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We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lens-
ing, using 1321 deg2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We
combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in
four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five
redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy
shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric
redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk
of the analysis was carried out while “blind” to the true results; we describe an extensive suite of systemat-
ics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM
cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmolog-
ical parameters including the neutrino mass density and including the 457 × 457 element analytic covariance
matrix. We find consistent cosmological results from these three two-point functions, and from their combi-
nation obtain S8 ≡ σ8(Ωm/0.3)0.5 = 0.783+0.021

−0.025 and Ωm = 0.264+0.032
−0.019 for ΛCDM; for wCDM, we find

S8 = 0.794+0.029
−0.027, Ωm = 0.279+0.043

−0.022, and w = −0.80+0.20
−0.22 at 68% CL. The precision of these DES Y1

results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of
structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S8 and
Ωm are lower than the central values from Planck for both ΛCDM and wCDM, the Bayes factor indicates that
the DES Y1 and Planck data sets are consistent with each other in the context of ΛCDM. Combining DES Y1
with Planck, Baryonic Acoustic Oscillation measurements from SDSS, 6dF, and BOSS, and type Ia supernovae
from the Joint Lightcurve Analysis (JLA) dataset, we derive very tight constraints on cosmological parameters:
S8 = 0.799+0.014

−0.009 and Ωm = 0.301+0.006
−0.008 in ΛCDM, and w = −1.00+0.04

−0.05 in wCDM. Upcoming DES anal-
yses will provide more stringent tests of the ΛCDM model and extensions such as a time-varying equation of
state of dark energy or modified gravity.

I. INTRODUCTION

The discovery of cosmic acceleration [1, 2] established the
Cosmological Constant (Λ) [3] + Cold Dark Matter (ΛCDM)
model as the standard cosmological paradigm that explains a
wide variety of phenomena, from the origin and evolution of
large-scale structure to the current epoch of accelerated ex-
pansion [4, 5]. The successes of ΛCDM, however, must be
balanced by its apparent implausibility: three new entities be-
yond the Standard Model of particle physics — one that drove
an early epoch of inflation; another that serves as dark mat-
ter; and a third that is driving the current epoch of acceler-
ation — are required, none of them easily connected to the
rest of physics [6]. Ongoing and planned cosmic surveys are
designed to test ΛCDM and more generally to shed light on
the mechanism driving the current epoch of acceleration, be
it the vacuum energy associated with the cosmological con-
stant, another form of dark energy, a modification of General
Relativity, or something more drastic.

The Dark Energy Survey (DES1, [7]) is an on-going, five-
year survey that, when completed, will map 300 million galax-
ies and tens of thousands of galaxy clusters in five filters
(grizY ) over 5000 deg2, in addition to discovering several
thousand type Ia supernovae in a 27 deg2 time-domain sur-
vey. DES will use several cosmological probes to test ΛCDM;
galaxy clustering and weak gravitational lensing are two of the
most powerful. Jointly, these complementary probes sample
the underlying matter density field through the galaxy popula-
tion and the distortion of light due to gravitational lensing. In
this paper, we use data on this combination from the first year

∗ For correspondence use des-publication-queries@fnal.gov
1 http://www.darkenergysurvey.org/

(Y1) of DES to constrain ΛCDM and its simplest extension—
wCDM, having a free parameter for the dark energy equation
of state.

The spatial distribution of galaxies in the Universe, and
its temporal evolution, carry important information about the
physics of the early Universe, as well as details of structure
evolution in the late Universe, thereby testing some of the
most precise predictions of ΛCDM. Indeed, measurements
of the galaxy two-point correlation function, the lowest-order
statistic describing the galaxy spatial distribution, provided
early evidence for the ΛCDM model [8–19]. The data–
model comparison in this case depends upon uncertainty in
the galaxy bias [20], the relation between the galaxy spatial
distribution and the theoretically predicted matter distribution.

In addition to galaxy clustering, weak gravitational lens-
ing has become one of the principal probes of cosmology.
While the interpretation of galaxy clustering is complicated
by galaxy bias, weak lensing provides direct measurement of
the mass distribution via cosmic shear, the correlation of the
apparent shapes of pairs of galaxies induced by foreground
large-scale structure. Further information on the galaxy bias
is provided by galaxy–galaxy lensing, the cross-correlation of
lens galaxy positions and source galaxy shapes.

The shape distortions produced by gravitational lensing,
while cosmologically informative, are extremely difficult to
measure, since the induced source galaxy ellipticities are at
the percent level, and a number of systematic effects can ob-
scure the signal. Indeed, the first detections of weak lens-
ing were made by cross-correlating observed shapes of source
galaxies with massive foreground lenses [21, 22]. A wa-
tershed moment came in the year 2000 when four research
groups nearly simultaneously announced the first detections
of cosmic shear [23–26]. While these and subsequent weak
lensing measurements are also consistent with ΛCDM, only
recently have they begun to provide competitive constraints

http://www.darkenergysurvey.org/
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on cosmological parameters [27–34]. Galaxy–galaxy lensing
measurements have also matured to the point where their com-
bination with galaxy clustering breaks degeneracies between
the cosmological parameters and bias, thereby helping to con-
strain dark energy [22, 35–46]. The combination of galaxy
clustering, cosmic shear, and galaxy–galaxy lensing measure-
ments powerfully constrains structure formation in the late
universe. As for cosmological analyses of samples of galaxy
clusters [see 47, for a review], redshift space distortions in the
clustering of galaxies [48, and references therein] and other
measurements of late-time structure, a primary test is whether
these are consistent, in the framework of ΛCDM, with mea-
surements from cosmic microwave background (CMB) exper-
iments that are chiefly sensitive to early-universe physics [49–
52].

The main purpose of this paper is to combine the infor-
mation from galaxy clustering and weak lensing, using the
galaxy and shear correlation functions as well as the galaxy-
shear cross-correlation. It has been recognized for more than a
decade that such a combination contains a tremendous amount
of complementary information, as it is remarkably resilient to
the presence of nuisance parameters that describe systematic
errors and non-cosmological information [53–56]. It is per-
haps simplest to see that the combined analysis could sepa-
rately solve for galaxy bias and the cosmological parameters;
however, it can also internally solve for (or, self-calibrate [57])
the systematics associated with photometric redshifts [58–60],
intrinsic alignment [61], and a wide variety of other effects
[55]. Such a combined analysis has recently been executed
by combining the KiDS 450 deg2 weak lensing survey with
two different spectroscopic galaxy surveys [62, 63]. While
these multi-probe analyses still rely heavily on prior informa-
tion about the nuisance parameters, obtained through a wide
variety of physical tests and simulations, this approach does
significantly mitigate potential biases due to systematic errors
and will likely become even more important as statistical er-
rors continue to drop. The multi-probe analyses also extract
more precise information about cosmology from the data than
any single measurement could.

Previously, the DES collaboration analyzed data from the
Science Verification (SV) period, which covered 139 deg2,
carrying out several pathfinding analyses of galaxy cluster-
ing and gravitational lensing, along with numerous others
[44, 46, 64–78]. The DES Y1 data set analyzed here cov-
ers about ten times more area, albeit shallower, and provides
650,000 lens galaxies and the shapes of 26 million source
galaxies, each of them divided into redshift bins. The lens
sample comprises bright, red-sequence galaxies, which have
secure photometric redshift (photo-z) estimates. We measure
three two-point functions from these data: (i) w(θ), the an-
gular correlation function of the lens galaxies; (ii) γt(θ), the
correlation of the tangential shear of sources with lens galaxy
positions; and (iii) ξ±(θ), the correlation functions of different
components of the ellipticities of the source galaxies. We use
these measurements only on large angular scales, for which
we have verified that a relatively simple model describes the
data, although even with this restriction we must introduce
twenty parameters to capture astrophysical and measurement-

related systematic uncertainties.
This paper is built upon, and uses tools and results from,

eleven other papers:

• Ref. [79], which describes the theory and parameter-
fitting methodologies, including the binning and mod-
eling of all the two point functions, the marginalization
of astrophysical and measurement related uncertainties,
and the ways in which we calculate the covariance ma-
trix and obtain the ensuing parameter constraints;

• Ref. [80], which applies this methodology to image
simulations generated to mimic many aspects of the Y1
data sets;

• a description of the process by which the value-added
galaxy catalog (Y1 Gold) is created from the data and
the tests on it to ensure its robustness [81];

• a shape catalog paper, which presents the two shape cat-
alogs generated using two independent techniques and
the many tests carried out to ensure that residual sys-
tematic errors in the inferred shear estimates are suffi-
ciently small for Y1 analyses [82];

• Ref. [83], which describes how the redshift distributions
of galaxies in these shape catalogs are estimated from
their photometry, including a validation of these esti-
mates by means of COSMOS multi-band photometry;

• three papers [84–86] that describe the use of angular
cross-correlation with samples of secure redshifts to in-
dependently validate the photometric redshift distribu-
tions of lens and source galaxies;

• Ref. [87], which measures and derives cosmological
constraints from the cosmic shear signal in the DES Y1
data and also addresses the question of whether DES
lensing data are consistent with lensing results from
other surveys;

• Ref. [88], which describes galaxy–galaxy lensing re-
sults, including a wide variety of tests for systematic
contamination and a cross-check on the redshift distri-
butions of source galaxies using the scaling of the lens-
ing signal with redshift;

• Ref. [89], which describes the galaxy clustering statis-
tics, including a series of tests for systematic contam-
ination. This paper also describes updates to the red-
MaGiC algorithm used to select our lens galaxies and
to estimate their photometric redshifts.

Armed with the above results, this paper presents the most
stringent cosmological constraints from a galaxy imaging sur-
vey to date and, combined with external data, the most strin-
gent constraints overall.

One of the guiding principles of the methods developed
in these papers is redundancy: we use two independent
shape measurement methods that are independently cali-
brated, several photometric redshift estimation and validation
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techniques, and two independent codes for predicting our sig-
nals and performing a likelihood analysis. Comparison of
these, as described in the above papers, has been an impor-
tant part of the verification of each step of our analysis.

The plan of the paper is as follows. §II gives an overview of
the data used in the analysis, while §III presents the two-point
statistics that contain the relevant information about cosmo-
logical parameters. §IV describes the methodology used to
compare these statistics to theory, thereby extracting cosmo-
logical results. We validated our methodology while remain-
ing blinded to the results of the analyses; this process is de-
scribed in §V, and some of the tests that convinced us to un-
blind are recounted in Appendix A. §VI presents the cosmo-
logical results from these three probes as measured by DES
in the context of two models, ΛCDM and wCDM, while §VII
compares DES results with those from other experiments, of-
fering one of the most powerful tests to date of ΛCDM. Then,
we combine DES with external data sets with which it is con-
sistent to produce the tightest constraints yet on cosmologi-
cal parameters. Finally, we conclude in §VIII. Appendix B
presents further evidence of the robustness of our results.

II. DATA

DES uses the 570-megapixel Dark Energy Camera (DE-
Cam [90]), built by the collaboration and deployed on the
Cerro Tololo Inter-American Observatory (CTIO) 4m Blanco
telescope in Chile, to image the South Galactic Cap in the
grizY filters. In this paper, we analyze DECam images taken
from August 31, 2013 to February 9, 2014 (“DES Year 1”
or Y1), covering 1786 square degrees in griz after coaddition
and before masking [81]. The data were processed through
the DES Data Management (DESDM) system [91–94], which
detrends and calibrates the raw DES images, combines indi-
vidual exposures to create coadded images, and detects and
catalogs astrophysical objects. Further vetting and subselec-
tion of the DESDM data products was performed by [81] to
produce a high-quality object catalog (Y1 Gold) augmented
by several ancillary data products including a star/galaxy sep-
arator. With up to 4 exposures per filter per field in Y1, and
individual griz exposures of 90 sec and Y exposures of 45
sec, the characteristic 10σ limiting magnitude for galaxies is
g = 23.4, r = 23.2, i = 22.5, z = 21.8, and Y = 20.1
[81]. Additional analyses produced catalogs of red galaxies,
photometric-redshift estimates, and galaxy shape estimates, as
described below.

As noted in §I, we use two samples of galaxies in the cur-
rent analysis: lens galaxies, for the angular clustering mea-
surement, and source galaxies, whose shapes we estimate and
correlate with each other (“cosmic shear”). The tangential
shear is measured for the source galaxies about the positions
of the lens galaxies (galaxy–galaxy lensing).

A. Lens Galaxies

We rely on redMaGiC galaxies for all galaxy clustering
measurements [89] and as the lens population for the galaxy–
galaxy lensing analysis [88]. They have the advantage of be-
ing easily identifiable, relatively strongly clustered, and of
having relatively small photometric-redshift errors; they are
selected using a simple algorithm [95]:

1. Fit every galaxy in the survey to a red-sequence tem-
plate and compute the corresponding best-fit redshift
zred.

2. Evaluate the goodness-of-fit χ2 of the red-sequence
template and the galaxy luminosity, using the assigned
photometric redshift.

3. Include the galaxy in the redMaGiC catalog if and only
if it is bright (L ≥ Lmin) and the red-sequence template
is a good fit (χ2 ≤ χ2

max).

In practice, we do not specify χ2
max but instead demand that

the resulting galaxy sample have a constant comoving density
as a function of redshift. Consequently, redMaGiC galaxy se-
lection depends upon only two parameters: the selected lu-
minosity threshold, Lmin, and the comoving density, n̄, of
the sample. Of course, not all combinations of parameters
are possible: brighter galaxy samples must necessarily be less
dense.

Three separate redMaGiC samples were generated from
the Y1 data, referred to as the high-density, high-luminosity,
and higher-luminosity samples. The corresponding lumi-
nosity thresholds2 and comoving densities for these sam-
ples are, respectively, Lmin = 0.5L∗, L∗, and 1.5L∗, and
n̄ = 10−3, 4× 10−4, and 10−4 galaxies/(h−1Mpc)3, where
h ≡ H0/(100 km sec−1 Mpc−1) parametrizes the Hubble
constant. Naturally, brighter galaxies are easier to map at
higher redshifts than are the dimmer galaxies. These galaxies
are placed in five nominally disjoint redshift bins. The low-
est three bins z = [(0.15 − 0.3), (0.3 − 0.45), (0.45 − 0.6)]
are high-density, while the galaxies in the two highest redshift
bins ((0.6 − 0.75) and (0.75 − 0.9)) are high-luminosity and
higher-luminosity, respectively. The estimated redshift distri-
butions of these five binned lens galaxy samples are shown in
the upper panel of Figure 1.

The clustering properties of these galaxies are an essential
part of this combined analysis, so great care is taken in [89]
to ensure that the galaxy maps are not contaminated by sys-
tematic effects. This requires the shallowest or otherwise ir-
regular or patchy regions of the total 1786 deg2 Y1 area to be
masked, leaving a contiguous 1321 deg2 as the area for the
analysis, the region called “SPT” in [81]. The mask derived
for the lens sample is also applied to the source sample.

2 Here and throughout, whenever a cosmology is required, we use ΛCDM
with the parameters given in Table 1 of [79].
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B. Source Galaxies

1. Shapes

Gravitational lensing shear is estimated from the statisti-
cal alignment of shapes of source galaxies, which are selected
from the Y1 Gold catalog [81]. In DES Y1, we measure
galaxy shapes and calibrate those measurements by two in-
dependent and different algorithms, METACALIBRATION and
IM3SHAPE, as described in [82].

METACALIBRATION [96, 97] measures shapes by simulta-
neously fitting a 2D Gaussian model for each galaxy to the
pixel data for all available r-, i-, and z-band exposures, con-
volving with the point-spread functions (PSF) appropriate to
each exposure. This procedure is repeated on versions of
these images that are artificially sheared, i.e. de-convolved,
distorted by a shear operator, and re-convolved by a sym-
metrized version of the PSF. By means of these, the response
of the shape measurement to gravitational shear is measured
from the images themselves, an approach encoded in META-
CALIBRATION.

