

3.2.2 Systematics

An uncertainty goal of δΛsinglet(syst) = 1.7 s−1 implies that the negative muon decay rate λ− in hydrogen
has to be measured at least at a precision of 3.7 ppm relative to muon decay. This poses unprecedented
requirements on the TPC track reconstruction, as no early to late effects over the measuring interval Tobs

distorting the decay spectrum are allowed at this level. The main systematic corrections enumerated in
Table II of Ref. [14] can be grouped into 4 distinct classes:

i) Boundary and interference effects: By definition, for an infinite TPC no boundary effects (like wall
stops, scattering and diffusion) would occur. Interference effects, on the other hand, are generated by
decay electrons, affecting the muon stop reconstruction in a time dependent manner. The experiment has
to balance these two competing systematic effects, by carefully selecting muons within a clean fiducial
volume, without introducing interference distortions. For the final, best MuCap run R07 their total
uncertainty added up to δΛsinglet = 3.3 s−1. The obvious remedy for boundary effects is a larger TPC
volume, coupled with potential geometry improvements, as well as the reduction in the beam stopping
volume. While the dimensions perpendicular to the TPC drift field are only constrained by practical
considerations, the drift time cannot be much longer than Tobs, in order to avoid reducing the acceptable
beam rate. We expect that the TPC can be operated with drift fields up to 10 kV/cm, as demonstrated
at higher density in MuSun [82], which would double the drift velocity and allow drift distances of 20 cm.
To improve the tracking quality, a geometry of independent pads like MuSun has proven advantageous,
as the MuCap cathode wires strung in the direction of the muon tracks provide very limited information.
As MuSun demonstrated, full digitization of all signals instead of simple threshold timing information,
adds powerful tracking capabilities.

ii) Gas impurities: For the R07 run, transfer to gas impurities amounted to δΛsinglet ∼ 1 s−1. Gold
coating of inner vessel surfaces, improved gas chromatography (already achieved in MuSun) and/or spec-
troscopy and, most importantly, full digital readout of the TPC signals [82], for in-situ detection of capture
recoils, should reduce this uncertainty to below 0.1 s−1.

iii) Electron detector effects: A significant uncertainty of δΛsinglet ∼ 1.8 s−1 was included in the
MuCap error budget, because of incompletely understood discrepancies between alternative electron track
definitions. Because diffusion processes in hydrogen introduce systematic problems when applying tight
vertex cuts, MuCap concluded that precision tracking is not essential. Thus a new experiment should use
scintillators or scintillating fibers with SiPM readout, which are simple, robust and more stable than the
wire chambers used in MuCap. Then an instrumental uncertainty below 1 ppm similar to MuLan [39]
can be expected.

17This strong impact of the muon momentum p on its range R follows from the approximate relation R ∝ p3.6, which can
be understood from integrating the Bethe-Bloch energy loss equation, c.f. III.20 of [81].
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iv) ppµmolecular effects: Although capture from ppµmolecules amounts only to 3% in 1 MPa hydrogen
gas, the uncertainty introduced by the inconsistent determinations of the ortho-para rate λop [7] shown
in Fig. 3, introduces a δΛsinglet ∼ 1.8 s−1 uncertainty [15]. As shown in Fig. 2 of Ref. [14], the poor
knowledge of λop also leaves unresolved the question whether the previous measurement of ordinary muon
capture in liquid hydrogen [75] or, alternatively, the measurement of radiative muon capture [8] strikingly
deviates from theory. The high density cryogenic TPC developed for the MuSun µD experiment, could
settle both issues with a first precise measurement of λop when filled with protium gas of about 10% liquid
density.

Finally, it should be mentioned that the MuCap TPC occasionally suffered sparking issues, which
required running with reduced voltage. Better stability and higher gain should be achieved by starting
some R&D efforts with smaller prototypes, with improvements to the classical proportional wire chamber
technique used by MuCap as well as tests of — now mature — micro-pattern chamber alternatives, like
GEMS and micro-megas.

4 Results and opportunities

Having reviewed the status of theory and explored the reach for experiment, in this section we evaluate
how well the nucleon form factors and coupling constants can be determined by the present MuCap
experiment at 1% precision, and by a potential new experiment at the 0.33% level.

