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Abstract—A full High Energy Physics (HEP) data analysis is
divided into multiple data reduction phases. Processing within
these phases is extremely time consuming, therefore intermediate
results are stored in files held in mass storage systems and
referenced as part of large datasets. This processing model limits
what can be done with interactive data analytics. Growth in size
and complexity of experimental datasets, along with emerging
big data tools are beginning to cause changes to the traditional
ways of doing data analyses. Use of big data tools for HEP
analysis looks promising, mainly because extremely large HEP
datasets can be represented and held in memory across a system,
and accessed interactively by encoding an analysis using high-
level programming abstractions. The mainstream tools, however,
are not designed for scientific computing or for exploiting the
available HPC platform features. We use an example from the
Compact Muon Solenoid (CMS) experiment at the Large Hadron
Collider (LHC) in Geneva, Switzerland. The LHC is the highest
energy particle collider in the world. Our use case focuses on
searching for new types of elementary particles explaining Dark
Matter in the universe. We use HDF5 as our input data format,
and Spark to implement the use case. We show the benefits and
limitations of using Spark with HDF5 on Edison at NERSC.

I. INTRODUCTION

Experimental High Energy Physics (HEP) deals with the
understanding of fundamental particles and the interactions
between them. Experimental HEP is a compute- and data-
intensive statistical science; a large number of interactions
must be analyzed to discover new particles or to measure
the properties of known particles. For example, data from
over 300 trillion (3 × 1014) proton-proton collisions at the
Large Hadron Collider (LHC) were analyzed for the Higgs
boson discovery [14]. Future HEP experiments will bring
in even more data, and processing and analyzing will be
more challenging. For example, while the LHC generates
up to a billion collisions per second; the High Luminosity-
LHC [6] will generate 7.5 times this rate (data representing
each collision will be larger). These larger data samples will
be needed to obtain a deeper understanding of the Higgs boson
and its implications for the fundamental laws of nature.

A typical HEP workflow to extract physics results from
detector measurements consists of three steps: detector signal
recording, event reconstruction, and data analysis. HEP de-
tectors’ data acquisition systems record detector signals and
impose a structure on the recorded data depending on the

kind of detector and particle interaction of interest. In the
event reconstruction step, physics quantities of broad interest
(e.g., trajectories of charged particles, particle hypothesis)
are extracted from raw instrument signals. The event re-
construction step involves a variety of pattern recognition,
clustering, and track finding algorithms. Reconstruction is
normally performed on full raw data sets and is costly in
terms of processing time. Data analysis typically involves
processing the reconstructed data using selection algorithms,
calculations of statistical summaries, and exploratory plotting
of the relevant summaries. This step is typically I/O bound.

Analysis is an iterative process where low-latency and
interactivity is key to make progress. HEP analysis consists of
several processing steps to reduce data to achieve a sufficient
level of interactivity. These steps can take from days to
weeks; storing intermediate results in files and associated
data handling software infrastructure adds to the processing
time. Figure 2 shows an example of the time consuming
analysis steps, and intermediate data storage requirements.
We need to look at alternate approaches to in-memory data
processing to enable interactive analysis to meet the needs of
the next generation of HL-LHC without significant overhead
of bookkeeping and intermediate files. Emerging big data
tools look promising for changing the traditional ways of
doing these data analyses. However, big data tools are neither
designed for the scientific applications and data nor to exploit
the high performance computing platforms that are available
to the scientific community.

Apache Spark [10], [23] has become industry de-facto in
recent years, and provides several attractive features for HEP
analyses. The in-memory data processing in Spark allows
for interactive analysis, especially where repeated analysis is
performed on the same data sets. Since large data volume can
be represented in memory, the need to create intermediate files
can be eliminated. Spark provides features that can be readily
used to encode the physics analysis. The implicit paralleliza-
tion of the data processing algorithms provides the possibility
of good performance and scaling to large numbers of cores
without requiring the physicists to master complex parallel
programming techniques. This provides important ease-of-use
requirement for programmers beyond what can be achieved
with the current tools. Their goal is rapid completion of anal-
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ysis, and not in developing specialized parallel programming
skills.

In recent years, Spark has been made available for the
scientific applications at National Energy Research Scientific
Computing Center (NERSC) and other facilities [11] making it
even more attractive for our analysis tasks. This allows Spark
applications to run on immensely powerful big compute, big
memory machines at NERSC. Getting access to a large well-
maintained and tuned installation of Spark eliminates the need
for the user to master the installation and tuning of the complex
Spark system.