METACALIBRATION also includes an algorithm for calibra-
tion of shear-dependent selection effects of galaxies, which
could bias shear statistics at the few percent level other-
wise, by measuring on both unsheared and sheared images
all those galaxy properties that are used to select, bin and
weight galaxies in the catalog. Details of the practical appli-
cation of these corrections to our lensing estimators are given
in [82, 87, 88, 97].

IM3SHAPE estimates a galaxy shape by determining the
maximum likelihood set of parameters from fitting either a
bulge or a disc model to each object’s r-band observations
[98]. The maximum likelihood fit, like the Gaussian fit
with METACALIBRATION, provides only a biased estimator
of shear. For IM3SHAPE, this bias is calibrated using a large
suite of image simulations that resemble the DES Y1 data set
closely [82, 99].

Potential biases in the inferred shears are quantified by
multiplicative shear-calibration parameters mi in each source
redshift bin i, such that the measured shear γmeas = (1 +
mi)γtrue. The mi are free parameters in the cosmological in-
ferences, using prior constraints on each as determined from
the extensive systematic-error analyses in [82]. These shear-
calibration priors are listed in Table I. The overall METACAL-
IBRATION calibration is accurate at the level of 1.3 percent.
This uncertainty is dominated by the impact of neighboring
galaxies on shape estimates. For tomographic measurements,
the widths of the overall mi prior is increased to yield a per-
bin uncertainty in mi, to account conservatively for possible
correlations of mi between bins [see appendices of 82, 83].
This yields the 2.3 percent prior per redshift bin shown in
Table I. The IM3SHAPE prior is determined with 2.5 percent
uncertainty for the overall sample (increased to a 3.5 percent
prior per redshift bin), introduced mostly by imperfections in
the image simulations.

In both catalogs, we have applied conservative cuts, for in-
stance on signal-to-noise ratio and size, that reduce the num-
ber of galaxies with shape estimates relative to the Y1 Gold in-

TABLE I. Parameters and priorsa used to describe the measured two-
point functions. Flat denotes a flat prior in the range given while
Gauss(µ, σ) is a Gaussian prior with mean µ and width σ. Priors
for the tomographic nuisance parameters mi and ∆zi have been
widened to account for the correlation of calibration errors between
bins [83, their appendix A]. The ∆zi priors listed are for METACAL-
IBRATION galaxies and BPZ photo-z estimates (see [83] for other
combinations). The parameter w is fixed to −1 in the ΛCDM runs.

Parameter Prior
Cosmology

Ωm flat (0.1, 0.9)
As flat (5 × 10−10, 5 × 10−9)
ns flat (0.87, 1.07)
Ωb flat (0.03, 0.07)
h flat (0.55, 0.91)

Ωνh
2 flat(5 × 10−4,10−2)

w flat (−2,−0.33)
Lens Galaxy Bias

bi(i = 1, 5) flat (0.8, 3.0)
Intrinsic Alignment

AIA(z) = AIA[(1 + z)/1.62]ηIA

AIA flat (−5, 5)
ηIA flat (−5, 5)

Lens photo-z shift (red sequence)
∆z1l Gauss (0.001, 0.008)
∆z2l Gauss (0.002, 0.007)
∆z3l Gauss (0.001, 0.007)
∆z4l Gauss (0.003, 0.01)
∆z5l Gauss (0.0, 0.01)

Source photo-z shift
∆z1s Gauss (−0.001, 0.016)
∆z2s Gauss (−0.019, 0.013)
∆z3s Gauss (+0.009, 0.011)
∆z4s Gauss (−0.018, 0.022)

Shear calibration
mi

METACALIBRATION(i = 1, 4) Gauss (0.012, 0.023)
mi

IM3SHAPE(i = 1, 4) Gauss (0.0, 0.035)

a The lens photo-z priors changed slightly after unblinding due to changes
in the cross-correlation analysis, as described in [85]; we checked that
these changes did not impact our results.

put catalog significantly. For METACALIBRATION, we obtain
35 million galaxy shape estimates down to an r-band magni-
tude of ≈ 23. Of these, 26 million are inside the restricted
area and redshift bins of this analysis. Since its calibration
is more secure, and its number density is higher than that of
IM3SHAPE, we use the METACALIBRATION catalog for our
fiducial analysis.

2. Photometric redshifts

Redshift probability distributions are also required for
source galaxies in cosmological inferences. For each source
galaxy, the probability density that it is at redshift z, pBPZ(z),
is obtained using a modified version of the BPZ algo-
rithm [100], as detailed in [83]. Source galaxies are placed
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in one of four redshift bins, z = [(0.2 − 0.43), (0.43 −
0.63), (0.63−0.9), (0.9−1.3)], based upon the mean of their
pBPZ(z) distributions. As described in [83], [87] and [88],
in the case of METACALIBRATION these bin assignments are
based upon photo-z estimates derived using photometric mea-
surements made by the METACALIBRATION pipeline in order
to allow for correction of selection effects.

We denote by niPZ(z) an initial estimate of the redshift dis-
tribution of the N i galaxies in bin i produced by randomly
drawing a redshift z from the probability distribution pBPZ(z)
of each galaxy assigned to the bin, and then bin all these N i

redshifts into a histogram. For this step, we use a BPZ esti-
mate based on the optimal flux measurements from the multi-
epoch multi-object fitting procedure (MOF) described in [81].

For both the source and the lens galaxies, uncertainties in
the redshift distribution are quantified by assuming that the
true redshift distribution ni(z) in bin i is a shifted version of
the photometrically derived distribution:

ni(z) = niPZ(z −∆zi), (II.1)

with the ∆zi being free parameters in the cosmological anal-
yses. Prior constraints on these shift parameters are derived in
two ways.

First, we constrain ∆zi from a matched sample of galaxies
in the COSMOS field, as detailed in [83]. Reliable redshift
estimates for nearly all DES-selectable galaxies in the COS-
MOS field are available from 30-band imaging [101]. We se-
lect and weight a sample of COSMOS galaxies representative
of the DES sample with successful shape measurements based
on their color, magnitude, and pre-seeing size. The mean red-
shift of this COSMOS sample is our estimate of the true mean
redshift of the DES source sample, with statistical and system-
atic uncertainties detailed in [83]. The sample variance in the
best-fit ∆zi from the small COSMOS field is reduced, but not
eliminated, by reweighting the COSMOS galaxies to match
the multiband flux distribution of the DES source sample.

Second, the ∆zi of both lens and source samples are fur-
ther constrained by the angular cross-correlation of each with
a distinct sample of galaxies with well-determined redshifts.
The ∆zil for the three lowest-redshift lens galaxy samples
are constrained by cross-correlation of redMaGiC with spec-
troscopic redshifts [85] obtained in the overlap of DES Y1
with Stripe 82 of the Sloan Digital Sky Survey. The ∆zis for
the three lowest-redshift source galaxy bins are constrained
by cross-correlating the sources with the redMaGiC sample,
since the redMaGiC photometric redshifts are much more ac-
curate and precise than those of the sources [84][86]. The
z < 0.85 limit of the redMaGiC sample precludes use of
cross-correlation to constrain ∆z4

s , so its prior is determined
solely by the reweighted COSMOS galaxies.

For the first three source bins, both methods yield an es-
timate of ∆zis, and the two estimates are compatible, so we
combine them to obtain a joint constraint. The priors derived
for both lens and source redshifts are listed in Table I. The re-
sulting estimated redshift distributions are shown in Figure 1.

Ref. [83] and Figure 20 in Appendix B demonstrate that,
at the accuracy attainable in DES Y1, the precise shapes

of the ni(z) functions have negligible impact on the in-
ferred cosmology as long as the mean redshifts of every bin,
parametrized by the ∆zi, are allowed to vary. As a con-
sequence, the cosmological inferences are insensitive to the
choice of photometric redshift algorithm used to establish the
initial niPZ(z) of the bins.
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FIG. 1. Estimated redshift distributions of the lens and source galax-
ies used in the Y1 analysis. The shaded vertical regions define the
bins: galaxies are placed in the bin spanning their mean photo-z esti-
mate. We show both the redshift distributions of galaxies in each bin
(colored lines) and their overall redshift distributions (black lines).
Note that source galaxies are chosen via two different pipelines
IM3SHAPE and METACALIBRATION, so their redshift distributions
and total numbers differ (solid vs. dashed lines).

III. TWO-POINT MEASUREMENTS

We measure three sets of two-point statistics: the auto-
correlation of the positions of the redMaGiC lens galaxies,
the cross-correlation of the lens positions with the shear of the
source galaxies, and the two-point correlation of the source
galaxy shear field. Each of the three classes of statistics is
measured using treecorr [102] in all pairs of redshift bins
of the galaxy samples and in 20 log-spaced bins of angular
separation 2.5′ < θ < 250′, although we exclude some of
the scales and cross-correlations from our fiducial data vector
(see section IV). Figures 2 and 3 show these measurements
and our best-fit ΛCDM model.

A. Galaxy Clustering: w(θ)

The inhomogeneous distribution of matter in the Universe
is traced by galaxies. The overabundance of pairs at angu-
lar separation θ above that expected in a random distribution,



8

w(θ), is one of the simplest measurements of galaxy cluster-
ing. It quantifies the strength and scale dependence of the
clustering of galaxies, which in turn reflects the clustering of
matter.

The upper panel of Figure 2 shows the angular correlation
function of the redMaGiC galaxies in the five lens redshift
bins described above. As described in [89], these correlation
functions were computed after quantifying and correcting for
spurious clustering induced by each of multiple observational
variables. Figure 2 shows the data with the error bars set equal
to the square root of the diagonal elements of the covariance
matrix, but we note that data points in nearby angular bins are
highly correlated. Indeed, as can be seen in Figure 5 of [79],
in the lowest redshift bins the correlation coefficient between
almost all angular bins is close to unity; at higher redshift,
the measurements are highly correlated only over the adja-
cent few angular bins. The solid curve in Figure 2 shows the
best-fit prediction from ΛCDM after fitting to all three two-
point functions. In principle, we could also use the angular
cross-correlations between galaxies in different redshift bins
in the analysis, but the amount of information in these cross-
bin two-point functions is quite small and would require sub-
stantially enlarging the covariance matrix, so we use only the
auto-correlations.

B. Galaxy–galaxy lensing: γt(θ)

The shapes of background source galaxies are distorted by
the mass associated with foreground lenses. The character-
istic distortion is a tangential shear, with the source galaxy
ellipticities oriented perpendicular to the line connecting the
foreground and background galaxies. This shear, γt(θ), is
sensitive to the mass associated with the foreground galax-
ies. On scales much larger than the sizes of parent halos of
the galaxies, it is proportional to the lens galaxy bias parame-
ters bi in each lens bin which quantifies the relative clumping
of matter and galaxies. The lower panels of Figure 2 show the
measurements of galaxy–galaxy lensing in all pairs of lens-
source tomographic bins, including the model prediction for
our best-fit parameters. The plots include bin pairs for which
the lenses are nominally behind the sources (those towards
the upper right), so might be expected to have zero signal.
Although the signals for these bins are expected to be small,
they can still be useful in constraining the intrinsic alignment
parameters in our model (see, e.g., [103]).

In [88], we carried out a number of null tests to ensure the
robustness of these measurements, none of which showed evi-
dence for significant systematic uncertainties besides the ones
characterized by the nuisance parameters in this analysis. The
model fits the data well. Even the fits that appear quite bad
are misleading because of the highly off-diagonal covariance
matrix. For the nine data points in the 3–1 bin, for example,
χ2 = 14, while χ2 would be 30 if the off-diagonal elements
were ignored.

C. Cosmic shear: ξ±(θ)

The two-point statistics that quantify correlations between
the shapes of galaxies are more complex, because they are the
products of the components of a spin-2 tensor. Therefore, a
pair of two-point functions are used to capture the relevant in-
formation: ξ+(θ) and ξ−(θ) are the sum and difference of the
products of the tangential and cross components of the shear,
measured with respect to the line connecting each galaxy pair.
For more details, see [87] or earlier work in Refs [104–111].
Figure 3 shows these functions for different pairs of tomo-
graphic bins.

As in Figure 2, the best-fit model prediction here includes
the impact of intrinsic alignment; the best-fit shifts in the pho-
tometric redshift distributions; and the best-fit values of shear
calibration. The one-dimensional posteriors on all of these
parameters are shown in Figure 19 in Appendix A.

IV. ANALYSIS

A. Model

To extract cosmological information from these two-point
functions, we construct a model that depends upon both
cosmological parameters and astrophysical and observational
nuisance parameters. The cosmological parameters govern
the expansion history as well as the evolution and scale depen-
dence of the matter clustering amplitude (as quantified, e.g.,
by the power spectrum). The nuisance parameters account for
uncertainties in photometric redshifts, shear calibration, the
bias between galaxies and mass, and the contribution of in-
trinsic alignment to the shear spectra. §IV B will enumerate
these parameters, and our priors on them are listed in Table I.
Here, we describe how the two-point functions presented in
§III are computed in the model.

1. Galaxy Clustering: w(θ)

The lens galaxies are assumed to trace the mass distribution
with a simple linear biasing model.Although this need not be
true in general, the validity of this assumption over the scales
used in this analysis was demonstrated in [79], [88], and [80].
The measured angular correlation function of the galaxies is
thus related to the matter correlation function by a simple fac-
tor of (bi)2 in each redshift bin i. The theoretical prediction
for wi(θ) in bin i depends upon the galaxy redshift distribu-
tion of that bin according to

wi(θ) =
(
bi
)2 ∫ dl l

2π
J0(lθ)

∫
dχ

×
[
nil(z(χ)

]2
χ2H(z)

PNL

(
l + 1/2

χ
, z(χ)

)
, (IV.1)

where the speed of light has been set to one; χ(z) is the co-
moving distance to that redshift (in a flat universe, which is
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FIG. 2. Top panels: scaled angular correlation function, θw(θ), of redMaGiC galaxies in the five redshift bins in the top panel of Figure 1, from
lowest (left) to highest redshift (right) [89]. The solid lines are predictions from the ΛCDM model that provides the best fit to the combined
three two-point functions presented in this paper. Bottom panels: scaled galaxy–galaxy lensing signal, θγt (galaxy-shear correlation), measured
in DES Y1 in four source redshift bins induced by lens galaxies in five redMaGiC bins [88]. Columns represent different lens redshift bins
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those in the first lens bin. The solid curves are again our best-fit ΛCDM prediction. In all panels, shaded areas display the angular scales that
have been excluded from our cosmological analysis (see §IV).
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assumed throughout); bi is the linear redMaGiC bias in red-
shift bin i; J0 is the Bessel function of order zero; nil(z(χ))
is the redshift distribution of redMaGiC galaxies in the bin i
normalized so that the integral over χ is equal to unity; H(z)
is the Hubble expansion rate at redshift z; and PNL(k; z) is
the 3D matter power spectrum at wavenumber k (which, in
this Limber approximation, is set equal to (l + 1/2)/χ) and
at the cosmic time associated with redshift z. The expan-
sion rate, comoving distance, and power spectrum all depend
upon the cosmological parameters, and the redshift distribu-
tion depends implicitly upon the shift parameter introduced in
Eq. (II.1). Thus, the angular correlation function in a given
redshift bin depends upon eight parameters in ΛCDM.

The expression in Eq. (IV.1) and the ones in Eqs. (IV.2) and
(IV.4) use the “flat-sky” approximation, while the correspond-
ing expressions in [79] use the more accurate expression that
sums over Legendre polynomials. However, we show there
that the differences between these two expressions are negli-
gible over the scales of interest.

The model power spectrum here is the fully nonlinear
power spectrum in ΛCDM or wCDM, which we estimate on
a grid of (k, z) by first running CAMB [112] or CLASS [113]
to obtain the linear spectrum and then HALOFIT [114] for
the nonlinear spectrum. The smallest angular separations for
which the galaxy two-point function measurements are used
in the cosmological inference, indicated by the boundaries
of the shaded regions in the upper panels of Figure 2, cor-
respond to a comoving scale of 8h−1 Mpc; this scale is cho-
sen such that modeling uncertainties in the non-linear regime
cause negligible impact on the cosmological parameters rela-
tive to their statistical errors, as shown in [79] and [87].