4.1 Updated value for the pseudoscalar coupling ḡP and extraction of gπNN

We begin our applications by using the final MuCap experimental result, ΛMuCap
singlet = 715.6(7.4) s−1,

together with our updated Λtheory
singlet in Eq. (24), to extract a value for ḡP that can be compared with the

prediction of χPT. Both the experimental value and theoretical prediction depend on r2
A. To illustrate

that dependence, we start with the traditional value of r2
A(dipole, ν) = 0.453(23) fm2 obtained from

dipole fits to neutrino scattering data with a very small (∼ 5%) uncertainty. It leads to:

ḡP
MuCap

∣∣
r2A=0.453(23) fm2 = 8.22 (48)exp (9)ḡA

(6)RC = 8.22(49) , ḡP
theory = 8.256(72) . (31)

For comparison, we take the ratio and find ḡP
theory/ḡP

MuCap = 1.00(6), which exhibits very good agree-
ment at the ±6% level. Alternatively, employing the more conservative z expansion value obtained from
neutrino scattering, r2

A(z exp., ν) = 0.46(22) fm2, with its nearly 50% uncertainty, one finds:

ḡP
MuCap

∣∣
r2A=0.46(22) fm2 = 8.19 (48)exp (69)ḡA

(6)RC = 8.19(84) , ḡP
theory = 8.25(25) . (32)

The uncertainties are considerably larger. However, taking the ratio and accounting for correlated errors,
ḡP

theory/ḡP
MuCap = 1.01(8). Agreement is still very good and theory is tested at about ±8%, not a

significant loss of sensitivity. If r2
A could be independently determined with high precision (for example,

using lattice gauge theory techniques), then a new MuCap experiment with a factor of 3 improvement
would test χPT at about the 2% level.

Alternatively, the measured capture rate in conjunction with the theoretical formalism can be used
to determine the pion-nucleon coupling gπNN from the µH atom. This approach is closely related to the
extraction of the pseudoscalar form factor, as gπNN appears as the least well known parameter in the
PCAC pole term of Eq. (18). For this purpose Eq. (24) was recast in terms of the independent parameters
(gπNN , gA and r2

A) into Eq. (25), avoiding the correlation between the axial form factors introduced by
r2
A. That prescription gives, for r2

A = 0.46(22) fm2:

gMuCap
πNN = 13.04 (72)exp (8)gA (67)r2

A
(10)RC = 13.04(99) , gexternal

πNN = 13.12(10) . (33)

18



The result is in very good agreement with the external gπNN obtained from pion-nucleon phase shift and
scattering cross section data, such as the value given in Table 2. It provides a direct 8% test of χPT
essentially the same as indirectly obtained from the ḡP analysis given above. As in the case of ḡP , a future
factor of 3 improvement in the capture rate combined with an independent precise determination of r2

A

would determine gπNN to 2%.

4.2 Determination of r2
A from muon capture

The basic premise of this paper has been that the error on r2
A extracted from neutrino scattering

data is much larger (by about an order of magnitude) than generally assumed. Indeed, the value [19]
r2
A(z exp. ν) = 0.46(22) fm2, based on the z expansion method, that we employed, has a nearly 50%

uncertainty. As we shall see in Sec. 5, this is problematic for predicting quasi-elastic neutrino scatter-
ing cross sections needed for next-generation neutrino oscillation studies. For that reason, it is timely
and useful to consider alternative ways of determining r2

A. Various possibilities are discussed in Sec. 5;
however, first we consider existing and possible future implications from the MuCap experiment.

Muon capture provides a unique opportunity to determine r2
A, highly complementary to neutrino

charged-current scattering. The momentum transfer q2
0 is small and well defined, rendering higher terms in

the q2
0 Taylor expansion negligible. However, the effect of r2

A is small, with FA(q2
0) being only r2

A q
2
0/6 ≈ 2%

smaller than FA(0). Thus precision experiments at the sub-percent level are called for.
The change in Λsinglet due to a change in r2

A is given in Eqs. (24),(25), and can be quantified as

∂Λsinglet

∂r2
A

=
∂Λsinglet

∂ḡA

∂ḡA
∂r2

A

+
∂Λsinglet

∂ḡP

∂ḡP
∂r2

A

= −47.8 + 16.7 = −31.1 s−1 fm−2 . (34)

Thus, a one sigma step of 0.22 fm2 in r2
A changes Λsinglet by 6.8 s−1 or about 1%. Unfortunately, for

the present purpose, the sensitivity to the axial radius is reduced, as the contributions from ḡA and ḡP
counteract.

