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Symplectic mappings are discrete-time analogs of Hamiltonian systems. They appear in many
areas of physics, including, for example, accelerators, plasma, and fluids. Integrable mappings, a
subclass of symplectic mappings, are equivalent to a Twist map, with a rotation number, constant
along the phase trajectory. In this letter, we propose a succinct expression to determine the rotation
number and present two examples. Similar to the period of the bounded motion in Hamiltonian
systems, the rotation number is the most fundamental property of integrable maps and it provides
a way to analyze the phase-space dynamics.
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For a one degree-of-freedom time-independent system,
the Hamiltonian function, H[p, q; t] = E, is the integral
of the motion. If the motion is bounded, it is also peri-
odic and the period of oscillations can be determined by
integrating

T =

∮ (
∂H

∂p

)−1

dq, (1)

where p = p(E, q). Similarly, a map (q′, p′) = M(q, p) in
the plane is called integrable, if there is a non-constant
real-valued continuous function K(q, p), which is invari-
ant under M. The function K(q, p) is called integral. In
this paper, we are describing the case, for which the level
sets K = const are compact closed curves (or sets of
points) and for which the identity

K(q′, p′) = K(q, p)

holds for all (q, p). There are many examples of integrable
mappings, including the famous McMillan mapping [1],
described below. The dynamics is in many ways similar
to that of a continuous system, however, Eq. (1) is not
directly applicable since the integral K(q, p) is not the
Hamiltonian function.

The Arnold-Liouville theorem for maps [2, 3] states
that in action-angle variables, consecutive iterations of
map M lie on nested circles of radius J and that the map
can be written in the form of a Twist map

Jn+1 = Jn, (2)

θn+1 = θn + 2π ν(J) mod 2π, (3)

where |ν(J)| ≤ 0.5 is the rotation number, θ is the an-
gle variable and J is the action variable, defined by the
mapping M as

J =
1

2π

∮
p dq. (4)

For integrable mappings, K(q, p) = K(J) is a function
of the action variable. In what follows, we present a sim-
ple analytical expression to calculate the rotation num-
ber, ν(K), without constructing an action-angle trans-
formation. This is useful, when, for example, the action
variable (4) is not known explicitly but an integral K(q, p)
is.
Theorem (Danilov):

ν(K) =

∫ q′

q

(
∂K
∂p

)−1

dq

/∮ (
∂K
∂p

)−1

dq, (5)

where both integrals are taken along the invariant curve.
Proof: Consider the following system of differential
equations:

d q

dt
=
∂K
∂p

,
d p

dt
= −∂K

∂q
, (6)

such that K(q, p) does not change along a solution of the

FIG. 1. Constant level sets of the integral K(q, p) = const
(left). A particular curve representing a level set of K and
several iterates of the map M (center). A three-dimensional
phase space, (q, p) + time, of the system (6) (right). Dark
gray planes t = 0, τ, 2τ, . . . represent stroboscopic Poincaré
section of the continuous flow of the system (red curve) which
is identical to map M.
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system. Define a new map, M̃(q, p) (see Fig. 1)

(q′, p′) = M̃(q, p) = (q(τ), p(τ)) (7)

with

q = q(0) and p = p(0), (8)

where q(t) and p(t) are the solutions of the system (6)
and τ is the discrete time step. For a given value of K,
which is an integral of both M and M̃, one can always
select τ(K) such that the maps M(q, p) and M̃(q, p) are
identical. Since K(q, p) is compact and closed, the func-
tions q(t) and p(t) are periodic with a period T (K). By
its definition,

τ = ν(K)T (K). (9)

Let us now calculate ν(K):

ν(K) ≡ τ

T
=

∫ q′
q

dt∮
dt

=

∫ q′
q

(
d q
dt

)−1

dq∮ (
d q
dt

)−1

dq
=

∫ q′
q

(
∂K
∂p

)−1

dq∮ (
∂K
∂p

)−1

dq
.

(10)
Q.E.D..

In order to employ this theorem in practice, one would
need to recall that with p = p(K, q), the integrand in
Eq. (5), (

∂K
∂p

)−1

,

is the function of only q for a given K = const. Also,
the lower limit of the integral can be chosen to be any
convenient value of q, for example 0, as long it belongs
to a given level set, K(q, p). Finally, the upper limit
of the integral, q′, is obtained from the selected q and
p = p(K, q) by the map, M(q, p). Let us now consider
several examples.