As described in §VI of [79], we include the impact of neu-
trino bias [115–117] when computing the angular correlation
function of galaxies. For Y1 data, this effect is below statis-
tical uncertainties, but it is computationally simple to imple-
ment and will be relevant for upcoming analyses.

2. Galaxy–galaxy lensing: γt(θ)

We model the tangential shear as we modeled the angular
correlation function, since it is also a two-point function: the
correlation of lens galaxy positions in bin iwith source galaxy
shear in bin j. On large scales, it can be expressed as an in-
tegral over the power spectrum, this time with only one factor
of bias,

γijt (θ) = bi(1 +mj)

∫
dl l

2π
J2(lθ)

∫
dχnil(z(χ))

× qjs(χ)

H(z)χ2
PNL

(
l + 1/2

χ
, z(χ)

)
, (IV.2)

where mj is the multiplicative shear bias, J2 is the 2nd-order
Bessel function, and the lensing efficiency function is given
by

qis(χ) =
3ΩmH

2
0

2

χ

a(χ)

∫ χ(z=∞)

χ

dχ′nis(z(χ
′))

dz

dχ′
χ′ − χ
χ′

(IV.3)

with nis(z) the source galaxy redshift distribution. Because
both the source and lens redshift distributions impact the sig-
nal, the shift parameters ∆zjs and ∆zil are implicit, as are all
the cosmological parameters. The shear signal also depends
upon intrinsic alignments of the source shapes with the tidal
fields surrounding the lens galaxies; details of our model for
this effect (along with an examination of more complex mod-
els) are given in [79] and in [87]. The smallest angular separa-
tions for which the galaxy–galaxy lensing measurements are
used in the cosmological inference, indicated by the bound-
aries of the shaded regions in the lower panels of Figure 2,
correspond to a comoving scale of 12h−1 Mpc; as above, this
scale is chosen such that the model uncertainties in the non-
linear regime cause insignificant changes to the cosmological
parameters relative to the statistical uncertainties, as derived
in [79] and verified in [80].

3. Cosmic shear ξ±(θ)

The cosmic shear signal is independent of galaxy bias but
shares the same general form as the other sets of two-point
functions. The theoretical predictions for these shear-shear
two-point functions are

ξij+/−(θ) = (1 +mi)(1 +mj)

∫
dl l

2π
J0/4(lθ)

∫
dχ

×q
i
s(χ)qjs(χ)

χ2
PNL

(
l + 1/2

χ
, z(χ)

)
(IV.4)

where the efficiency functions are defined above, and J0 and
J4 are the Bessel functions for ξ+ and ξ−. Intrinsic alignment
affects the cosmic shear signal, especially the low-redshift
bins, and are modeled as in [79]. Baryons affect the matter
power spectrum on small scales, and the cosmic shear sig-
nal is potentially sensitive to these uncertain baryonic effects;
we restrict our analysis to the unshaded, large-scale regions
shown in Figure 3 to reduce uncertainty in these effects below
our measurement errors, following the analysis in [87].

B. Parameterization and Priors

We use these measurements from the DES Y1 data to es-
timate cosmological parameters in the context of two cosmo-
logical models, ΛCDM and wCDM. ΛCDM contains three
energy densities in units of the critical density: the matter,
baryon, and massive neutrino energy densities, Ωm,Ωb, and
Ων . The energy density in massive neutrinos is a free pa-
rameter but is often fixed in cosmological analyses to either
zero or to a value corresponding to the minimum allowed neu-
trino mass of 0.06 eV from oscillation experiments [118]. We
think it is more appropriate to vary this unknown parameter,
and we do so throughout the paper (except in §VII D, where
we show that this does not affect our qualitative conclusions).
Since most other survey analyses have fixed Ων , our results
for the remaining parameters will differ slightly from theirs,
even when using their data.
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ΛCDM has three additional free parameters: the Hubble pa-
rameter, H0, and the amplitude and spectral index of the pri-
mordial scalar density perturbations,As and ns. This model is
based on inflation, which fairly generically predicts a flat uni-
verse. Further when curvature is allowed to vary in ΛCDM,
it is constrained by a number of experiments to be very close
to zero. Therefore, although we plan to study the impact of
curvature in future work, in this paper we assume the universe
is spatially flat, with ΩΛ = 1 − Ωm. It is common to replace
As with the RMS amplitude of mass fluctuations on 8 h−1

Mpc scale in linear theory, σ8, which can be derived from the
aforementioned parameters. Instead of σ8, in this work we
will focus primarily on the related parameter

S8 ≡ σ8

(
Ωm
0.3

)0.5

(IV.5)

since S8 is better constrained than σ8 and is largely uncorre-
lated with Ωm in the DES parameter posterior.

We also consider the possibility that the dark energy is not
a cosmological constant. Within this wCDM model, the dark
energy equation of state parameter, w (not to be confused with
the angular correlation function w(θ)), is taken as an addi-
tional free parameter instead of being fixed at w = −1 as
in ΛCDM. wCDM thus contains 7 cosmological parameters.
In future analyses of larger DES data sets, we anticipate con-
straining more extended cosmological models, e.g., those in
which w is allowed to vary in time.

In addition to the cosmological parameters, our model for
the data contains 20 nuisance parameters, as indicated in the
lower portions of Table I. These are the nine shift parameters,
∆zi, for the source and lens redshift bins, the five redMaGiC
bias parameters, bi, the four multiplicative shear biases, mi,
and two parameters, AIA and ηIA, that parametrize the intrin-
sic alignment model.

Table I presents the priors we impose on the cosmological
and nuisance parameters in the analysis. For the cosmological
parameters, we generally adopt wide, flat priors that conser-
vatively span the range of values well beyond the uncertain-
ties reported by recent experiments. As an example, although
there are currently potentially conflicting measurements of h,
we choose the lower end of the prior to be 10σ below the
lower central value from the Planck cosmic microwave back-
ground measurement [51] and the upper end to be 10σ above
the higher central value from local measurements [119]. In
the case of wCDM, we impose a physical upper bound of
w < −0.33, as that is required to obtain cosmic accelera-
tion. As another example, the lower bound of the prior on the
massive neutrino density, Ωνh

2, in Table I corresponds to the
experimental lower limit on the sum of neutrino masses from
oscillation experiments.

For the astrophysical parameters bi, AIA, and ηIA that are
not well constrained by other analyses, we also adopt conser-
vatively wide, flat priors. For all of these relatively uninforma-
tive priors, the guiding principle is that they should not impact
our final results, and in particular that the tails of the posterior
parameter distributions should not lie close to the edges of the
priors. For the remaining nuisance parameters, ∆zi and mi,
we adopt Gaussian priors that result from the comprehensive

analyses described in Refs. [82–86]. The prior and posterior
distributions of these parameters are plotted in Appendix A in
Figure 19.

In evaluating the likelihood function (§IV C), the param-
eters with Gaussian priors are allowed to vary over a range
roughly five times wider than the prior; for example, the
parameter that accounts for a possible shift in the furthest
lens redshift bin, ∆z5

l , is constrained in [85] to have a 1-σ
uncertainty of 0.01, so it is allowed to vary over |∆z5

l | <
0.05. These sampling ranges conservatively cover the param-
eter values of interest while avoiding computational problems
associated with exploring parameter ranges that are overly
broad. Furthermore, overly broad parameter ranges would
distort the computation of the Bayesian evidence, which
would be problematic as we will use Bayes factors to assess
the consistency of the different two-point function measure-
ments, consistency with external data sets, and the need to
introduce additional parameters (such as w) into the analysis.
We have verified that our results below are insensitive to the
ranges chosen.

C. Likelihood Analysis

For each data set, we sample the likelihood, assumed to be
Gaussian, in the many-dimensional parameter space:

lnL(~p) = −1

2

∑
ij

[Di − Ti(~p)]C−1
ij [Dj − Tj(~p)] ,

(IV.6)
where ~p is the full set of parameters,Di are the measured two-
point function data presented in Figures 2 and 3, and Ti(~p) are
the theoretical predictions as given in Eqs. (IV.1, IV.2, IV.4).
The likelihood depends upon the covariance matrix C that de-
scribes how the measurement in each angular and redshift bin
is correlated with every other measurement. Since the DES
data vector contains 457 elements, the covariance is a sym-
metric 457 × 457 matrix. We generate the covariance matri-
ces using CosmoLike [120], which computes the relevant
four-point functions in the halo model, as described in [79].
We also describe there how the CosmoLike-generated co-
variance matrix is tested with simulations.

Eq. (IV.6) leaves out the ln(det(C)) in the prefactor3 and
more generally neglects the cosmological dependence of the
covariance matrix. Previous work [121] has shown that this
dependence is likely to have a small impact on the central
value; our rough estimates of the impact of neglecting the de-
terminant confirm this; and — as we will show below — our
results did not change when we replaced the covariance ma-
trix with an updated version based on the best-fit parameters.
However, as we will see, the uncertainty in the covariance ma-
trix leads to some lingering uncertainty in the error bars. To
form the posterior, we multiply the likelihood by the priors,
P(~p), as given in Table I.

3 However, this factor is important for the Bayesian evidence calculations
discussed below so is included in those calculations.
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Parallel pipelines, CosmoSIS4 [122] and CosmoLike,
are used to compute the theoretical predictions and to gen-
erate the Monte Carlo Markov Chain (MCMC) samples that
map out the posterior space leading to parameter constraints.
The two sets of software use the publicly available samplers
MultiNest [123] and emcee [124]. The former provides
a powerful way to compute the Bayesian evidence described
below so most of the results shown here use CosmoSIS run-
ning MultiNest.

D. Tests on Simulations

The collaboration has produced a number of realistic
mock catalogs for the DES Y1 data set, based upon two
different cosmological N -body simulations (Buzzard [125],
MICE [126]), which were analyzed as described in [80]. We
applied all the steps of the analysis on the simulations, from
measuring the relevant two-point functions to extracting cos-
mological parameters. In the case of simulations, the true
cosmology is known, and [80] demonstrates that the analysis
pipelines we use here do indeed recover the correct cosmolog-
ical parameters.

V. BLINDING AND VALIDATION

The small statistical uncertainties afforded by the Y1 data
set present an opportunity to obtain improved precision on
cosmological parameters, but also a challenge to avoid con-
firmation biases. To preclude such biases, we followed the
guiding principle that decisions on whether the data analysis
has been successful should not be based upon whether the in-
ferred cosmological parameters agreed with our previous ex-
pectations. We remained blind to the cosmological parame-
ters implied by the data until after the analysis procedure and
estimates of uncertainties on various measurement and astro-
physical nuisance parameters were frozen.

To implement this principle, we first transformed the el-
lipticities e in the shear catalogs according to arctanh |e| →
λ arctanh |e|, where λ is a fixed blind random number be-
tween 0.9 and 1.1. Second, we avoided plotting the measured
values and theoretical predictions in the same figure (includ-
ing simulation outputs as “theory”). Third, when running
codes that derived cosmological parameter constraints from
observed statistics, we shifted the resulting parameter values
to obscure the best-fit values and/or omitted axis labels on any
plots.

These measures were all kept in place until the following
criteria were satisfied:

1. All non-cosmological systematics tests of the shear
measurements were passed, as described in [82], and
the priors on the multiplicative biases were finalized.

4 https://bitbucket.org/joezuntz/cosmosis/

2. Photo-z catalogs were finalized and passed internal
tests, as described in [83–86].

3. Our analysis pipelines and covariance matrices, as de-
scribed in [79, 80], passed all tests, including robustness
to intrinsic alignment and bias model assumptions.

4. We checked that the ΛCDM constraints (on, e.g.,
Ωm, σ8) from the two different cosmic shear pipelines
IM3SHAPE and METACALIBRATION agreed. The
pipelines were not tuned in any way to force agreement.

5. ΛCDM constraints were stable when dropping the
smallest angular bins for METACALIBRATION cosmic
shear data.

6. Small-scale METACALIBRATION galaxy–galaxy lens-
ing data were consistent between source bins (shear-
ratio test, as described in §6 of [88]). We note that while
this test is performed in the nominal ΛCDM model, it
is close to insensitive to cosmological parameters, and
therefore does not introduce confirmation bias.

Once the above tests were satisfied, we unblinded the
shear catalogs but kept cosmological parameter values blinded
while carrying out the following checks, details of which can
be found in Appendix A:

7. Consistent results were obtained from the two the-
ory/inference pipelines, CosmoSIS and CosmoLike.

8. Parameter posteriors did not impinge on the edges of the
sampling ranges and were in agreement with associated
priors for all parameters.

9. Consistent results on all cosmological parameters were
obtained with the two shear measurement pipelines,
METACALIBRATION and IM3SHAPE.

10. Consistent results on the cosmological parameters were
obtained when we dropped the smallest-angular-scale
components of the data vector, reducing our susceptibil-
ity to baryonic effects and departures from linear galaxy
biasing. This test uses the combination of the three two-
point functions (as opposed to from shear only as in
test 5).

11. An acceptable goodness-of-fit value (χ2) was found be-
tween the data and the model produced by the best-
fitting parameters. This assured us that the data were
consistent with some point in the model space that we
are constraining, while not yet revealing which part of
parameter space that is.

12. Parameters inferred from cosmic shear (ξ±) were
consistent with those inferred from the combination
of galaxy–galaxy lensing (γt) and galaxy clustering
(w(θ)).
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Once these tests were satisfied, we unblinded the param-
eter inferences. The following minor changes to the analy-
sis procedures or priors were made after the unblinding: as
planned before unblinding, we re-ran the MCMC chains with
a new covariance matrix calculated at the best-fit parameters
of the original analysis. This did not noticeably change the
constraints (see Figure 21 in Appendix B), as expected from
our earlier tests on simulated data [79]. We also agreed be-
fore unblinding that we would implement two changes after
unblinding: small changes to the photo-z priors referred to in
the footnote to Table I, and fixing a bug in IM3SHAPE object
blacklisting that affected ≈ 1% of the footprint.

All of the above tests passed, most with reassuringly unre-
markable results; more details are given in Appendix A.

For test 11, we calculated the χ2 (= −2 logL) value of the
457 data points used in the analysis using the full covariance
matrix. In ΛCDM, the model used to fit the data has 26 free
parameters, so the number of degrees of freedom is ν = 431.
The model is calculated at the best-fit parameter values of the
posterior distribution (i.e. the point from the posterior sample
with lowest χ2). Given the uncertainty on the estimates of the
covariance matrix, the formal probabilities of a χ2 distribution
are not applicable. We agreed to unblind as long as χ2 was
less than 605 (χ2/ν < 1.4). The best-fit value χ2 = 572
passes this test, with χ2/ν = 1.33. Considering the fact that
13 of the free parameters are nuisance parameters with tight
Gaussian priors, we will use ν = 444, giving χ2/ν = 1.29.

The best-fit models for the three two-point functions are
over-plotted on the data in Figures 2 and 3, from which it
is apparent that the χ2 is not dominated by conspicuous out-
liers. Figure 4 offers confirmation of this, in the form of a
histogram of the differences between the best-fit theory and
the data in units of the standard deviation of individual data
points. The three probes show similar values of χ2/ν: for
ξ±(θ), χ2 = 273 for 227 data points; for γt(θ), χ2 = 215
for 187 data points; and for w(θ), χ2 = 54 for 43 data points.
A finer division into each of the 45 individual 2-point func-
tions shows no significant concentration of χ2 in particular bin
pairs. We also find that removing all data at scales θ > 100′

yields χ2 = 312 for 277 data points (χ2/ν = 1.18), not a sig-
nificant reduction, and also yields no significant shift in best-
fit parameters. Thus, we find that no particular piece of our
data vector dominates our χ2 result.