Employing Eq.(25) with the input from Table 2 we find

r2
A(MuCap) = 0.43 (24)exp (3)gA (3)gπNN (3)RC = 0.43(24) fm2. (35)

This result is comparable in uncertainty to the z expansion fit to the pioneering neutrino scattering
experiments [19]. Making the reasonable assumption that the two approaches are uncorrelated, we can
compute the weighted average

r2
A(ave.) = 0.45(16) fm2. (36)

The averaged uncertainty has been reduced to about 35%. A future experiment, assumed to reduce the
overall MuCap error from 1% to 0.33% would reduce the error in r2

A to

δr2
A(future exp.) = (0.08)exp (0.03)gA (0.03)gπNN (0.03)RC = 0.10 fm2. (37)

The muon capture squared axial radius determination, when averaged with the neutrino scattering z
expansion result, would then have about a 20% uncertainty. This precision level is important, as it would
be sufficient to reduce the r2

A dependent theoretical uncertainty in neutrino quasielastic cross sections to
a subdominant contribution, as we demonstrate below in Sec. 5.1.

4.3 Determination of gA and electron-muon universality

The axial coupling governing neutron β decay, gA = FA(0), is a critically important QCD induced physics
parameter [83]. Taken together with the neutron lifetime, τn, it can provide a clean determination of Vud
free of nuclear physics uncertainties, via Eq. (9). In addition, gA is needed for constraining the number of
effective neutrino species from primordial nucleosynthesis; computing reactor and solar neutrino fluxes and
cross-sections; parametrizing the proton spin content and testing the Goldberger-Treiman relation [84].
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Figure 5: (color online) Relation between gA and r2
A from electron and muon processes. The black band

shows gA from neutron β decay (Table 2). The green band denotes the gA − r2
A region consistent with

the present MuCap result within 1-sigma, the yellow band the potential of a future 3-times improved
measurement (the same central value has been assumed). The current value and uncertainty in r2

A from
the neutrino scattering analysis is shown by vertical lines. If r2

A would be known to 1%, the future
experiment would determine gA within the red region.

In this paper we use the value gA = 1.2749(9), based on the PDG value for τn and Vud given in Table 2.
We should note, however, that a recent trapped neutron lifetime experiment at Los Alamos [85] with very
small systematic uncertainties finds τn = 877.7(7) s, in strong support of earlier trapped neutron results.
Roughly estimating the effect of the new result on the neutron lifetime average suggests a preliminary
average τave.

n = 879.3(9) s. This shorter average lifetime leads to a larger gA = 1.2757(7) which is very
consistent with the most recent direct neutron decay asymmetry measurements of gA [43]. Of course, a
larger gA used as input will lead to a larger ḡMuCap

P = 8.24(84), but one still fully consistent with theory,
ḡP

theory = 8.25(25). The error on gA is expected to be further reduced to about ±0.01%, by future τn
and direct neutron decay asymmetries. It will be interesting to see if the two methods agree at that level
of precision.

For now, the value of r2
A obtained from the z expansion fit to neutrino-nucleon quasi-elastic scattering

together with the MuCap singlet muonic Hydrogen capture rate ΛMuCap
singlet can be used in Eq. (25) to obtain

a muon based value, gA = 1.276(8)r2A
(8)MuCap = 1.276(11). That overall roughly ±1% sensitivity is to

be compared with the current, better than ±0.1%, determination of gA from the electron based neutron
lifetime that we have been using in our text, or the preliminary update including Ref. [85] given above.
The good agreement can be viewed as a test of electron-muon universality in semileptonic charged current
interactions at roughly the 1% level. We have described how a factor of 3 improvement in the MuCap
capture rate may be experimentally feasible. A similar factor of 3 or even much better improvement in
r2
A seems possible from lattice QCD first principles calculations. Together, such advances would provide
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a muon based determination of gA to about ±0.2− 0.3% and thereby test electron-muon universality via
gA at about a factor of 4 better than currently constrained. Such a comparison is graphically illustrated
in Fig. 5 where the current electron determination of gA from the neutron lifetime is represented by the
narrow horizontal band. (A shift in the neutron lifetime would displace the band up or down.) Muon
capture constraints depend on r2

A and the singlet capture rate as illustrated by the vertical dashed lines
and shaded sloped bands.

5 Towards a more precise r2
A

The momentum dependence of nucleon form factors is critical in many physical processes. The various
nucleon radii, defined for each form factor analogously to Eq. (2), parameterize this momentum depen-
dence at low q2. In fact, for momentum transfers |q2| . few GeV2, the form factors become approximately
linear functions in the z expansion: Even in the high-statistics datasets for electromagnetic form factors,
the curvature and higher order coefficients of the z expansion are only marginally different from zero [55].
This emphasizes the prominence of the form factor charges (i.e., normalizations at q2 = 0) and radii
(i.e., slopes at q2 = 0).18 In a nonrelativistic picture, the form factor radii can be interpreted in terms
of nucleon structure. For example, the electric charge form factor of the proton represents the Fourier
transform of the proton charge distribution, and r2 is readily identified as a mean-square radius in this
picture. Similarly, the isovector axial form factor can be interpreted as the Fourier transform of a spin-
isospin distribution within the nucleon. Independent of intuitive nonrelativistic models, the form factor
charges and radii systematically describe the response of nucleons to weak and electromagnetic probes.