As our first example, we will consider a linear symplec-
tic map, [

q′

p′

]
=

[
a b
c d

] [
q
p

]
, (11)

with a d− b c = 1 and |a+ d| ≤ 2. This mapping is very
common in accelerator physics and has been described in
[4]. The rotation number for this mapping is well known:

ν =
1

2π
arccos

a+ d

2
. (12)

In order to employ the Danilov theorem, we will use the
following parametrization:

a− d = 2α sin(2πν), (13)

b = β sin(2πν), (14)

c = −γ sin(2πν). (15)

The symplecticity condition gives β γ − α2 = 1. With
this parametrization, an integral of mapping (11) can be
written as

K = γ q2 + 2α q p+ β p2. (16)

To calculate the rotation number, we first express p
through K and q:

p =
−α q ±

√
α2q2 − β(γ q2 −K)

β
=
−α q ±

√
βK − q2

β
.

(17)
Now (

∂K
∂p

)−1

=
1

2(α q + β p)
=

±1

2
√
βK − q2

. (18)

We will use

(q, p) = (0,
√
K/β) (19)

and

(q′, p′) = (b
√
K/β, d

√
K/β) (20)

to evaluate the integral in the numerator:∫ b
√
K/β

0

dq

2
√
βK − q2

=

∫ b/β

0

dx

2
√

1− x2

=
1

2
arcsin

b

β
= π ν. (21)

The integral in the denominator equals π. Thus, the
rotation number is ν.

As our second example, we will consider the so-called
McMillan map [1],[

q′

p′

]
=

[
p

−q + 2 ε p
p2+Γ

]
. (22)

To illustrate the Danilov theorem, we will limit ourselves
to a case with Γ > 0 and |ε| ≤ Γ. Mapping (22) has the
following integral:

K(q, p) = q2p2 + Γ(q2 + p2)− 2 ε q p,

which is non-negative for the chosen parameters.
We first notice that for small amplitudes p2 � Γ, the

rotation number is

ν ≈ 1

2π
arccos

ε

Γ
, (23)

while at large amplitudes, the rotation number becomes
0.25. Again, we first express p through K and q and
evaluate the integrand in (5):(
∂K
∂p

)−1

=
1

2 p (q2 + Γ)− 2 ε q
=

±1

2
√
−Γ q4 + δ q2 + λK

,

(24)
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FIG. 2. Left plot contain various graphical iterations of the
canonical McMillan map (ε = 0.8, Γ = 1). Constant level sets
of the invariant are shown with blue lines and corresponding
value of the invariant K is shown in red. Right plot is the
rotation number as a function of its integral.

where δ(K) = ε− Γ2 +K. Let us define a parameter,

k(K) =
1√
2

√
1 +

δ√
δ2 + 4KΓ2

, (25)

which spans from 0 to 1. Also, define k′ =
√

1− k2.
Then, the rotation number can be expressed through Ja-
cobi elliptic functions as follows:

ν(K) =
1

4 K(k)
arcds

(√
k k′ Γ√
K
, k

)
, (26)

where K(k) is the complete elliptic integral of the first
kind and the inverse Jacobi function, arcds(x, k), is de-
fined as follows

arcds(x, k) =

∫ ∞
x

dt√
(t2 + k2)(t2 − k′2)

. (27)

Figure 2 shows an example of the rotation number,

for the case of ε = 0.8 and Γ = 1 (ν(0) ≈ 0.102), as a
function of integral, K.

These two examples demonstrate that the Danilov the-
orem is a powerful tool. The McMillan map is a classic
example of a nonlinear integrable discrete-time system.
It is a typical member of a wide class of area-preserving
transformations called a Twist map [5]. In this Letter we
demonstrated a general and exact method on how to find
a Poincaré rotation number. It complements the discrete
Arnold-Liouville theorem for maps [2, 3] and permits the
analysis of the system dynamics. In conclusion, we would
like to point out that for cases when the integral K is also
known as a function of action, J , one would be able to
express the rotation number as a function of action, as
well as the Hamiltons function, H(J), for mapping since

ν(J) =
d H

dJ
. (28)
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