The χ2 value for the full 3 × 2-point data vector passed
our unblinding criterion, even though it would be unaccept-
able (p = 4 × 10−5 for ν = 444) if we were expecting ad-
herence to the χ2 distribution. We argue that the p-value of
the χ2 distribution should be treated with caution since it may
not be a robust statistic here. We can expect deviations from a
strict χ2 distribution due to a number of factors: potential non-
Gaussian error distributions, which will have less impact on
our likelihood estimates than on the p-value; the effect of pri-
ors and marginalized systematic parameters; and uncertainties
in our estimation of the covariance matrix. For example, if we
increase the diagonal elements of the covariance matrix by a
factor 1.1, we obtain a χ2 = 467, and the p-value rises to 0.22,
easily acceptable. We expect such a change in the covariance
to, at most, increase the size of the uncertainty we obtain on

cosmological parameters by 5%. Based on these observations,
we believe that a pessimistic view of our χ2/ν ≈ 1.3 result
is that it indicates that our error bars are underestimated by
≈ 10% (since multiplying the whole covariance matrix by 1.2
would clearly obtain an acceptable χ2).

3 2 1 0 1 2 3
(Data-Theory)/Error

0

10

20

30

40

50

60

FIG. 4. Histogram of the differences between the best-fit ΛCDM
model predictions and the 457 data points shown in Figures 2 and
3, in units of the standard deviation of the individual data points.
Although the covariance matrix is not diagonal, and thus the diagonal
error bars do not tell the whole story, it is clear that there are no large
outliers that drive the fits.

Finally, for test (12), we examined several measures of con-
sistency between (i) cosmic shear and (ii) γt(θ) + w(θ) in
ΛCDM. As an initial test, we computed the mean of the 1D
posterior distribution of each of the cosmological parameters
and measured the shift between (i) and (ii). We then divided
this difference by the expected standard deviation of this dif-
ference (taking into account the estimated correlation between
the ξ± and γt + w inferences). For all parameters, these dif-
ferences had absolute value< 0.4, indicating consistency well
within measurement error.

As a second consistency check, we compared the posteri-
ors for the nuisance parameters from cosmic shear to those
from clustering plus galaxy–galaxy lensing, and they agreed
well. We found no evidence that any of the nuisance param-
eters pushes against the edge of its prior or that the nuisance
parameters for cosmic shear and w + γt are pushed to signif-
icantly different values. The only mild exceptions are modest
shifts in the intrinsic alignment parameter, ηIA, as well as in
the second source redshift bin, ∆z2

s . The full set of posteri-
ors on all 20 nuisance parameters for METACALIBRATION is
shown in Figure 19 in Appendix A.

As a final test of consistency between the two sets of two-
point-function measurements, we use the Bayes factor (also
called the “evidence ratio”). The Bayes factor is used for dis-
criminating between two hypotheses, and is the ratio of the
Bayesian evidences, P ( ~D|H) (the probability of observing
dataset, ~D, given hypothesis H) for each hypothesis. An ex-
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ample of such a hypothesis is that dataset ~D can be described
by a model M , in which case the Bayesian evidence is

P ( ~D|H) =

∫
dNθP ( ~D|~θ,M)P (~θ|M) (V.1)

where ~θ are the N parameters of model M .
For two hypotheses H0 and H1, the Bayes factor is given

by

R =
P ( ~D|H0)

P ( ~D|H1)
=
P (H0| ~D)P (H1)

P (H1| ~D)P (H0)
(V.2)

where the second equality follows from Bayes’ theorem and
clarifies the meaning of the Bayes factor: if we have equal a
priori belief in H0 and H1 (i.e., P (H0) = P (H1)), the Bayes
factor is the ratio of the posterior probability of H0 to the pos-
terior probability of H1. The Bayes factor can be interpreted
in terms of odds, i.e., it implies H0 is favored over H1 with
R : 1 odds (or disfavoured if R < 1). We will adopt the
widely used Jeffreys scale [127] for interpreting Bayes fac-
tors: 3.2 < R < 10 and R > 10 are respectively considered
substantial and strong evidence for H0 over H1. Conversely,
H1 is strongly favored over H0 if R < 0.1, and there is sub-
stantial evidence for H1 if 0.1 < R < 0.31.

We follow [128] by applying this formalism as a test for
consistency between cosmological probes. In this case, the
null hypothesis, H0, is that the two datasets were measured
from the same universe and therefore share the same model
parameters. Two probes would be judged discrepant if they
strongly favour the alternative hypothesis, H1, that they are
measured from two different universes with different model
parameters. So the appropriate Bayes factor for judging con-
sistency of two datasets, D1 and D2, is

R =
P
(
~D1, ~D2|M

)
P
(
~D1|M

)
P
(
~D2|M

) (V.3)

whereM is the model, e.g., ΛCDM orwCDM. The numerator
is the evidence for both datasets when model M is fit to both
datasets simultaneously. The denominator is the evidence for
both datasets when model M is fit to both datasets individu-
ally, and therefore each dataset determines its own parameter
posteriors.

Before the data were unblinded, we decided that we would
combine results from these two sets of two-point functions if
the Bayes factor defined in Eq. (V.3) did not suggest strong
evidence for inconsistency. According to the Jeffreys scale,
our condition to combine is therefore that R > 0.1 (since
R < 0.1 would imply strong evidence for inconsistency). We
find a Bayes factor of R = 2.8, an indication that DES Y1
cosmic shear and galaxy clustering plus galaxy–galaxy lens-
ing are consistent with one another in the context of ΛCDM.

The DES Y1 data were thus validated as internally con-
sistent and robust to our assumptions before we gained any
knowledge of the cosmological parameter values that they im-
ply. Any comparisons to external data were, of course, made
after the data were unblinded.

VI. DES Y1 RESULTS: PARAMETER CONSTRAINTS

A. ΛCDM

We first consider the ΛCDM model with six cosmological
parameters. The DES data are most sensitive to two cosmo-
logical parameters, Ωm and S8 as defined in Eq. (IV.5), so for
the most part we focus on constraints on these parameters.
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FIG. 5. ΛCDM constraints from DES Y1 on Ωm, σ8, and S8

from cosmic shear (green), redMaGiC galaxy clustering plus galaxy–
galaxy lensing (red), and their combination (blue). Here, and in all
such 2D plots below, the two sets of contours depict the 68% and
95% confidence levels.

Given the demonstrated consistency of cosmic shear with
clustering plus galaxy–galaxy lensing in the context of ΛCDM
as noted above, we proceed to combine the constraints from
all three probes. Figure 5 shows the constraints on Ωm and
σ8 (bottom panel), and on Ωm and the less degenerate param-
eter S8 (top panel). Constraints from cosmic shear, galaxy
clustering + galaxy–galaxy lensing, and their combination are
shown in these two-dimensional subspaces after marginaliz-
ing over the 24 other parameters. The combined results lead
to constraints

Ωm = 0.264+0.032
−0.019

S8 = 0.783+0.021
−0.025

σ8 = 0.807+0.062
−0.041. (VI.1)

The value of Ωm is slightly lower than that inferred from
either cosmic shear or clustering plus galaxy–galaxy lensing
separately. In general, when projecting down onto a small
subspace, this can occur. In this particular case, we get a
glimpse of why by noting from the bottom panel of Figure 5
that the degeneracy directions of shear differ slightly in the
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Ωm − σ8 plane from w(θ) + γt(θ), with the two converging
on lower values of Ωm. We present the resulting marginalized
constraints on the cosmological parameters in the top rows of
Table II.

The results shown in Figure 5, along with previous anal-
yses such as that using KiDS + GAMA data [62], are an
important step forward in the capability of combined probes
from optical surveys to constrain cosmological parameters.
These combined constraints transform what has, for the past
decade, been a one-dimensional constraint on S8 (which ap-
pears banana-shaped in the Ωm − σ8 plane) into tight con-
straints on both of these important cosmological parameters.
Figure 6 shows the DES Y1 constraints on S8 and Ωm along
with some previous results and in combination with exter-
nal data sets, as will be discussed below. The sizes of these
parameter error bars from the combined DES Y1 probes are
comparable to those from the cosmic microwave background
(CMB) obtained by Planck.

In addition to the cosmological parameters, these probes
constrain important astrophysical parameters. The intrinsic
alignment (IA) signal is modeled to scale as AIA(1 + z)ηIA ;
while the data do not constrain the power law well (ηIA =
−0.0+1.7

−2.8), they are sensitive to the amplitude of the signal:

AIA = 0.50+0.32
−0.38 (95% CL). (VI.2)

Further strengthening evidence from the recent combined
probes analysis of KiDS [62, 63], this result is the strongest
evidence to date of IA in a broadly inclusive galaxy sam-
ple; previously, significant IA measurements have come from
selections of massive elliptical galaxies, usually with spec-
troscopic redshifts (e.g. [129]). The ability of DES data to
produce such a result without spectroscopic redshifts demon-
strates the power of this combined analysis and emphasizes
the importance of modeling IA in the pursuit of accurate cos-
mology from weak lensing. We are able to rule out AIA = 0
at 99.36% CL with DES alone and at 99.89% CL with the full
combination of DES and external data sets. The mean value
of AIA is nearly the same when combining with external data
sets, suggesting that IA self-calibration has been effective. In-
terestingly, the measured amplitude agrees well with a predic-
tion made by assuming that only red galaxies contribute to the
IA signal, and then extrapolating the IA amplitude measured
from spectroscopic samples of luminous galaxies using a re-
alistic luminosity function and red galaxy fraction [79]. Our
measurement extends the diversity of galaxies with evidence
of IA, allowing more precise predictions for the behavior of
the expected IA signal.

The biases of the redMaGiC galaxy samples in the five lens
bins are shown in Figure 7 along with the results with fixed
cosmology obtained in [88] and [89]. Most interesting is the
constraining power: even when varying a full set of cosmolog-
ical parameters (including σ8, which is quite degenerate with
bias when using galaxy clustering only) and 15 other nuisance
parameters, the combined probes in DES Y1 constrain bias at
the ten percent level.

B. wCDM

A variety of theoretical alternatives to the cosmological
constant have been proposed [6]. For example, it could be that
the cosmological constant vanishes and that another degree of
freedom, e.g., a very light scalar field, is driving the current
epoch of accelerated expansion. Here we restrict our analysis
to the simplest class of phenomenological alternatives, mod-
els in which the dark energy density is not constant, but rather
evolves over cosmic history with a constant equation of state
parameter, w. We constrain w by adding it as a seventh cos-
mological parameter. Here, too, DES obtains interesting con-
straints on only a subset of the seven cosmological parameters,
so we show the constraints on the three-dimensional subspace
spanned by Ωm, S8, and w. Figure 8 shows the constraints
in this 3D space from cosmic shear and from galaxy–galaxy
lensing + galaxy clustering. These two sets of probes agree
with one another. The consistency in the three-dimensional
subspace shown in Figure 8, along with the tests in the previ-
ous subsection, is sufficient to combine the two sets of probes.
The Bayes factor in this case was equal to 0.6. The combined
constraint from all three two-point functions is also shown in
Figure 8.

The marginalized 68% CL constraints onw and on the other
two cosmological parameters tightly constrained by DES, S8

and ΩM , are shown in Figure 9 and given numerically in Ta-
ble II. In the next section, we revisit the question of how con-
sistent the DES Y1 results are with other experiments. The
marginalized constraint on w from all three DES Y1 probes is

w = −0.80+0.20
−0.22. (VI.3)

Finally, if one ignores any intuition or prejudice about
the mechanism driving cosmic acceleration, studying wCDM
translates into adding an additional parameter to describe the
data. From a Bayesian point of view, the question of whether
wCDM is more likely than ΛCDM can again be addressed by
computing the Bayes factor. Here the two models being com-
pared are simpler: ΛCDM and wCDM. The Bayes factor is

Rw =
P ( ~D|wCDM)

P ( ~D|ΛCDM)
(VI.4)

Values of Rw less than unity would imply ΛCDM is favored,
while those greater than one argue that the introduction of
the additional parameter w is warranted. The Bayes factor
is Rw = 0.36 for DES Y1, so although ΛCDM is slightly fa-
vored, there is no compelling evidence to favor or disfavor an
additional parameter w.

It is important to note that, although our result in Eq. (VI.3)
is compatible with ΛCDM, the most stringent test of the
model from DES Y1 is not this parameter, but rather the con-
straints on the parameters in the model shown in Figure 5 as
compared with constraints on those parameters from the CMB
measurements of the universe at high redshift. We turn next
to that comparison.
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TABLE II. 68%CL marginalized cosmological constraints in ΛCDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w − h degeneracy.

Model Data Sets Ωm S8 ns Ωb h

∑
mν (eV)

(95% CL)
w

ΛCDM DES Y1 ξ±(θ) 0.323+0.048
−0.069 0.791+0.019

−0.029 . . . . . . . . . . . . . . .

ΛCDM DES Y1 w(θ) + γt 0.293+0.043
−0.033 0.770+0.035

−0.030 . . . . . . . . . . . . . . .

ΛCDM DES Y1 3x2 0.264+0.032
−0.019 0.783+0.021

−0.025 . . . . . . . . . . . . . . .

ΛCDM Planck (No Lensing) 0.334+0.037
−0.020 0.840+0.024

−0.028 0.960+0.006
−0.008 0.0512+0.0036

−0.0022 0.656+0.015
−0.026 . . . . . .

ΛCDM DES Y1 + Planck (No Lensing) 0.303+0.029
−0.013 0.793+0.018

−0.014 0.971+0.006
−0.005 0.0481+0.0040

−0.0010 0.681+0.010
−0.025 < 0.62 . . .

ΛCDM DES Y1 + JLA + BAO 0.301+0.013
−0.018 0.775+0.016

−0.027 1.05+0.02
−0.08 0.0493+0.006

−0.007 0.680+0.042
−0.045 . . . . . .

ΛCDM Planck + JLA + BAO 0.306+0.007
−0.007 0.815+0.013

−0.015 0.969+0.005
−0.005 0.0485+0.0007

−0.0008 0.679+0.005
−0.007 < 0.25 . . .

ΛCDM DES Y1 +
Planck + JLA + BAO 0.301+0.006

−0.008 0.799+0.014
−0.009 0.973+0.005

−0.004 0.0480+0.0009
−0.0006 0.682+0.006

−0.006 < 0.29 . . .

wCDM DES Y1 ξ±(θ) 0.317+0.074
−0.054 0.789+0.036

−0.038 . . . . . . . . . . . . −0.82+0.26
−0.47

wCDM DES Y1 w(θ) + γt 0.317+0.045
−0.041 0.788+0.039

−0.067 . . . . . . . . . . . . −0.76+0.19
−0.45

wCDM DES Y1 3x2 0.279+0.043
−0.022 0.794+0.029

−0.027 . . . . . . . . . . . . −0.80+0.20
−0.22

wCDM Planck (No Lensing) 0.220+0.064
−0.025 0.798+0.035

−0.035 0.960+0.008
−0.006 0.0329+0.0100

−0.0030 0.800+0.050
−0.090 . . . −1.50+0.34

−0.18

wCDM DES Y1 + Planck (No Lensing) 0.230+0.023
−0.015 0.780+0.013

−0.023 0.967+0.005
−0.004 0.0359+0.0037

−0.0021 0.785+0.023
−0.037 < 0.56 −1.34+0.08

−0.15

wCDM Planck + JLA + BAO 0.304+0.008
−0.011 0.814+0.013

−0.016 0.968+0.005
−0.005 0.0480+0.0010

−0.0020 0.681+0.010
−0.009 < 0.29 −1.03+0.05

−0.05

wCDM DES Y1 +
Planck + JLA + BAO 0.299+0.009

−0.007 0.798+0.012
−0.011 0.973+0.005

−0.004 0.0479+0.0015
−0.0012 0.683+0.009

−0.010 < 0.35 −1.00+0.04
−0.05

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [51]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of σ8 that is 2.6-
σ lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance rd; therefore, dependence
of rd on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ΛCDM andwCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].
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FIG. 6. 68% confidence levels for ΛCDM on S8 and Ωm from DES Y1 (different subsets considered in the top group, black); DES Y1 with all
three probes combined with other experiments (middle group, green); and results from previous experiments (bottom group, purple). Note that
neutrino mass has been varied so, e.g., results shown for KiDS-450 were obtained by re-analyzing their data with the neutrino mass left free.
The table includes only data sets that are publicly available so that we could re-analyze those using the same assumptions (e.g., free neutrino
mass) as are used in our analysis of DES Y1 data.
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FIG. 7. The bias of the redMaGiC galaxy samples in the five lens
bins from three separate DES Y1 analyses. The two labelled “fixed
cosmology” use the galaxy angular correlation function w(θ) and
galaxy–galaxy lensing γt respectively, with cosmological parameters
fixed at best-fit values from the 3x2 analysis, as described in [88] and
[89]. The results labelled “DES Y1 - all” vary all 26 parameters while
fitting to all three two-point functions.