Since the form factors are approximately linear over a broad q2 range, the radii constrain (and can be
probed by) a variety of processes. For example, the proton charge radius that is probed at ∼eV energy
scales using hydrogen spectroscopy can be compared with measurements at ∼GeV energy scales using
elastic electron-proton scattering. Similarly, constraints on the axial radius from low-energy muon capture
translate to constraints on higher-energy neutrino scattering processes. In Sec. 5.1 below, we highlight an
important application to quasielastic neutrino scattering and the precision neutrino oscillation program.

The current uncertainty on r2
A from is about 50%. In this paper, we have shown that the MuCap

experiment already provides similar sensitivity and a future factor of 3 improvement in a MuCap like
experiment could lead to a roughly 20% determination of r2

A. In Sec. 5.2, we address the capability of
other approaches to the precise determination of r2

A. As we shall see, currently, it seems that dedicated
lattice studies and neutrino scattering experiments offer the best opportunities.

5.1 Impact of improved r2
A on accelerator neutrino cross sections

The discovery of neutrino masses, mixing and oscillations provides our first real indication of “new
physics”, beyond Standard Model expectations. The source of those effects is likely to arise from very
short-distance phenomena that may require new technologies and high energy colliders to unveil. How-
ever, in the meantime, improvements in neutrino oscillation measurements can still provide important
new discoveries. In that regard, ongoing and proposed neutrino oscillation experiments will address the
following questions: Is CP violated in neutrino mixing? Are the neutrino masses ordered in magnitude
in the same or different way than their charged lepton counterparts? Do neutrinos have additional in-
teractions with matter that can be explored through neutrino oscillation interferometry? Answers to
those questions could help explain the source of the matter-antimatter asymmetry of our universe, a deep
fundamental mystery tied to our very existence.

Neutrino-nucleus interaction cross sections at GeV energies are critical to extracting fundamental
neutrino properties and parameters from long baseline oscillation experiments [87–89]. Uncertainties in
these cross sections arise from the elementary nucleon level scattering amplitudes, and from data-driven

18The |q2| . few GeV2 regime encompasses many physics applications. At larger momentum transfers, inelastic processes
compete with the elastic process that is determined by the form factors. For a discussion of FA(q2) at large |q2| see Ref. [86].
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nuclear modeling for detectors consisting of carbon, water, argon, etc. [90–92]. A typical oscillation
experiment employs a “near” detector, close to the production source of neutrinos, and a “far” detector,
located at a sufficiently large distance to allow for observable oscillations. Naively, the near-far detector
comparison can be used to avoid reliance on neutrino interaction cross sections. However, a number of
effects do not cancel in this comparison: flux differences between near and far (e.g. due to oscillation
effects and neutrino beam divergence); flavor dependence of cross sections (e.g. the near detector may
constrain νµ cross sections, whereas the far detector may search for νe appearance signal); and degeneracies
between errors in neutrino energy reconstruction from undetected particles (such as neutrons, and other
sub-threshold particles) and errors from neutrino interaction uncertainties [92].

At the nucleon level, the q2 dependence of the axial form factor is an important source of uncer-
tainty. This uncertainty directly impacts the final cross section, but also complicates the validation of
nuclear, flux, and detector modeling, all of which are predicated on quantitatively understanding the sim-
plest quasielastic process. As an example, the MiniBooNE [20] analysis of quasielastic neutrino-carbon
scattering data yielded r2

A(MiniBooNE) = 0.26(7) fm2, in tension with historical values obtained from
neutrino-deuteron scattering data. Without quantitative control over the nucleon-level amplitudes it is
not possible to unambiguously identify the source of the discrepancy.

As a proxy for the relevant class of neutrino observables, let us consider the quasielastic neutrino-
neutron cross section at neutrino energy Eν = 1 GeV. Assuming the dipole ansatz for FA(q2), with [17]
r2
A(dipole) = 0.454(13) fm2, this cross section may be evaluated as19

σνn→µp(Eν = 1 GeV, dipole) = 10.57(14)× 10−39 cm2 , (38)

where for the present illustration, we neglect uncertainties from sources other than FA(q2), such as
radiative corrections and vector form factors. Using instead the z expansion representation of FA(q2) in
Ref. [19], the result is

σνn→µp(Eν = 1 GeV, z exp.) = 10.1(9)× 10−39 cm2 , (39)

i.e., an uncertainty of order 10%, an order of magnitude larger than the uncertainty obtained from the
corresponding dipole prediction.