Our goal is to understand how well Spark performs for
the data- and compute-intensive HEP statistical analyses on
High Performance Computing (HPC) platforms to improve
time-to-physics. We use Spark to implement an active LHC
analysis, searching for Dark Matter with the Compact Muon
Solenoid (CMS) detector as our use case (see Section II),
and evaluate its performance on the supercomputing resources
provided by NERSC. Experimental HEP is a non-traditional
HPC user: only recently are there efforts to use HPC resources
for HEP computing. HEP has big data, but the field has its own
tools and typically uses grid resources to perform an analysis.
Hence, using Spark for HEP analysis on HPC resources
provides a unique approach to encoding and executing data
analysis tasks.

In Section II, we explain the CMS Dark Matter search
use case, and current approach and computing available to
perform this analysis. In Section III, we briefly describe few
fundamental concepts of Spark and HPC IO used in this
paper. In Section IV, we provide details about the input data
format and analysis encoding in Spark. Section V explains the
experimental setup, and discusses results. We provide a list and
discussion of lessons learned in Section VI. We discuss the
related work in Section VII and conclusion and future work
in Section VIII.

II. CMS DARK MATTER SEARCH

Fig. 1: [19]. This figure shows a collision inside the CMS
detector. Tracks that are inferred in the detector, and identi-
fied as different particles. For example, light green lines are
electrons, which are hard to find, and red lines are muons.

A. Science

The CMS detector measures different properties of the
particles produced in a collision, such as tracks left by charged
particles and energy deposits from all particles that interact
via photons and gluons. An example collision is shown in
Figure 1. One collision like this is called an event, and these
events are used in the analysis step to search for new particles.
Our use case focuses on searching for new types of elementary
particles explaining Dark Matter in the universe. We focus
our search on the monoTop signature, where the detectable
particle is a single, unbalanced top quark. Hence, the analysis
task looks at all the event data, which includes data about
all the particles that were formed as a result of collision and
searches for interesting events based on signatures specified
by scientists. For example, a search query may look like: find
all the events with missing energy less than 200, and have
electrons with a maximum momentum of 10 and muons with
a momentum of 4.
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Fig. 2: This figure shows current flow of operations and data,
frequency of each operation and time taken by each operation.
The proposed and implemented flow is shown in bold. The
arrow shows the starting point of our setup, at which point the
tabular data is converted to the HDF5 data format [21]. Once
data is loaded in memory in Spark DataFrames, the subsequent
query operations take a couple of seconds and show potential
for interactive analysis. The size of data in the first bold box
doesn’t represent the conversion of 2TB, rather it only includes
the particle data sets needed in this particular analysis task.

B. Computing

The CMS dark matter analysis is using composite C++
objects, which describe either simulated or recorded collisions
(events). The traditional user analysis workflow for CMS data
uses two frameworks: CMSSW, specially designed for ana-
lyzing CMS data, and ROOT, which is a general, experiment-
independent toolkit. The ROOT framework provides statistical



tools and a serialization format to persist reconstructed and
transformed objects in files.

The data volume to be analyzed is about 200 TB for
the 2015 dataset and contains both data and Monte Carlo
simulations. This is expected to grow in the future significantly
in LHC run 2. This structured event data is converted to a
simplified tabular data structure, called as n-tuples. These n-
tuples have a simple flat structure of vectors of basic types
like integers and floats. Each row of a table holds information
about different particles (photons, electrons, taus) and their
properties (momentum, etc) in an event. Often, the n-tuples
are still too big for interactive analysis (≈ 2 TB). Therefore,
the contents and the number of events are reduced to couple
of GBs. Eventually, quantities from the final n-tuple are
aggregated and plotted as histograms.

An example of end-user analysis is to count signal and
background events, called “cut-n-count”. This is achieved by
processing the n-tuples and making optimized selection cuts.
In the end, the required plots and tables are produced to
extract the physics results of the analysis. The time scale of
the complete Dark Matter workflow can range from days to
weeks, depending on the number of events needed for analysis.
Figure 2 shows several steps in the analysis workflow, and also
the time it takes for each step and how frequent each step
is performed. The purpose of our study is to evaluate Spark
for such analysis. The proposed and implemented workflow is
shown in bold in Figure 2, discussed in Section IV.

III. BACKGROUND: SPARK AND HDF5

In this section, we will describe useful concepts and terms
used in this paper.

Spark [10] was developed for those applications that reuse
a working set of data across multiple parallel operations. It
introduces a concept of Resilient Distributed Datasets (RDDs),
which is a collection of elements partitioned across the nodes
of the cluster that can be operated on in parallel. Spark SQL is
a Spark module for structured data processing [12]. It provides
a programming abstraction called DataFrame, which is a dis-
tributed collection of rows organized into named columns [1].
A Spark DataFrame is an abstraction for selecting, filtering,
aggregating and plotting structured data. These operations are
optimized using the catalyst optimizer [17], [22].