A. High redshift vs. low redshift in ΛCDM

The CMB measures the state of the Universe when it was
380,000 years old, while DES measures the matter distribu-
tion in the Universe roughly ten billion years later. Therefore,
one obvious question that we can address is: Is the ΛCDM
prediction for clustering today, with all cosmological param-
eters determined by Planck, consistent with what DES ob-
serves? This question, which has of course been addressed
by previous surveys (e.g., [31, 34, 62, 63]), is so compelling
because (i) of the vast differences in the epochs and condi-
tions measured; (ii) the predictions for the DES Y1 values
of S8 and Ωm have no free parameters in ΛCDM once the
recombination-era parameters are fixed; and (iii) those pre-
dictions for what DES should observe are very precise, with
S8 and Ωm determined by the CMB to within a few percent.
We saw above that S8 and Ωm are constrained by DES Y1 at
the few-percent level, so the stage is set for the most stringent
test yet of ΛCDM growth predictions. Tension between these
two sets of constraints might imply the breakdown of ΛCDM.

Figure 10 compares the low-z constraints for ΛCDM from
all three DES Y1 probes with the z = 1100 constraints from
the Planck anisotropy data. Note that the Planck contours are
shifted slightly and widened significantly from those in Fig-
ure 18 of [51], because we are marginalizing over the un-
known sum of the neutrino masses. We have verified that
when the sum of the neutrino masses is fixed as [51] assumed
in their fiducial analysis, we recover the constraints shown in



19

DES Y1 Shear
DES Y1 w + γt
DES Y1 All

−1
.6
−1
.3
−1
.0
−0
.7
−0
.4

w

0.
16

0.
24

0.
32

0.
40

0.
48

Ωm

0.
66

0.
72

0.
78

0.
84

0.
90

S
8

−1
.6
−1
.3
−1
.0
−0
.7
−0
.4

w

0.
66

0.
72

0.
78

0.
84

0.
90

S8

FIG. 8. Constraints on the three cosmological parameters σ8, Ωm, and w in wCDM from DES Y1 after marginalizing over four other
cosmological parameters and ten (cosmic shear only) or 20 (other sets of probes) nuisance parameters. The constraints from cosmic shear only
(green); w(θ) + γt(θ) (red); and all three two-point functions (blue) are shown. Here and below, outlying panels show the marginalized 1D
posteriors and the corresponding 68% confidence regions.

their Figure 18.

The two-dimensional constraints shown in Figure 10 visu-
ally hint at tension between the Planck ΛCDM prediction for
RMS mass fluctuations and the matter density of the present-
day Universe and the direct determination by DES. The 1D
marginal constraints differ by more than 1σ in both S8 and
Ωm, as shown in Figure 6. The KiDS survey [34, 62] also
reports lower S8 than Planck at marginal significance.

However, a more quantitative measure of consistency in
the full 26-parameter space is the Bayes factor defined in
Eq. (V.3). As mentioned above, a Bayes factor below 0.1 sug-
gests strong inconsistency and one above 10 suggests strong
evidence for consistency. The Bayes factor here is R = 4.2,
indicating “substantial” evidence for consistency on the Jef-
freys scale, so any inconsistency apparent in Figure 10 is not
statistically significant according to this metric. In order to

test the sensitivity of this conclusion to the priors used in our
analysis, we halve the width of the prior ranges on all cos-
mological parameters (the parameters in the first section of
Table I). For this case we find R = 1.6, demonstrating that
our conclusion that there is no evidence for inconsistency is
robust even to a dramatic change in the prior volume. The
Bayes factor in Eq. (V.3) compares the hypothesis that two
datasets can be fit by the same set ofN model parameters (the
null hypothesis), to the hypothesis that they are each allowed
an independent set of the N model parameters (the alternative
hypothesis). The alternative hypothesis is naturally penalized
in the Bayes factor since the model requires an extra N pa-
rameters. We also test an alternative hypothesis where only
Ωm and As are allowed to be constrained independently by
the two datasets; in this case we are introducing only two ex-
tra parameters with respect to the null hypothesis. For this



20

0.7 0.8
S8 8( m/0.3)0.5

0.2 0.3 0.4
m

-1.5 -1.0 -0.5
w

DES Y1 All
DES Y1 Shear
DES Y1 w + t

DES Y1 All + Planck (No Lensing)
DES Y1 All + Planck + BAO + JLA
DES SV
KiDS-450
Planck (No Lensing)
Planck + BAO + JLA

FIG. 9. 68% confidence levels on three cosmological parameters from the joint DES Y1 probes and other experiments for wCDM.
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FIG. 10. ΛCDM constraints from the three combined probes in DES
Y1 (blue), Planck with no lensing (green), and their combination
(red). The agreement between DES and Planck can be quantified via
the Bayes factor, which indicates that in the full, multi-dimensional
parameter space, the two data sets are consistent (see text).

case, we find R = 2.4, which again indicates that there is no
evidence for inconsistency between the datasets.

We therefore combine the two data sets, resulting in the red
contours in Figure 10. This quantitative conclusion that the
high– and low– redshift data sets are consistent can even be
gleaned by viewing Figure 10 in a slightly different way: if
the true parameters lie within the red contours, it is not un-
likely for two independent experiments to return the blue and
green contour regions.
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FIG. 11. ΛCDM constraints from high redshift (Planck,
without lensing) and multiple low redshift experiments (DES
Y1+BAO+JLA), see text for references.

Figure 11 takes the high-z vs. low-z comparison a step fur-
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ther by combining DES Y1 with results from BAO experi-
ments and Type Ia supernovae. While these even tighter low-
redshift constraints continue to favor slightly lower values of
Ωm and S8 than Planck, the Bayes factor rises to 9.0, i.e. near
Jeffrey’s threshold for “strongly” favoring consistency of DES
Y1+BAO+JLA with Planck. The addition of BAO and SNe to
DES Y1 thus strengthens the agreement between high- and
low-z measures within the ΛCDM model.
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DES Y1+Planck

FIG. 12. ΛCDM constraints from Planck with no lensing (green),
DES Y1 (blue) and the two combined (red) in the Ωm, h plane.
The positions of the acoustic peaks in the CMB constrain Ωmh

3 ex-
tremely well, and the DES determination of Ωm breaks the degen-
eracy, leading to a larger value of h than inferred from Planck only
(see Table II).

The goal of this subsection is to test the ΛCDM prediction
for clustering in DES, so we defer the issue of parameter de-
termination to the next subsections. However, there is one
aspect of the CMB measurements combined with DES that is
worth mentioning here. DES data do not constrain the Hubble
constant directly. However, as shown in Figure 12, the DES
ΛCDM constraint on Ωm combined with Planck’s measure-
ment of Ωmh

3 leads to a shift in the inference of the Hubble
constant (in the direction of local measurements [119]). Since
Ωm is lower in DES, the inferred value of h moves up. As
shown in the figure and quantitatively in Table II, the shift is
greater than 1σ. As shown in Table II, this shift in the value
of h persists as more data sets are added in.

B. Cosmological Parameters in ΛCDM

To obtain the most stringent cosmological constraints, we
now compare DES Y1 with the bundle of BAO, Planck, and
JLA that have been shown to be consistent with one another

[51]. Here “Planck” includes the data from the four-point
function of the CMB, which captures the effect of lensing due
to large-scale structure at late times. Figure 13 shows the con-
straints in the Ωm–S8 plane from this bundle of data sets and
from DES Y1, in the ΛCDM model. Here the apparent con-
sistency of the data sets is borne out by the Bayes factor for
dataset consistency (Eq. V.3):

P (JLA + Planck + BAO + DES Y1)

P (JLA + BAO + Planck)P (DES Y1)
= 244. (VII.1)
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FIG. 13. ΛCDM constraints from all three two-point functions
within DES and BAO, JLA, and Planck (with lensing) in the Ωm-
S8 plane.

Combining all of these leads to the tightest constraints yet
on ΛCDM parameters, shown in Table II. Highlighting some
of these: at 68% C.L., the combination of DES with these
external data sets yields

Ωm = 0.301+0.006
−0.008. (VII.2)

This value is about 1σ lower than the value without DES Y1,
with comparable error bars. The clustering amplitude is also
constrained at the percent level:

σ8 = 0.801± 0.014

S8 = 0.799+0.014
−0.009. (VII.3)

Note that fortuitously, because Ωm is so close to 0.3, the dif-
ference in the central values of σ8 and S8 is negligible. The
combined result is about 1σ lower than the inference without
DES, and the constraints are tighter by about 20%.

As mentioned above, the lower value of Ωm leads to a
higher value of the Hubble constant:

h = 0.656+0.015
−0.026 (Planck : No Lensing)
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h = 0.682+0.006
−0.006 (DES Y1 + JLA + BAO + Planck)

(VII.4)

with neutrino mass varied.

C. wCDM

Figure 14 shows the results in the extended wCDM param-
eter space using Planck alone, and DES alone, combined, and
with the addition of BAO+SNe. As discussed in [51], the con-
straints on the dark energy equation of state from Planck alone
are misleading. They stem from the measurement of the dis-
tance to the last scattering surface, and that distance (in a flat
universe) depends upon the Hubble constant as well, so there
is a strong w − h degeneracy. The low values of w seen in
Figure 14 from Planck alone correspond to very large values
of h, ruled out by local distance indicators. Since DES is not
sensitive to the Hubble constant, it does not break this degen-
eracy. Additionally, the Bayes factor in Eq. (VI.4) that quan-
tifies whether adding the extra parameter w is warranted is
Rw = 0.018. Therefore, opening up the dark energy equation
of state is not favored on a formal level for the DES+Planck
combination. Finally, the Bayes factor for combining DES
and Planck (no lensing) in wCDM is equal to 0.18, which
we identified earlier as “substantial” evidence in favor of the
hypothesis that these two data sets are not consistent in the
context of this model. These factors degrade the legitimacy
of the value w = −1.34+0.08

−0.15 returned by the DES+Planck
combination.

The addition of BAO, SNe, and Planck lensing data to
the DES+Planck combination yields the red contours in Fig-
ure 14, shifting the solution substantially along the Planck
degeneracy direction, demonstrating (i) the problems men-
tioned above with the DES+Planck (no lensing) combination
and (ii) that these problems are resolved when other data sets
are introduced that restrict the Hubble parameter to reason-
able values. The Bayes factor for combination of Planck with
the low-z suite of DES+BAO+SNe in the wCDM model is
R = 699, substantially more supportive of the combination
of experiments than the case for Planck and DES alone. The
DES+Planck+BAO+SNe solution shows good consistency in
the Ωm–w–S8 subspace and yields our final constraint on the
dark energy equation of state:

w = −1.00+0.04
−0.05. (VII.5)

DES Y1 reduces the width of the allowed 68% region by ten
percent. The evidence ratio Rw = 0.08 for this full combi-
nation of data sets, disfavoring the introduction of w as a free
parameter.

D. Neutrino Mass

The lower power observed in DES (relative to Planck) has
implications for the constraint on the sum of the neutrino
masses, as shown in Figure 15. The current most stringent
constraint comes from the cosmic microwave background and

Lyman-alpha forest [136]. The experiments considered here
(DES, JLA, BAO) represent an independent set so offer an al-
ternative method for measuring the clustering of matter as a
function of scale and redshift, which is one of the key drivers
of the neutrino constraints. The 95% C.L. upper limit on the
sum of the neutrino masses in ΛCDM becomes less constrain-
ing: ∑

mν < 0.29 eV. (VII.6)

Adding in DES Y1 loosens the constraint by close to 20%
(from 0.245 eV). This is consistent with our finding that the
clustering amplitude in DES Y1 is slightly lower than ex-
pected in ΛCDM informed by Planck. The three ways of
reducing the clustering amplitude are to reduce Ωm, reduce
σ8, or increase the sum of the neutrino masses. The best fit
cosmology moves all three of these parameters slightly in the
direction of less clustering in the present day Universe.

We may, conversely, be concerned about the effect of priors
on Ωνh

2 on the cosmological inferences in this paper. The re-
sults for DES Y1 and Planck depicted in Figure 10 in ΛCDM
were obtained when varying the sum of the neutrino masses.
Neutrinos have mass [137] and the sum of the masses of the
three light neutrinos is indeed unknown, so this parameter
does need to be varied. However, many previous analyses
have either set the sum to zero or to the minimum value al-
lowed by oscillation experiments (

∑
mν = 0.06 eV), so it

is of interest to see if fixing neutrino mass alters any of our
conclusions. In particular: does this alter the level of agree-
ment between low- and high-redshift probes in ΛCDM? Fig-
ure 16 shows the extreme case of fixing the neutrino masses
to the lowest value allowed by oscillation data: both the DES
and Planck constraints in the S8 − Ωm plane change. The
Planck contours shrink toward the low-Ωm side of their con-
tours, while the DES constraints shift slightly to lower Ωm and
higher S8. The Bayes factor for the combination of DES and
Planck in the ΛCDM space changes fromR = 4.2 toR = 7.1
when the minimal neutrino mass is enforced. Indeed, we get a
glimpse of this improved agreement from Figure 16: the area
in the 2D plane allowed by Planck when the neutrino mass
is fixed is much smaller than when Ωνh

2 varies, and the area
that is favored lies closer to the region allowed by DES.

Finally, fixing the neutrino mass allows us to compare di-
rectly to previous analyses that did the same. Although there
are other differences in the analyses, such as the widths of the
priors, treatments of systematics, and covariance matrix gen-
eration, fixing the neutrino mass facilitates a more accurate
comparison. On the main parameter S8 within ΛCDM, again
with neutrino mass fixed, the comparison is:

S8 = 0.797± 0.022 DES Y1
= 0.801± 0.032 KiDS+GAMA [62]
= 0.742± 0.035 KiDS+2dFLenS+BOSS [63],

(VII.7)

so we agree with KiDS+GAMA, but disagree with [63] at
greater than 1-σ.
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FIG. 14. wCDM constraints from the three combined probes in DES Y1 and Planck with no lensing in the Ωm-w-S8-h subspace. Note the
strong degeneracy between h and w from Planck data. The lowest values of w are associated with very large values of h, which would be
excluded if other data sets were included.

VIII. CONCLUSIONS

We have presented cosmological results from a combined
analysis of galaxy clustering and weak gravitational lensing,
using imaging data from the first year of DES. These com-
bined probes demonstrate that cosmic surveys using cluster-
ing measurements have now attained constraining power com-
parable to the cosmic microwave background in the Ωm–S8

plane, heralding a new era in cosmology. The combined con-
straints on several cosmological parameters are the most pre-
cise to date.

The constraints on Ωm from the CMB stem from the im-
pact of the matter density on the relative heights of the acous-
tic peaks in the cosmic plasma when the universe was only
380,000 years old and from the distance between us today
and the CMB last scattering surface. The CMB constraints on
S8 are an expression of both the very small RMS fluctuations
in the density at that early time and the model’s prediction

for how rapidly they would grow over billions of years due
to gravitational instability. The measurements themselves are
of course in microwave bands and probe the universe when
it was extremely smooth. DES is different in every way: it
probes in optical bands billions of years later when the uni-
verse had evolved to be highly inhomogeneous. Instead of
using the radiation as a tracer, DES uses galaxies and shear.
It is truly extraordinary that a simple model makes consistent
predictions for these vastly different sets of measurements.