In order to illustrate the impact of improved constraints on r2
A, we begin by reproducing the fits of

Ref. [19], using in addition to the neutrino-deuteron scattering data, an external constraint on r2
A (coming,

e.g. from muon capture). The results are displayed in Fig. 6. Here we first compare the reference fit to a
fit where the slope (∝ r2

A) is constrained to a particular value (chosen for illustration as the central value
r2
A = 0.46 fm2 of the reference fit). The yellow band in the figure represents the cross section uncertainty

that would result from an external radius constraint with negligible error. As we noted above, FA(q2)
becomes approximately linear when expressed as a Taylor expansion in z, in the sense that curvature in
z and higher order z expansion coefficients, are consistent with zero, within errors [19]. However, these
coefficients, when varied over their allowed range, contribute to the error budget, represented by the width
of the yellow band in the figure.

To illustrate the impact of a finite uncertainty on the external radius constraint, we recompute the
cross section using an external radius constraint that differs by ±20% from the chosen central value (recall
that this corresponds to the level of precision on r2

A attainable by a future 0.33% muon capture rate
measurement). This variation is represented by the black hatched band in the figure. The uncertainties
represented by the yellow and hatched bands should be added in quadrature to obtain the total cross
section error. At an illustrative Eν = 1 GeV, the result is summarized by

σνn→µp(Eν = 1 GeV, z exp.) = 10.2± 0.47±
(

0.28
δr2
A/r

2
A

20%

)
× 10−39 cm2 . (40)

19For definiteness we employ the remaining parameter and form factor choices of Ref. [19].
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Figure 6: (color online) Quasielastic neutrino-neutron cross section. Reference fit of Ref. [19] in green
band shows the current uncertainty. The yellow band shows the uncertainties independent of r2

A. The
hatched black band shows the uncertainty contribution from r2

A, if r2
A would be known to 20% (using the

central value from the reference fit). In that case, the r2
A contribution would be subdominant in the total

error (quadratic sum of yellow and black hatched), as illustrated at Eν = 1 GeV in Eq. (40).

External constraints on r2
A, used in conjunction with the existing deuteron target neutrino scattering

data, can thus lead to a halving of the uncertainty on the elementary signal cross section for long baseline
neutrino experiments. Advances in our quantitative understanding of neutrino scattering, through im-
provements in r2

A, heavy nuclear target modeling and direct precise neutrino cross-section measurements
will allow us to fully exploit the planned sensitivity of future oscillation experiments.

5.2 Other constraints and applications

Given the importance of r2
A, and more generally FA(q2), let us understand what complementary infor-

mation exists from other approaches. This information comes from theoretical approaches to determine
FA(q2) from the QCD Lagrangian; and from experimental measurements using weak and electromagnetic
probes of the nucleon.

5.2.1 Lattice QCD

Lattice QCD is a computational method for determining low energy properties of hadrons based on first
principles starting from the QCD Lagrangian.20 This method has reached a mature state for meson
properties.21 Nucleons present an additional challenge for lattice simulations, owing to a well-known
noise problem [94]. A variety of approaches are being taken to explore and address the simultaneous

20For a brief introduction and references see the lattice QCD review of S. Hashimoto, J. Laiho and S. R. Sharpe in Ref. [43].
21For a review and further references, see Ref. [93].
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challenges of excited states, lattice size, finite volume, as well as statistical noise. In many cases, the
need to extrapolate from unphysically large light quark masses is overcome by performing the lattice
calculation at (or near) the physical masses. Background field and correlator derivative techniques are
being explored to optimize the isolation of nucleon properties.22

Recent computations of the isovector axial charge with a complete stated error budget include: gA =
1.195(20)(33) [100], where the first error is due to extrapolating in lattice spacing, lattice volume and
light quark masses, and the second error is statistical and other systematics; and gA = 1.278(21)(26) [98],
where the first error is statistical and fitting systematics, and the second error is due to model selection in
the chiral and continuum extrapolation. Other recent preliminary results and discussions may be found
in Refs. [21, 22, 101–106]. We remark that QED radiative corrections are below the current lattice QCD
sensitivity, and the details of the gA definition in the presence of radiative corrections are thus not yet
relevant for this comparison. Note also that the isovector quark current is scale independent in the usual
MS scheme used to present lattice results.