The results presented here enable precise tests of the
ΛCDM and wCDM models, as shown in Figures 10 and 14.
Our main findings are:

• DES Y1 constraints on Ωm and S8 in ΛCDM are com-
petitive (in terms of their uncertainties) and compatible
(according to tests of the Bayesian evidence) with con-
straints derived from Planck observations of the CMB.
This is true even though the visual comparison (Fig-
ure 10) of DES Y1 and Planck shows differences at the
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0.24 0.30 0.36 0.42
Ωm

0.72

0.80

0.88

0.96

S
8

DES Y1, fixed neutrinos
DES Y1

Planck, fixed neutrinos
Planck

FIG. 16. ΛCDM constraints on Ωm and σ8 from Planck without
lensing and all three probes in DES. In contrast to all other plots in
this paper, the dark contours here show the results when the sum of
the neutrino masses was held fixed at its minimum allowed value of
0.06 eV.

1 to 2-σ level, in the direction of offsets that other recent
lensing studies have reported.

• The statistical consistency allows us to combine DES
Y1 results with Planck, and, in addition, with BAO and
supernova data sets. This yields S8 = 0.799+0.014

−0.009 and
Ωm = 0.301+0.006

−0.008 in ΛCDM, the tightest such con-
straints to date (Figure 13).

• None of our likelihoods, including those combining
DES with external data, prefer the addition of a free
dark energy equation of state parameter w to the pa-
rameters of ΛCDM. The wCDM likelihoods from DES
and Planck each constrain w poorly; moreover, allow-
ing w as a free parameter makes the two data sets less
consistent (in terms of the Bayesian evidence) and does
not bring the DES and Planck central values of S8

closer. DES is, however, consistent with the bundle of
Planck, BAO, and supernova data, and this combina-
tion tightly constrains the equation-of-state parameter,
w = −1.00+0.04

−0.05 (Figure 14).

• The two-point functions measured in DES Y1 contain
some information on two other open questions in cos-
mological physics: the combination of DES and Planck
shifts the Planck constraints on the Hubble constant by
more than 1σ in the direction of local measurements
(Figure 12), and the joint constraints on neutrino mass
slightly loosens the bound from external experiments to∑
mν < 0.29eV (95% C.L.) (Figure 15).

• All results are based on redundant implementations and
tests of the most critical components. They are robust
to a comprehensive set of checks that we defined a pri-
ori and made while blind to the resulting cosmological
parameters (see Section V and Appendix A). All related
analyses, unless explicitly noted otherwise, marginalize
over the relevant measurement systematics and neutrino
mass.

• Joint analyses of the three two-point functions of weak
lensing and galaxy density fields have also been exe-
cuted recently by the combination of the KiDS weak
lensing data with the GAMA [62] and 2dfLenS [63]
spectroscopic galaxy surveys, yielding ΛCDM bounds
of S8 that are compared to ours in Eq. (VII.7). Our re-
sults agree with the former, but differ from the latter at
greater than 1-σ. DES Y1 uncertainties are roughly

√
2

narrower than those from KiDS-450; while one might
have expected a greater improvement considering the
∼3× increase in survey area, we caution against any
detailed comparison of values or uncertainties until the
analyses are homogenized to similar choices of scales,
priors on neutrino masses, and treatments of observa-
tional systematic uncertainties.

The next round of cosmological analyses of DES data will
include data from the first three years of the survey (DES Y3),
which cover more than three times as much area to greater
depth than Y1, and will incorporate constraints from clusters,
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supernovae, and cross-correlation with CMB lensing, shed-
ding more light on dark energy and cosmic acceleration.

ACKNOWLEDGEMENTS

Funding for the DES Projects has been provided by the U.S.
Department of Energy, the U.S. National Science Foundation,
the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the
Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of
Illinois at Urbana-Champaign, the Kavli Institute of Cosmo-
logical Physics at the University of Chicago, the Center for
Cosmology and Astro-Particle Physics at the Ohio State Uni-
versity, the Mitchell Institute for Fundamental Physics and
Astronomy at Texas A&M University, Financiadora de Estu-
dos e Projetos, Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério
da Ciência, Tecnologia e Inovação, the Deutsche Forschungs-
gemeinschaft and the Collaborating Institutions in the Dark
Energy Survey.

The Collaborating Institutions are Argonne National Lab-
oratory, the University of California at Santa Cruz, the Uni-
versity of Cambridge, Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Consor-
tium, the University of Edinburgh, the Eidgenössische Tech-
nische Hochschule (ETH) Zürich, Fermi National Accelerator
Laboratory, the University of Illinois at Urbana-Champaign,
the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut
de Física d’Altes Energies, Lawrence Berkeley National Lab-
oratory, the Ludwig-Maximilians Universität München and
the associated Excellence Cluster Universe, the University
of Michigan, the National Optical Astronomy Observatory,
the University of Nottingham, The Ohio State University,
the University of Pennsylvania, the University of Portsmouth,
SLAC National Accelerator Laboratory, Stanford University,

the University of Sussex, Texas A&M University, and the
OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-
American Observatory, National Optical Astronomy Observa-
tory, which is operated by the Association of Universities for
Research in Astronomy (AURA) under a cooperative agree-
ment with the National Science Foundation.

The DES data management system is supported by the
National Science Foundation under Grant Numbers AST-
1138766 and AST-1536171. The DES participants from
Spanish institutions are partially supported by MINECO
under grants AYA2015-71825, ESP2015-88861, FPA2015-
68048, SEV-2012-0234, SEV-2016-0597, and MDM-2015-
0509, some of which include ERDF funds from the Euro-
pean Union. IFAE is partially funded by the CERCA pro-
gram of the Generalitat de Catalunya. Research leading to
these results has received funding from the European Re-
search Council under the European Union’s Seventh Frame-
work Program (FP7/2007-2013) including ERC grant agree-
ments 240672, 291329, and 306478. We acknowledge sup-
port from the Australian Research Council Centre of Excel-
lence for All-sky Astrophysics (CAASTRO), through project
number CE110001020.

This manuscript has been authored by Fermi Research Al-
liance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy, Office of Science, Office of
High Energy Physics. The United States Government retains
and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes.

We are grateful to Anze Slosar for helpful communica-
tions. Many of the figures in this paper were produced with
chainconsumer [138]. This research used resources of
the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

[1] A. G. Riess et al., A.J. 116, 1009 (1998), arXiv:astro-
ph/9805201.

[2] S. Perlmutter et al. (Supernova Cosmology Project), Astro-
phys. J. 517, 565 (1999), arXiv:astro-ph/9812133.

[3] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.
Phys.) 1917, 142 (1917).

[4] O. Lahav and A. R. Liddle, (2014), arXiv:1401.1389 [astro-
ph.CO].

[5] M. J. Mortonson, D. H. Weinberg, and M. White, (2013),
arXiv:1401.0046 [astro-ph.CO].

[6] J. Frieman, M. Turner, and D. Huterer, Ann. Rev. Astron. As-
trophys. 46, 385 (2008), arXiv:0803.0982 [astro-ph].

[7] DES Collaboration (DES Collaboration), (2005), arXiv:astro-
ph/0510346 [astro-ph].

[8] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees,
Nature 311, 517 (1984).

[9] S. J. Maddox, G. Efstathiou, W. J. Sutherland, and J. Loveday,
Mon. Not. Roy. Astron. Soc. 243, 692 (1990).

[10] C. M. Baugh, Mon. Not. Roy. Astron. Soc. 280, 267 (1996),
arXiv:astro-ph/9512011 [astro-ph].

[11] S. J. Maddox, G. Efstathiou, and W. J. Sutherland, Mon. Not.
Roy. Astron. Soc. 283, 1227 (1996), arXiv:astro-ph/9601103
[astro-ph].

[12] D. J. Eisenstein and M. Zaldarriaga, Astrophys. J. 546, 2
(2001), arXiv:astro-ph/9912149 [astro-ph].

[13] C. A. Collins, R. C. Nichol, and S. L. Lumsden, MNRAS 254,
295 (1992).

[14] I. Szapudi and E. Gaztanaga, Mon. Not. Roy. Astron. Soc. 300,
493 (1998), arXiv:astro-ph/9712256 [astro-ph].

[15] D. Huterer, L. Knox, and R. C. Nichol, Astrophys. J. 555, 547
(2001), arXiv:astro-ph/0011069 [astro-ph].

[16] W. Saunders et al., Mon. Not. Roy. Astron. Soc. 317, 55

http://arxiv.org/abs/arXiv:astro-ph/9805201
http://arxiv.org/abs/arXiv:astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1401.1389
http://arxiv.org/abs/1401.1389
http://arxiv.org/abs/1401.0046
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://dx.doi.org/10.1146/annurev.astro.46.060407.145243
http://arxiv.org/abs/0803.0982
http://arxiv.org/abs/astro-ph/0510346
http://arxiv.org/abs/astro-ph/0510346
http://dx.doi.org/10.1038/311517a0
http://dx.doi.org/10.1093/mnras/280.1.267
http://arxiv.org/abs/astro-ph/9512011
http://dx.doi.org/10.1093/mnras/283.4.1227
http://dx.doi.org/10.1093/mnras/283.4.1227
http://arxiv.org/abs/astro-ph/9601103
http://arxiv.org/abs/astro-ph/9601103
http://dx.doi.org/10.1086/318226
http://dx.doi.org/10.1086/318226
http://arxiv.org/abs/astro-ph/9912149
http://dx.doi.org/10.1093/mnras/254.2.295
http://dx.doi.org/10.1093/mnras/254.2.295
http://dx.doi.org/10.1046/j.1365-8711.1998.01917.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01917.x
http://arxiv.org/abs/astro-ph/9712256
http://dx.doi.org/10.1086/323328
http://dx.doi.org/10.1086/323328
http://arxiv.org/abs/astro-ph/0011069
http://dx.doi.org/ 10.1046/j.1365-8711.2000.03528.x


26

(2000), arXiv:astro-ph/0001117 [astro-ph].
[17] A. J. S. Hamilton and M. Tegmark, Mon. Not. Roy. Astron.

Soc. 330, 506 (2002), arXiv:astro-ph/0008392 [astro-ph].
[18] S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362,

505 (2005), arXiv:astro-ph/0501174 [astro-ph].
[19] M. Tegmark et al. (SDSS), Phys. Rev. D74, 123507 (2006),

arXiv:astro-ph/0608632 [astro-ph].
[20] N. Kaiser, Astrophys. J. 284, L9 (1984).
[21] J. A. Tyson, R. A. Wenk, and F. Valdes, Astrophys. J. 349, L1

(1990).
[22] T. G. Brainerd, R. D. Blandford, and I. Smail, Astrophys. J.

466, 623 (1996), arXiv:astro-ph/9503073 [astro-ph].
[23] D. J. Bacon, A. R. Refregier, and R. S. Ellis, Mon. Not. Roy.

Astron. Soc. 318, 625 (2000), arXiv:astro-ph/0003008 [astro-
ph].

[24] N. Kaiser, G. Wilson, and G. A. Luppino, (2000),
arXiv:astro-ph/0003338 [astro-ph].

[25] L. van Waerbeke et al., Astron. Astrophys. 358, 30 (2000),
arXiv:astro-ph/0002500 [astro-ph].

[26] D. M. Wittman, J. A. Tyson, D. Kirkman, I. Dell’Antonio, and
G. Bernstein, Nature 405, 143 (2000), arXiv:astro-ph/0003014
[astro-ph].

[27] M. Jarvis, B. Jain, G. Bernstein, and D. Dolney, Astrophys. J.
644, 71 (2006), arXiv:astro-ph/0502243 [astro-ph].

[28] R. Massey et al., Astrophys. J. Suppl. 172, 239 (2007),
arXiv:astro-ph/0701480 [astro-ph].

[29] T. Schrabback et al., Astron. Astrophys. 516, A63 (2010),
arXiv:0911.0053 [astro-ph.CO].

[30] H. Lin, S. Dodelson, H.-J. Seo, M. Soares-Santos, J. Annis,
J. Hao, D. Johnston, J. M. Kubo, R. R. R. Reis, and M. Simet
(SDSS), Astrophys. J. 761, 15 (2012), arXiv:1111.6622 [astro-
ph.CO].

[31] C. Heymans et al., Mon. Not. Roy. Astron. Soc. 432, 2433
(2013), arXiv:1303.1808 [astro-ph.CO].

[32] E. M. Huff, T. Eifler, C. M. Hirata, R. Mandelbaum,
D. Schlegel, and U. Seljak, Mon. Not. Roy. Astron. Soc. 440,
1322 (2014), arXiv:1112.3143 [astro-ph.CO].

[33] M. J. Jee, J. A. Tyson, S. Hilbert, M. D. Schneider,
S. Schmidt, and D. Wittman, Astrophys. J. 824, 77 (2016),
arXiv:1510.03962 [astro-ph.CO].

[34] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454
(2017), arXiv:1606.05338 [astro-ph.CO].

[35] P. Fischer et al. (SDSS), Astron. J. 120, 1198 (2000),
arXiv:astro-ph/9912119 [astro-ph].

[36] E. S. Sheldon et al. (SDSS), Astron. J. 127, 2544 (2004),
arXiv:astro-ph/0312036 [astro-ph].

[37] A. Leauthaud et al., Astrophys. J. 744, 159 (2012),
arXiv:1104.0928 [astro-ph.CO].

[38] R. Mandelbaum, U. Seljak, G. Kauffmann, C. M. Hirata, and
J. Brinkmann, Mon. Not. Roy. Astron. Soc. 368, 715 (2006),
arXiv:astro-ph/0511164 [astro-ph].

[39] D. E. Johnston, E. S. Sheldon, R. H. Wechsler, E. Rozo,
B. P. Koester, J. A. Frieman, T. A. McKay, A. E. Evrard,
M. R. Becker, and J. Annis (SDSS), (2007), arXiv:0709.1159
[astro-ph].

[40] M. Cacciato, F. C. v. d. Bosch, S. More, R. Li, H. J. Mo,
and X. Yang, Mon. Not. Roy. Astron. Soc. 394, 929 (2009),
arXiv:0807.4932 [astro-ph].

[41] R. Mandelbaum, A. Slosar, T. Baldauf, U. Seljak, C. M. Hi-
rata, R. Nakajima, R. Reyes, and R. E. Smith, Mon. Not.
Roy. Astron. Soc. 432, 1544 (2013), arXiv:1207.1120 [astro-
ph.CO].

[42] A. Choi, J. A. Tyson, C. B. Morrison, M. J. Jee, S. J. Schmidt,
V. E. Margoniner, and D. M. Wittman, Astrophys. J. 759, 101

(2012), arXiv:1208.3904 [astro-ph.CO].
[43] M. Velander et al., Mon. Not. Roy. Astron. Soc. 437, 2111

(2014), arXiv:1304.4265 [astro-ph.CO].
[44] J. Clampitt et al. (DES Collaboration), Mon. Not. Roy. Astron.

Soc. 465, 4204 (2017), arXiv:1603.05790 [astro-ph.CO].
[45] A. Leauthaud et al., Mon. Not. Roy. Astron. Soc. 467, 3024

(2017), arXiv:1611.08606 [astro-ph.CO].
[46] J. Kwan et al., MNRAS 464, 4045 (2017), arXiv:1604.07871.
[47] S. W. Allen, A. E. Evrard, and A. B. Mantz, Ann. Rev. Astron.

Astrophys. 49, 409 (2011), arXiv:1103.4829 [astro-ph.CO].
[48] S. Alam et al. (BOSS), Submitted to: Mon. Not. Roy. Astron.

Soc. (2016), arXiv:1607.03155 [astro-ph.CO].
[49] G. Hinshaw et al. (WMAP), Astrophys. J. Suppl. 208, 19

(2013), arXiv:1212.5226 [astro-ph.CO].
[50] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16

(2014), arXiv:1303.5076 [astro-ph.CO].
[51] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13

(2016), arXiv:1502.01589 [astro-ph.CO].
[52] E. Calabrese et al., Phys. Rev. D95, 063525 (2017),

arXiv:1702.03272 [astro-ph.CO].
[53] W. Hu and B. Jain, Phys. Rev. D70, 043009 (2004),

arXiv:astro-ph/0312395 [astro-ph].
[54] G. M. Bernstein, Astrophys. J. 695, 652 (2009),

arXiv:0808.3400 [astro-ph].
[55] B. Joachimi and S. L. Bridle, Astron. Astrophys. 523, A1

(2010), arXiv:0911.2454 [astro-ph.CO].
[56] A. Nicola, A. Refregier, and A. Amara, Phys. Rev. D94,

083517 (2016), arXiv:1607.01014 [astro-ph.CO].
[57] D. Huterer, M. Takada, G. Bernstein, and B. Jain, Mon. Not.

Roy. Astron. Soc. 366, 101 (2006), arXiv:astro-ph/0506030
[astro-ph].

[58] P. Zhang, U.-L. Pen, and G. Bernstein, Mon. Not. Roy. As-
tron. Soc. 405, 359 (2010), arXiv:0910.4181 [astro-ph.CO].

[59] Y. Park et al. (DES Collaboration), Phys. Rev. D94, 063533
(2016), arXiv:1507.05353 [astro-ph.CO].

[60] S. Samuroff, M. Troxel, S. Bridle, J. Zuntz, N. MacCrann,
E. Krause, T. Eifler, and D. Kirk, Mon. Not. Roy. Astron.
Soc. 465, L20 (2017), arXiv:1607.07910 [astro-ph.CO].

[61] P. Zhang, Astrophys. J. 720, 1090 (2010), arXiv:0811.0613
[astro-ph].

[62] E. van Uitert et al., (2017), arXiv:1706.05004 [astro-ph.CO].
[63] S. Joudaki et al., (2017), arXiv:1707.06627v1.
[64] P. Melchior et al. (DES Collaboration), Mon. Not. Roy. As-

tron. Soc. 449, 2219 (2015), arXiv:1405.4285 [astro-ph.CO].
[65] V. Vikram et al. (DES Collaboration), Phys. Rev. D92, 022006

(2015), arXiv:1504.03002 [astro-ph.CO].
[66] C. Chang et al. (DES Collaboration), Phys. Rev. Lett. 115,

051301 (2015), arXiv:1505.01871 [astro-ph.CO].
[67] M. R. Becker et al. (DES Collaboration), Phys. Rev. D94,

022002 (2016), arXiv:1507.05598 [astro-ph.CO].
[68] DES Collaboration (DES Collaboration), Phys. Rev. D94,

022001 (2016), arXiv:1507.05552 [astro-ph.CO].
[69] M. Crocce et al. (DES Collaboration), Mon. Not. Roy. Astron.

Soc. 455, 4301 (2016), arXiv:1507.05360 [astro-ph.CO].
[70] D. Gruen et al. (DES Collaboration), Mon. Not. Roy. Astron.

Soc. 455, 3367 (2016), arXiv:1507.05090 [astro-ph.CO].
[71] N. MacCrann et al. (DES Collaboration), Mon. Not. Roy. As-

tron. Soc. 465, 2567 (2017), arXiv:1608.01838 [astro-ph.CO].
[72] J. Prat et al. (DES Collaboration), Submitted to: Mon. Not.

Roy. Astron. Soc. (2016), arXiv:1609.08167 [astro-ph.CO].
[73] L. Clerkin et al. (DES Collaboration), Mon. Not. Roy. Astron.

Soc. 466, 1444 (2017), arXiv:1605.02036 [astro-ph.CO].
[74] C. Chang et al. (DES Collaboration), Mon. Not. Roy. Astron.

Soc. 459, 3203 (2016), arXiv:1601.00405 [astro-ph.CO].

http://dx.doi.org/ 10.1046/j.1365-8711.2000.03528.x
http://arxiv.org/abs/astro-ph/0001117
http://dx.doi.org/ 10.1046/j.1365-8711.2002.05033.x
http://dx.doi.org/ 10.1046/j.1365-8711.2002.05033.x
http://arxiv.org/abs/astro-ph/0008392
http://dx.doi.org/ 10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/ 10.1111/j.1365-2966.2005.09318.x
http://arxiv.org/abs/astro-ph/0501174
http://dx.doi.org/10.1103/PhysRevD.74.123507
http://arxiv.org/abs/astro-ph/0608632
http://dx.doi.org/10.1086/184341
http://dx.doi.org/10.1086/185636
http://dx.doi.org/10.1086/185636
http://dx.doi.org/10.1086/177537
http://dx.doi.org/10.1086/177537
http://arxiv.org/abs/astro-ph/9503073
http://dx.doi.org/10.1046/j.1365-8711.2000.03851.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03851.x
http://arxiv.org/abs/astro-ph/0003008
http://arxiv.org/abs/astro-ph/0003008
http://arxiv.org/abs/astro-ph/0003338
http://arxiv.org/abs/astro-ph/0002500
http://dx.doi.org/ 10.1038/35012001
http://arxiv.org/abs/astro-ph/0003014
http://arxiv.org/abs/astro-ph/0003014
http://dx.doi.org/10.1086/503418
http://dx.doi.org/10.1086/503418
http://arxiv.org/abs/astro-ph/0502243
http://dx.doi.org/10.1086/516599
http://arxiv.org/abs/astro-ph/0701480
http://dx.doi.org/10.1051/0004-6361/200913577
http://arxiv.org/abs/0911.0053
http://dx.doi.org/10.1088/0004-637X/761/1/15
http://arxiv.org/abs/1111.6622
http://arxiv.org/abs/1111.6622
http://dx.doi.org/10.1093/mnras/stt601
http://dx.doi.org/10.1093/mnras/stt601
http://arxiv.org/abs/1303.1808
http://dx.doi.org/ 10.1093/mnras/stu145
http://dx.doi.org/ 10.1093/mnras/stu145
http://arxiv.org/abs/1112.3143
http://dx.doi.org/ 10.3847/0004-637X/824/2/77
http://arxiv.org/abs/1510.03962
http://dx.doi.org/10.1093/mnras/stw2805
http://dx.doi.org/10.1093/mnras/stw2805
http://arxiv.org/abs/1606.05338
http://dx.doi.org/10.1086/301540
http://arxiv.org/abs/astro-ph/9912119
http://dx.doi.org/10.1086/383293
http://arxiv.org/abs/astro-ph/0312036
http://dx.doi.org/10.1088/0004-637X/744/2/159
http://arxiv.org/abs/1104.0928
http://dx.doi.org/ 10.1111/j.1365-2966.2006.10156.x
http://arxiv.org/abs/astro-ph/0511164
http://arxiv.org/abs/0709.1159
http://arxiv.org/abs/0709.1159
http://dx.doi.org/ 10.1111/j.1365-2966.2008.14362.x
http://arxiv.org/abs/0807.4932
http://dx.doi.org/ 10.1093/mnras/stt572
http://dx.doi.org/ 10.1093/mnras/stt572
http://arxiv.org/abs/1207.1120
http://arxiv.org/abs/1207.1120
http://dx.doi.org/ 10.1088/0004-637X/759/2/101
http://dx.doi.org/ 10.1088/0004-637X/759/2/101
http://arxiv.org/abs/1208.3904
http://dx.doi.org/10.1093/mnras/stt2013
http://dx.doi.org/10.1093/mnras/stt2013
http://arxiv.org/abs/1304.4265
http://dx.doi.org/10.1093/mnras/stw2988
http://dx.doi.org/10.1093/mnras/stw2988
http://arxiv.org/abs/1603.05790
http://dx.doi.org/10.1093/mnras/stx258
http://dx.doi.org/10.1093/mnras/stx258
http://arxiv.org/abs/1611.08606
http://dx.doi.org/10.1093/mnras/stw2464
http://arxiv.org/abs/1604.07871
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://dx.doi.org/10.1146/annurev-astro-081710-102514
http://arxiv.org/abs/1103.4829
http://arxiv.org/abs/1607.03155
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1103/PhysRevD.95.063525
http://arxiv.org/abs/1702.03272
http://dx.doi.org/10.1103/PhysRevD.70.043009
http://arxiv.org/abs/astro-ph/0312395
http://dx.doi.org/10.1088/0004-637X/695/1/652
http://arxiv.org/abs/0808.3400
http://dx.doi.org/10.1051/0004-6361/200913657
http://dx.doi.org/10.1051/0004-6361/200913657
http://arxiv.org/abs/0911.2454
http://dx.doi.org/10.1103/PhysRevD.94.083517
http://dx.doi.org/10.1103/PhysRevD.94.083517
http://arxiv.org/abs/1607.01014
http://dx.doi.org/ 10.1111/j.1365-2966.2005.09782.x
http://dx.doi.org/ 10.1111/j.1365-2966.2005.09782.x
http://arxiv.org/abs/astro-ph/0506030
http://arxiv.org/abs/astro-ph/0506030
http://dx.doi.org/10.1111/j.1365-2966.2010.16445.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16445.x
http://arxiv.org/abs/0910.4181
http://dx.doi.org/10.1103/PhysRevD.94.063533
http://dx.doi.org/10.1103/PhysRevD.94.063533
http://arxiv.org/abs/1507.05353
http://dx.doi.org/10.1093/mnrasl/slw201
http://dx.doi.org/10.1093/mnrasl/slw201
http://arxiv.org/abs/1607.07910
http://dx.doi.org/10.1088/0004-637X/720/2/1090
http://arxiv.org/abs/0811.0613
http://arxiv.org/abs/0811.0613
http://arxiv.org/abs/1706.05004
http://arxiv.org/abs/1707.06627v1
http://arxiv.org/abs/arXiv:1707.06627v1
http://dx.doi.org/10.1093/mnras/stv398
http://dx.doi.org/10.1093/mnras/stv398
http://arxiv.org/abs/1405.4285
http://dx.doi.org/10.1103/PhysRevD.92.022006
http://dx.doi.org/10.1103/PhysRevD.92.022006
http://arxiv.org/abs/1504.03002
http://dx.doi.org/10.1103/PhysRevLett.115.051301
http://dx.doi.org/10.1103/PhysRevLett.115.051301
http://arxiv.org/abs/1505.01871
http://dx.doi.org/10.1103/PhysRevD.94.022002
http://dx.doi.org/10.1103/PhysRevD.94.022002
http://arxiv.org/abs/1507.05598
http://dx.doi.org/ 10.1103/PhysRevD.94.022001
http://dx.doi.org/ 10.1103/PhysRevD.94.022001
http://arxiv.org/abs/1507.05552
http://dx.doi.org/10.1093/mnras/stv2590
http://dx.doi.org/10.1093/mnras/stv2590
http://arxiv.org/abs/1507.05360
http://dx.doi.org/10.1093/mnras/stv2506
http://dx.doi.org/10.1093/mnras/stv2506
http://arxiv.org/abs/1507.05090
http://dx.doi.org/10.1093/mnras/stw2849
http://dx.doi.org/10.1093/mnras/stw2849
http://arxiv.org/abs/1608.01838
http://arxiv.org/abs/1609.08167
http://dx.doi.org/10.1093/mnras/stw2106
http://dx.doi.org/10.1093/mnras/stw2106
http://arxiv.org/abs/1605.02036
http://dx.doi.org/10.1093/mnras/stw861
http://dx.doi.org/10.1093/mnras/stw861
http://arxiv.org/abs/1601.00405


27

[75] P. Melchior et al. (DES Collaboration), Submitted to: Mon.
Not. Roy. Astron. Soc. (2016), arXiv:1610.06890 [astro-
ph.CO].

[76] T. Kacprzak et al. (DES Collaboration), Mon. Not. Roy. As-
tron. Soc. 463, 3653 (2016), arXiv:1603.05040 [astro-ph.CO].

[77] C. Sanchez et al. (DES Collaboration), Mon. Not. Roy. Astron.
Soc. 465, 746 (2017), arXiv:1605.03982 [astro-ph.CO].

[78] DES Collaboration (DES Collaboration), Mon. Not. Roy. As-
tron. Soc. 460, 1270 (2016), arXiv:1601.00329 [astro-ph.CO].

[79] E. Krause et al. (DES Collaboration), submitted to Phys. Rev.
D (2017), arXiv:1706.09359 [astro-ph.CO].

[80] N. MacCrann et al. (DES Collaboration), in prep. (2017).
[81] A. Drlica-Wagner et al. (DES Collaboration), submitted to As-

trophys. J. Suppl. Ser. (2017).
[82] J. Zuntz et al. (DES Collaboration), submitted to Mon. Not. R.

Astron. Soc. (2017).
[83] B. Hoyle et al. (DES Collaboration), to be submitted to Mon.

Not. R. Astron. Soc. (2017).
[84] M. Gatti et al. (DES Collaboration), in prep. (2017).
[85] R. Cawthon et al. (DES Collaboration), in prep. (2017).
[86] C. Davis et al. (DES Collaboration), in prep. (2017).
[87] M. A. Troxel et al. (DES Collaboration), to be submitted to

Phys. Rev. D (2017).
[88] J. Prat et al. (DES Collaboration), to be submitted to Phys.

Rev. D (2017).
[89] J. Elvin-Poole et al. (DES Collaboration), to be submitted to

Phys. Rev. D (2017).
[90] B. Flaugher et al., The Astronomical Journal 150, 150 (2015),

arXiv:1504.02900 [astro-ph.IM].
[91] S. Desai et al. (2012) p. 83, arXiv:1204.1210 [astro-ph.CO].
[92] I. Sevilla et al. (DES Collaboration), in Proceedings of the

DPF-2011 Conference, Proceedings of the DPF-2011 Confer-
ence (2011) arXiv:1109.6741 [astro-ph.IM].

[93] J. J. Mohr et al. (DES Collaboration), in Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series,
Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 7016 (2008) p. 0, arXiv:0807.2515.

[94] E. Morganson et al., in preparation (2017).
[95] E. Rozo et al. (DES Collaboration), Mon. Not. R. Astron. Soc.

461, 1431 (2016), arXiv:1507.05460 [astro-ph.IM].
[96] E. Huff and R. Mandelbaum, (2017), arXiv:1702.02600

[astro-ph.CO].
[97] E. S. Sheldon and E. M. Huff, Astrophys. J. 841, 24 (2017),

arXiv:1702.02601 [astro-ph.CO].
[98] J. Zuntz, T. Kacprzak, L. Voigt, M. Hirsch, B. Rowe, and

S. Bridle, Mon. Not. Roy. Astron. Soc. 434, 1604 (2013),
arXiv:1302.0183 [astro-ph.CO].

[99] S. Samuroff et al. (DES Collaboration), to be submitted to
Mon. Not. R. Astron. Soc. (2017).

[100] D. Coe, N. Benítez, S. F. Sánchez, M. Jee, R. Bouwens, and
H. Ford, A.J. 132, 926 (2006), astro-ph/0605262.

[101] C. Laigle et al., Astrophys. J. Suppl. 224, 24 (2016),
arXiv:1604.02350 [astro-ph.GA].

[102] M. Jarvis, G. Bernstein, and B. Jain, Mon. Not. Roy. Astron.
Soc. 352, 338 (2004), arXiv:astro-ph/0307393 [astro-ph].

[103] M. A. Troxel and M. Ishak, Phys. Rept. 558, 1 (2014),
arXiv:1407.6990 [astro-ph.CO].

[104] J. Miralda-Escude, Astrophys. J. 380, 1 (1991).
[105] N. Kaiser, Astrophys. J. 388, 272 (1992).
[106] N. Kaiser, Astrophys. J. 498, 26 (1998), arXiv:astro-

ph/9610120 [astro-ph].
[107] M. Kamionkowski, A. Babul, C. M. Cress, and A. Refregier,

Mon. Not. Roy. Astron. Soc. 301, 1064 (1998), arXiv:astro-
ph/9712030 [astro-ph].

[108] L. Hui, Astrophys. J. 519, L9 (1999), arXiv:astro-ph/9902275
[astro-ph].