Lattice QCD is approaching the few percent level for gA. A complete calculation of r2
A that would

rival the precision of neutrino-nucleon scattering and muon capture is not yet available from lattice
QCD. However, illustrative values have been obtained, typically using simplified functional forms for
the q2 behavior, unphysically large light quark masses, and/or neglect of strange and charm quarks.
A dipole form factor ansatz fit to two-flavor lattice QCD extractions of FA(q2) [22] found a result,
r2
A = 0.266(17)(7) fm2, where the first error is statistical and the second is systematic due to excited

states; this result lies closer to the “large mA” MiniBooNE dipole result [20] than to the “small mA”
historical dipole average [17, 107]. A z expansion fit to FA(q2) obtained using three-flavor QCD with
physical strange quark mass, and heavier-than-physical up and down quark masses (corresponding to
pion mass 317 MeV) [21], yielded r2

A = 0.213(6)(13)(3)(0) fm2, where the uncertainties are from statistics,
excited states, fitting and renormalization. A first order z expansion fit to FA(q2) using two-flavor QCD,
extrapolated to physical pion mass [23] yielded r2

A = 0.360(36)+80
−88 fm2, where the first error is statistical

and the second error is systematic. Finally, a z expansion fit to four-flavor lattice QCD data using a range
of lattice parameters [24] yielded r2

A = 0.24(6) fm2. Some of these r2
A values are well below the historical

dipole value and even disagree somewhat with our conservative average of r2
A(avg.) = 0.45(16) fm2 in

Eq. (36). This situation suggests that either remaining lattice corrections, such as extrapolations to
physical pion mass, will involve large corrections that significantly shift the lattice determinations, or
perhaps more exciting that a disagreement may persist as further lattice progress is made, leading to a
new paradigm in our understanding of r2

A. However, at this point, further work is needed to obtain precise
lattice results with more complete error budgets.

5.2.2 Pion electroproduction

Fits to pion electroproduction data have historically contributed to the determination of the axial radius,
with a small quoted uncertainty that can be traced to the assumed dipole form factor constraint. The
statistical power of available data would be comparable to the neutrino-deuteron scattering determination,
but relies on extrapolations beyond the regime of low energies where chiral corrections are controlled. The
axial form factor appears in a low energy theorem for the S-wave electric dipole amplitude of threshold
charged pion electroproduction (e−p→ e−nπ+) [108, 109],

E
(−)
0+

∣∣
mπ=0

=

√
1− q2

4m2
N

egA
8πfπ

[
FA(q2) +

q2

4m2
N − 2q2

FM (q2)

]
. (41)

This low energy theorem is strictly valid in the chiral limit (mπ = 0) for threshold production (invariant
mass W = mN + mπ in final state hadronic system). The chiral and threshold limits do not commute,
but corrections to the low energy theorem may be calculated within χPT [110]. Two complications enter.

22For recent examples and further references, see Refs. [95–99].
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First, experimental measurement is difficult, involving the detection of either a recoiling neutron or a low
energy pion. Most of the statistical power of available data involves energies and momentum transfers
outside of the regime where a chiral expansion is reliable. The data have been interpreted in terms of
a phenomenological framework, whose associated systematic uncertainty is difficult to assess. Second,
taking at face value the phenomenological extraction of FA(q2) at certain kinematic points from the
experimental data, the interpretation as a measurement of the radius has assumed a dipole shape that
strongly influences the result.

Using the extracted form factor values at particular kinematic points from Refs. [111–115], but re-
placing dipole with z expansion, Ref. [18] obtained r2

A = 0.55(17) fm2, compared to the dipole analysis of
Ref. [107] which gave r2

A = 0.467(18) fm2. The datasets were selected to coincide with those that appear
in the compilation [107] in order to make a direct comparison with their dipole fit (cf. Figure 1 of that
reference). These datasets explicitly list inferred values of FA(q2) (see also [116–120]). Reference [120] pro-
vides a value r2

A = 0.449(28) fm2 based on data at W = 1125 MeV and Q2 = 0.117, 0.195 and 0.273 GeV2,
and a phenomenological Lagrangian analysis.23 Reference [121] presents data at W = 1094 MeV and
Q2 = 0.078 GeV2. Regardless of the precise choice of dataset, the error is significantly larger when the
strict dipole assumption is relaxed, even when systematics associated with extrapolations outside of the
chiral Lagrangian framework are neglected. Further effort is needed before pion electroproduction provides
a robust answer for r2

A.

5.2.3 Lepton scattering

Since the most direct constraints on FA(q2) come from neutrino scattering data, it is natural to ask
whether improved measurements are feasible. The world dataset for neutrino deuteron scattering consists
of a few thousand quasielastic events from bubble chamber data of the 1970s and 1980s. Systematic
uncertainties from hand-scanning of photographs and from nuclear modeling are comparable to statistical
errors, contributing to the total quoted uncertainty on r2

A of 0.22 fm2 in Ref. [19]. Note that the flux
is determined self consistently from the quasielastic events, so that flux errors associated with neutrino
production are not relevant. Although nuclear corrections for deuteron targets are relatively small com-
pared to heavier nuclei, errors are difficult to quantify at the desired few percent level, for accelerator
neutrino beams of GeV energies. Antineutrino data on hydrogen would eliminate even these relatively
small corrections. Existing antineutrino quasielastic data is very sparse, owing to the combined penalties
of smaller production cross section for creating antineutrino versus neutrino beams, and smaller scatter-
ing cross section for antineutrinos versus neutrinos. Thus most data was taken in neutrino mode versus
antineutrino mode. Reference [122] reported 13 ± 6 events. References [123, 124] reported results for
antineutrino-proton scattering inferred from data taken on nuclear (carbon) targets. Currently available
analysis techniques with an active target detector should reduce or eliminate scanning and efficiency
systematic corrections. Modern neutrino beams have much higher flux compared to the beams used for
the existing datasets which would enable either a much smaller detector or a much larger dataset over a
given timescale. Technical, cost and safety considerations must be addressed in order to make such a new
measurement feasible.

The capture process µ−p → νµn in muonic hydrogen, and the time reversed process νµn → µ−p
measured in neutrino scattering, both probe the charged-current component of the isovector axial vector
nucleon matrix element. By isospin symmetry, this isovector matrix element can also be accessed via
the neutral component. Parity violating electron-nucleon elastic scattering [125, 126], induced by weak
Z0 exchange, is a probe of this matrix element, but simultaneously involves also isoscalar and strange
quark contributions that must be independently constrained. Available data do not have discriminating
power to reliably extract axial radius or form factor shape information. For example, the G0 experi-
ment [126] analyzed electron-proton and electron-deuteron scattering data to perform a simultaneous fit

23This result is obtained from the dipole axial mass mA = 1.077(39), after applying the chiral correction δr2A =
0.046 fm2 [107].
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of the isovector axial form factor, and the strange vector form factors, taking the remaining form factors
from other sources. An amplitude was measured for FA(q2) at Q2 = −q2 = 0.22 and 0.63 GeV2, but with
insufficient precision to extract shape information. The process e+d→ ν̄epp is another possibility to access
the charged current nucleon interaction, e+n → ν̄ep using electron (positron) beams. No measurements
of this process currently exist.

5.2.4 Summary of complementary constraints

0.2 0.4 0.6 0.8 1

PSfrag replacements

r2A (fm2)

νd (dipole) [17]

eN → eN ′π (dipole) [17]

νC (dipole) [20]

νd (z exp.) [19]

MuCap this work

LHPC [21]

ETMC [22]

CLS [23]

PNDME [24]

lattice QCD





Figure 7: (color online) Axial radius determined by different processes. Data points are as in Table 1.
The hashed red region represents the average of the z expansion νd and MuCap results [cf. Eq. (36)]. The
hatched blue band represents the average of the dipole νd and dipole eN → eN ′π results from Ref. [17].

A range of processes and techniques have potential to help constrain the nucleon axial radius. Some
of these, such as pion electroproduction and parity violating electron-proton scattering, access the form
factor and radius indirectly and suffer significant model-dependent corrections that need to be further
addressed to achieve ∼ 10% accuracy on r2

A. Lattice QCD and elementary target neutrino scattering are
potentially pristine theoretical or experimental approaches. However, lattice QCD has not yet achieved
the requisite accuracy, and hydrogen or deuterium active target neutrino experiments are fraught with
surmountable but difficult technical and safety issues. Figure 7 displays the range of values for r2

A as
tabulated in Table 1, along with the MuCap determination presented in this paper. The future is sure
to witness an interesting complementarity between different approaches to axial nucleon structure, with
a wide range of constraints and applications.
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6 Summary and outlook

In this paper we considered the status and prospects of constraints on the isovector axial nucleon form
factor, FA(q2), which describes a range of lepton-nucleon reactions. We focused in particular on its
prominent role in neutrino-nucleus scattering cross sections underlying neutrino oscillation experiments at
accelerator energies. A precise knowledge of these cross sections, for momentum transfers |q2| . few GeV2,
is required for the next generation of precision studies of neutrino properties in long baseline oscillation
experiments. Fully utilizing the oscillation data will require better knowledge of the structure of FA(q2),
in concert with data-driven improvements in heavy nuclear target modeling.