[109] M. Bartelmann and P. Schneider, Phys. Rept. 340, 291 (2001),
arXiv:astro-ph/9912508 [astro-ph].

[110] A. Refregier, Ann. Rev. Astron. Astrophys. 41, 645 (2003),
arXiv:astro-ph/0307212 [astro-ph].

[111] H. Hoekstra and B. Jain, Ann. Rev. Nucl. Part. Sci. 58, 99
(2008), arXiv:0805.0139 [astro-ph].

[112] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,
473 (2000), arXiv:astro-ph/9911177 [astro-ph].

[113] J. Lesgourgues, ArXiv e-prints (2011), arXiv:1104.2932
[astro-ph.IM].

[114] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and
M. Oguri, Astrophys. J. 761, 152 (2012), arXiv:1208.2701
[astro-ph.CO].

[115] F. Villaescusa-Navarro, F. Marulli, M. Viel, E. Branchini,
E. Castorina, E. Sefusatti, and S. Saito, JCAP 3, 011 (2014),
arXiv:1311.0866.

[116] M. Biagetti, V. Desjacques, A. Kehagias, and A. Riotto, Phys.
Rev. D 90, 045022 (2014), arXiv:1405.1435.

[117] M. LoVerde, Phys. Rev. D 90, 083530 (2014),
arXiv:1405.4855.

[118] C. Patrignani et al. (Particle Data Group), Chin. Phys. C40,
100001 (2016).

[119] A. G. Riess et al., Astrophys. J. 826, 56 (2016),
arXiv:1604.01424 [astro-ph.CO].

[120] E. Krause and T. Eifler, (2016), arXiv:1601.05779 [astro-
ph.CO].

[121] T. Eifler, P. Schneider, and J. Hartlap, Astron. Astrophys. 502,
721 (2009), arXiv:0810.4254 [astro-ph].

[122] J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Manzotti,
S. Dodelson, S. Bridle, S. Sehrish, and J. Kowalkowski, As-
tron. Comput. 12, 45 (2015), arXiv:1409.3409 [astro-ph.CO].

[123] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy. As-
tron. Soc. 398, 1601 (2009), arXiv:0809.3437 [astro-ph].

[124] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman,
Publ. Astron. Soc. Pac. 125, 306 (2013), arXiv:1202.3665
[astro-ph.IM].

[125] M. T. Busha, R. H. Wechsler, M. R. Becker, B. Erickson,
and A. E. Evrard, in American Astronomical Society Meeting
Abstracts #221, American Astronomical Society Meeting Ab-
stracts, Vol. 221 (2013) p. 341.07.

[126] P. Fosalba, E. Gaztañaga, F. J. Castander, and M. Crocce,
MNRAS 447, 1319 (2015), arXiv:1312.2947.

[127] H. Jeffreys, Theory of Probability, 3rd ed. (Oxford, Oxford,
England, 1961).

[128] P. Marshall, N. Rajguru, and A. Slosar, Phys. Rev. D 73,
067302 (2006), astro-ph/0412535.

[129] S. Singh, R. Mandelbaum, and S. More, MNRAS 450, 2195
(2015), arXiv:1411.1755.

[130] C. L. Bennett et al. (WMAP), Astrophys. J. Suppl. 208, 20
(2013), arXiv:1212.5225 [astro-ph.CO].

[131] J. W. Henning et al., (2017), arXiv:1707.09353 [astro-
ph.CO].

[132] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders, and F. Wat-
son, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011),
arXiv:1106.3366 [astro-ph.CO].

[133] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden,
and M. Manera, Mon. Not. Roy. Astron. Soc. 449, 835 (2015),
arXiv:1409.3242 [astro-ph.CO].

[134] M. Betoule et al. (SDSS), Astron. Astrophys. 568, A22
(2014), arXiv:1401.4064 [astro-ph.CO].

[135] J. L. Bernal, L. Verde, and A. G. Riess, JCAP 1610, 019

http://arxiv.org/abs/1610.06890
http://arxiv.org/abs/1610.06890
http://dx.doi.org/10.1093/mnras/stw2070
http://dx.doi.org/10.1093/mnras/stw2070
http://arxiv.org/abs/1603.05040
http://dx.doi.org/10.1093/mnras/stw2745
http://dx.doi.org/10.1093/mnras/stw2745
http://arxiv.org/abs/1605.03982
http://dx.doi.org/ 10.1093/mnras/stw641
http://dx.doi.org/ 10.1093/mnras/stw641
http://arxiv.org/abs/1601.00329
http://arxiv.org/abs/1706.09359
http://stacks.iop.org/1538-3881/150/i=5/a=150
http://arxiv.org/abs/1504.02900
http://arxiv.org/abs/1204.1210
http://arxiv.org/abs/1109.6741
http://dx.doi.org/10.1117/12.789550
http://dx.doi.org/10.1117/12.789550
http://arxiv.org/abs/0807.2515
http://dx.doi.org/10.1093/mnras/stw1281
http://dx.doi.org/10.1093/mnras/stw1281
http://arxiv.org/abs/1507.05460
http://arxiv.org/abs/1702.02600
http://arxiv.org/abs/1702.02600
http://dx.doi.org/10.3847/1538-4357/aa704b
http://arxiv.org/abs/1702.02601
http://dx.doi.org/ 10.1093/mnras/stt1125
http://arxiv.org/abs/1302.0183
http://dx.doi.org/10.1086/505530
http://arxiv.org/abs/astro-ph/0605262
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://arxiv.org/abs/1604.02350
http://dx.doi.org/10.1111/j.1365-2966.2004.07926.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07926.x
http://arxiv.org/abs/astro-ph/0307393
http://dx.doi.org/10.1016/j.physrep.2014.11.001
http://arxiv.org/abs/1407.6990
http://dx.doi.org/10.1086/170555
http://dx.doi.org/10.1086/171151
http://dx.doi.org/10.1086/305515
http://arxiv.org/abs/astro-ph/9610120
http://arxiv.org/abs/astro-ph/9610120
http://dx.doi.org/10.1046/j.1365-8711.1998.02054.x
http://arxiv.org/abs/astro-ph/9712030
http://arxiv.org/abs/astro-ph/9712030
http://dx.doi.org/10.1086/312095
http://arxiv.org/abs/astro-ph/9902275
http://arxiv.org/abs/astro-ph/9902275
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://arxiv.org/abs/astro-ph/9912508
http://dx.doi.org/10.1146/annurev.astro.41.111302.102207
http://arxiv.org/abs/astro-ph/0307212
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171151
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171151
http://arxiv.org/abs/0805.0139
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/1104.2932
http://dx.doi.org/ 10.1088/0004-637X/761/2/152
http://arxiv.org/abs/1208.2701
http://arxiv.org/abs/1208.2701
http://dx.doi.org/ 10.1088/1475-7516/2014/03/011
http://arxiv.org/abs/1311.0866
http://dx.doi.org/10.1103/PhysRevD.90.045022
http://dx.doi.org/10.1103/PhysRevD.90.045022
http://arxiv.org/abs/1405.1435
http://dx.doi.org/10.1103/PhysRevD.90.083530
http://arxiv.org/abs/1405.4855
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://arxiv.org/abs/1604.01424
http://arxiv.org/abs/1601.05779
http://arxiv.org/abs/1601.05779
http://dx.doi.org/10.1051/0004-6361/200811276
http://dx.doi.org/10.1051/0004-6361/200811276
http://arxiv.org/abs/0810.4254
http://dx.doi.org/ 10.1016/j.ascom.2015.05.005
http://dx.doi.org/ 10.1016/j.ascom.2015.05.005
http://arxiv.org/abs/1409.3409
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
http://dx.doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665
http://arxiv.org/abs/1202.3665
http://dx.doi.org/10.1093/mnras/stu2464
http://arxiv.org/abs/1312.2947
http://dx.doi.org/10.1103/PhysRevD.73.067302
http://dx.doi.org/10.1103/PhysRevD.73.067302
http://arxiv.org/abs/astro-ph/0412535
http://dx.doi.org/10.1093/mnras/stv778
http://dx.doi.org/10.1093/mnras/stv778
http://arxiv.org/abs/1411.1755
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://arxiv.org/abs/1212.5225
http://arxiv.org/abs/1707.09353
http://arxiv.org/abs/1707.09353
http://dx.doi.org/ 10.1111/j.1365-2966.2011.19250.x
http://arxiv.org/abs/1106.3366
http://dx.doi.org/ 10.1093/mnras/stv154
http://arxiv.org/abs/1409.3242
http://dx.doi.org/10.1051/0004-6361/201423413
http://dx.doi.org/10.1051/0004-6361/201423413
http://arxiv.org/abs/1401.4064
http://dx.doi.org/10.1088/1475-7516/2016/10/019


28

(2016), arXiv:1607.05617 [astro-ph.CO].
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Appendix A: Unblinding Tests

Here we describe some of the results of the tests enumer-
ated in §V. The most relevant metrics are the values of the
cosmological parameters best constrained by DES Y1, namely
Ωm and S8. We report here on the few instances in which
the robustness tests yielded shifts in either the values or the
uncertainties on S8 or Ωm exceeding 10% of their 68% CL
intervals.

Fig, 17 shows the result of test 7. As CosmoSIS and
CosmoLike use the same data and models, there should in
principle be no difference between them except for the sam-
pling noise of their finite MCMC chains. CosmoSIS yields
error bars on Ωm slightly smaller than those obtained from
CosmoLike, with < 0.2σ change in central value. The S8

constraints agree to better than a percent and the error bars
to within 3%. These numbers and the contours shown in
Figure 17 improved over the results obtained before unblind-
ing, when the difference in the error bars was larger. Longer
emcee chains account for the improvement, so it is conceiv-
able that these small differences — which do not affect our
conclusions — go away with even longer chains.

When carrying out test 8, we found that for both METACAL-
IBRATION and IM3SHAPE, almost all of the parameters were
tightly constrained to lie well within their sampling ranges.
The lone exception was the power law of the intrinsic align-
ment signal, ηIA, which had an error that is large relative to
the prior, but this was entirely expected, as our simulations
indicated that the Y1 data have little constraining power on
ηIA. For those parameters with more informative priors, the
posteriors typically fell close to the priors, indicating that the
data were consistent with the calibrations described in [82]
and [83]. One exception was the IM3SHAPE value ∆z4

s , the
shift in the mean value of the redshift in the 4th source bin,
where the posterior and prior differed by close to 1σ.

The largest discrepancy arises in test 9 of METACALIBRA-
TION vs IM3SHAPE results. Note that Figure 11 of [87]
shows good agreement between the two pipelines on infer-
ences purely with cosmic shear. However, Figure 18 shows
that when all 3× 2-point data are combined, METACALIBRA-
TION leads to a value of S8 that is 1.3σ lower than that pro-
duced by IM3SHAPE. The IM3SHAPE and METACALIBRA-
TION data vectors are not directly comparable, since they bin
and weight the source galaxies differently and thus have dis-
tinct redshift distributions—they can be properly compared
only in cosmological-parameter tests such as this. To the ex-
tent that this 1.3σ discrepancy is meaningful, we found evi-
dence that the 4th source redshift bin might be responsible.

In fact, part of the analysis plan included estimating param-
eters without the highest redshift bin during the blinded phase,
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FIG. 17. Blinded constraints on Ωm and S8 from all three 2-point
functions in DES Y1 using two separate analysis pipelines on the
data. Both contours are shifted by the means of the posteriors ob-
tained from CosmoSIS, so that the CosmoLike contours could in
principle be centered away from the origin.
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FIG. 18. Blinded constraints from DES Y1 on Ωm and S8 from all
three combined probes, using the two independent shape pipelines
METACALIBRATION and IM3SHAPE.
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as there are no redMaGiC galaxies at z > 0.9, and therefore
we cannot use the cross-correlation technique to cross-check
the COSMOS calibration of n4

s (z). Further, as mentioned
above, the shift in the mean of the 4th source bin was larger
than other shifts. So we eliminated that bin from the analysis;
this reduced the disagreement between the METACALIBRA-
TION and IM3SHAPE S8 values to be less than 1σ. Since the
parameter shift from this test is not statistically significant, es-
pecially given the number of robustness tests we execute, and
the METACALIBRATION results are insignificantly altered by
exclusion of this redshift bin, we retain the METACALIBRA-
TION results with all four source bins, for our fiducial con-
straints.

For test 10, we deleted from the data vector angular scales
< 20 arcmin from ξ+, < 150 arcmin from ξ−, < 65 arcmin
from γt, and < 50 arcmin from w(θ). The cosmological pa-
rameter constraints expanded slightly, as expected, but shifted
by much less than 1σ.

Finally, although we looked at these blinded, Figure 19
shows the posteriors of all 20 nuisance parameters used to
model the data. Note the agreement of the two sets of probes
with each other and with the priors on the parameters.

Before unblinding, we listed several additional robustness
tests that would be carried out after unblinding. These are
described in Appendix B.

Appendix B: Robustness of Results

Here we test the impact on the final results of some of the
choices made during analysis. These tests, conducted while
unblinded but identified beforehand, supplement those de-
scribed in §V.

All of our inferences require assumptions about the redshift
distributions for the source and lens galaxies. We have quan-
tified the uncertainties in the redshift distributions with a shift
parameter, as described in and around Eq. (II.1). This allows
for the means of the distributions to change but does not al-
low for any flexibility in the shapes. We now check that the
uncertainty in the photometric distributions in the source bins
is adequately captured by using the BPZ redshift distribution
accompanied by the free shift parameter in each bin. Instead
of redshift distributions obtained via BPZ, we use those ob-
tained directly from the COSMOS data, as described in [83].
As shown in Figure 4 there, the shapes of the redshift dis-
tributions are quite different from one another, so if we ob-
tain the same cosmological results using these different shape
n(z)’s, we will have demonstrated that the detailed shapes do
not drive the constraints. Again we allow for a free shift in
each of the source distributions. Figure 20 shows that the en-
suing constraints are virtually identical to those that use the
BPZ n(z)’s for the source galaxies, suggesting that our results
are indeed sensitive only to the means of the redshift distribu-
tions in each bin, and not to the detailed shapes.

We also considered the impact of the choices made while
computing the covariance matrix. These choices require as-
sumptions about all 26 parameters that are varied. We gen-
erated an initial covariance matrix assuming fiducial values

for these parameters, but then after unblinding, recomputed
it using the means of the posteriors of all the parameters as
input. How much did this (small) change in the covariance
matrix affect our final results? Figure 21 shows that the up-
dated covariance matrix had essentially no impact on our final
parameter determination.

There are no redMaGiC galaxies in our catalog at redshifts
overlapping the fourth source bin, so the only way to verify the
mean redshift of the galaxies in that bin is to use the COSMOS
galaxies. All the other source bins benefit from the two-fold
validation scheme. We therefore checked to see if removing
the highest redshift bin affected our constraints. Figure 22
shows that our fiducial constraints are completely consistent
with the looser ones obtained when the highest redshift bin is
removed.
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FIG. 19. The posteriors from cosmic shear; from w(θ) + γt(θ); and for all three probes using the METACALIBRATION pipeline for all 20
nuisance parameters used in the ΛCDM analysis. The priors are also shown. There are no priors for the bias and intrinsic alignment parameters,
the biases and the lens shifts are not constrained by ξ±. Therefore, the bottom panels have only two curves: posteriors from w(θ) + γt(θ) and
from all three probes. Similarly, there are only three curves for the two intrinsic alignment parameters.
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FIG. 20. Constraints on Ωm and S8 when using the shifted BPZ
redshift distributions as the default for nis(z), compared with those
obtained when using the COSMOS redshift distribution, which have
different shape, as seen in Figure 4 of [83].
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FIG. 21. Constraints on Ωm and S8 when updating the covariance
matrix after initial unblinding and using the means of the posteriors
generated when using the old covariance matrix.
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FIG. 22. Constraints from all three probes using all four source bins
(“Fiducial”) and with the 4th source bin removed.