For many processes, the first two terms in the q2 expansion of FA(q2) can be shown to dominate. These
terms are parameterized by gA ≡ FA(0), and r2

A, which is proportional to the slope of FA(q2) at q2 → 0.
The axial nucleon coupling, gA, is precisely determined from neutron beta decay; we use gA=1.2749(9)
in this work. The nucleon axial radius squared, r2

A, was considered well-determined and uncontroversial
for a long time, with r2

A(dipole) = 0.454(13) fm2, derived from a dipole fit to neutrino scattering and pion
electro-production data. A recent analysis, however, eliminated the dipole shape constraint for FA(q2),
as not justifiable from first principles. Using instead the z expansion as a model independent formalism
to enforce properties inherited from the underlying QCD structure, a value r2

A(z exp., ν)=0.46(22) fm2

was derived [106] from a fit to the νd scattering data. The more conservative, but better justified error
is an order of magnitude larger than that from the dipole fit, with nearly 50% uncertainty. In this
work we assessed some ramifications of this new development, and in particular reviewed and suggested
opportunities to reduce the uncertainty in r2

A.
We started from the vantage point of muon capture, in particular muon capture in the theoretically

pristine atom of muonic hydrogen, µH. Muon capture is a charged-current reaction with a small momentum
transfer, q2

0 ≈ −0.9m2
µ, so that FA(q2

0) is only ∼ 2% smaller than FA(0). In the past, the uncertainty
introduced by the error in r2

A(dipole) was considered negligible, and capture in µH was used to determine
the nucleon pseudoscalar coupling ḡP . The recent 1% MuCap measurement of the spin singlet muonic

hydrogen capture rate, ΛMuCap
singlet = 715.6(7.4) s−1, determined ḡMuCap

P = 8.06(55), using theory and form
factors available at the time. The agreement of this result with the precise prediction of χPTis considered
an important test of the chiral structure of QCD. Given the dramatically increased uncertainty in r2

A, we
addressed the following questions, answering both in the affirmative: Does the comparison of ḡP between
experiment and theory still provide a robust test of χPT? And, in a reversal of strategy, can muon capture
be used to determine a competitive value of r2

A?
High precision is required both in theory and experiment to utilize the small effect of r2

A on muon
capture. In this paper, we have reduced the uncertainty in the electroweak radiative corrections to
muon capture to the 0.14% level and extracted an updated value, ḡMuCap

P = 8.19(84), from the MuCap

experiment. Agreement with the updated theoretical prediction from χPT, ḡtheory
P = 8.25(25), remains

excellent. It confirms expectations at a sensitivity level of ±8%, weakened only slightly (from ±6%)
by the larger uncertainty in r2

A(z exp., ν) compared to r2
A(dipole). The MuCap result was also used to

provide a self-consistent test of the pion-nucleon coupling and to obtain a roughly ±1% muon-based value
of gA, which was found to be in agreement with the electron-based value traditionally extracted fron
neutron decay (thereby, testing electron-muon universality). Of course, all such tests would be improved
by a better independent determination of r2

A and the factor of 3 improvement in a next generation muon
capture experiment advocated here.

As a novel application of the muonic Hydrogen capture rate, we explored its use as an alternative
method for determining the nucleon axial radius squared. Using the rather precise theoretical expression
for ḡtheory

P from χPT, along with updated radiative corrections and form factors as input, we found
r2
A(µH) = 0.43(24)fm2 from the MuCap singlet capture rate measurement. Combining that finding with

the z expansion neutrino-nucleon scattering result led to a weighted average r2
A(ave.) = 0.45(16)fm2. We

also examined the possibility of improving the MuCap experiment by roughly a factor of 3 and thereby
determining r2

A to about ±20%. As demonstrated, that level of accuracy would be sufficient to reduce
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the r2
A induced uncertainties in neutrino-nucleon scattering to a subdominant level. Moreover, it would

start to become a standard for comparison with other methods of r2
A determination, several of which

were discussed. For such comparisons, lattice gauge theory calculations appear to hold the most promise.
Although that Monte Carlo approach to QCD is still not fully mature as applied to r2

A, it promises a first
principles strong coupling method that in time should reach high precision. Some early current efforts
seem to suggest a significantly smaller value of r2

A compared to historical dipole averages, but it is still
too early to scrutinize or average the lattice results in a meaningful way. Future confrontation between
experiment and lattice QCD will be interesting to watch and could provide surprises.

The nucleon axial radius has reached an exciting new stage. Until recently, it was thought to be well
determined by dipole form factor fits to neutrino-nucleon scattering and electroproduction measurements.
However, driven especially by the need for better neutrino cross section predictions, that common lore
has been replaced by more conservative healthy skepticism. The axial vector form factor is now being
approached from many directions, with the potential to challenge conventional dogma as it enters a new
precision era.
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