Spark uses lazy evaluation by specifying two types of oper-
ations: transformations and actions. A transformation creates
a new dataset from an existing one, and an action returns a
value to the driver program after running a computation on the
dataset. For example, filter is a transformation that applies
a function to each element in the dataset and returns a new
RDD with pass/fail status. A reduce is an action that applies
some function to all the elements of the RDD, aggregates and
returns the final result to the driver program.

Hierarchical Data Format 5 (HDF5) [21] files organize
data into groups and datasets. Each group can have have more
groups and also several datasets of different types and shapes
(defined by dataspaces). Please see HDF5 documentation on
complete description of these concepts.

IV. DESIGN AND IMPLEMENTATION

Event	
Number

Event	Info Electrons Taus

1 Run Lumisec weight pt eta pt eta
17 2.113 -2.41 3245 0.5
11 2.3

50 1.3
44 1.9

2 Run Lumisec weight pt eta pt eta
67 -2.0 34 1.51 3444 0.65
87 1.9 44 0.3

Fig. 3: This figure shows current data organization, where each
row represents an event. Each event has two types of particles;
electrons and taus. Event 1 has three electrons and 2 taus,
whereas event 2 has two of each. Please note, the numbers in
tables do not represent real data, their purpose is only to show
data organization.

Event Lumi Weight

1 3245 0.5

2 3444 0.65

Event Info

Event pt eta

1 17 2.1

1 11 2.3

1 44 1.9

2 34 1.5

2 44 0.3

Event pt eta

1 13 -2.4

1 50 1.3

2 67 -2.0

2 87 1.9

Taus
Electrons

Fig. 4: This figure shows the new data organization, where
each table corresponds to an HDF5 group. Each particle type
group has the data about the event to use join operation later.
Such an organization allows for maximal parallel processing
by dealing with all different groups in parallel and combining
the results in the end. Please note, the numbers in tables do
not represent real data, their purpose is only to show data
organization.

Figure 2 shows our proposed and implemented workflow
in bold. We use HDF5 as our input data format instead of
ROOT [13] n-tuples. ROOT is the most common data format
in HEP. Using HDF5 allows us to work with other HPC
supported programming abstractions including MPI and is well
supported at NERSC. We implemented a converter to convert
ROOT n-tuples to HDF5 and a reader to read in HDF5 groups
into Spark DataFrames. The first bold box shows the converted
data in HDF5, and the second box represents data in Spark
DataFrames. The arrows show processing from one type of



data to another. With the current volume, it takes about several
minutes to construct the DataFrames in-memory as needed
for the analysis, and a few seconds to run queries on the in-
memory DataFrames.

A. Using HDF5 as Input Data Format

Converting to HDF5 format: Figure 3 shows the current
data organization, where each row contains all the data for dif-
ferent particles and their properties in an event. Our approach
is to represent each particle in an event as an HDF5 group, and
each property of the particle as an HDF5 dataset within the
group as shown in Figure 4. We create a group about general
properties of an event, and then a group for each particle
type and add additional datasets to identify which events this
particle belong to. Such an organization with column-oriented
layout allows distributed processing and joins across groups
as needed. Each group can be processed independently and
in parallel as much as possible, and potentially improve the
performance.

We have left performance studies with other data organi-
zations for future work. This includes the use of compound
data types to represent all properties of a particle and grouping
properties with same data types into N dimensional datasets.

Reading HDF5 in Spark:
HDF5 is not natively supported by Spark framework, how-

ever, there are two projects with basic implementations to
support reading of HDF5 1D datasets into either RDD or
DataFrame [18], [5]. Our most important requirement is to
create a DataFrame per HDF5 group without using the Spark
join operation, which can be very expensive. The current im-
plementations are preliminary and inadequate for our purposes
as discussed in Section VII.

We implemented a customized HDF5 reader for Spark. We
used HDF5 Java API and Scala to read in an HDF5 group
with specified datasets into a Spark DataFrame. The process
of reading HDF5 in Spark is shown using an example in
Figure 5. It is not straight forward to read data from HDF5
files into Spark; each of the HDF5 dataset can have a different
type. All the data sets in a group have the same number
of elements because each group represent a particle type,
and datasets within a group represent different properties of
each particle. We create a list of tuples (file name, begin
index and end index), where begin and end are calculated
based on user-defined chunk size, and represent starting and
ending index within a dataset. The list is then parallelized by
using parallelize(data, number of tasks). By
default, the number of tasks are equal to the size of the list,
and data represents the list of tuples. Each task reads the same
number of elements from each dataset into a row of Spark
RDD. This approach allows us to have each row of different
type in an RDD with contiguous data reads from HDF5 files.

HDF5 allows you to read or write to a portion of a dataset
by use of hyperslab selection. A hyperslab selection can be a
logically contiguous collection of points in a dataspace, or it
can be a regular pattern of points or blocks in a dataspace [7].
We use hyperslabs to read in chunks to allow maximal

parallelism while reading data. At the end of this read step, we
essentially get an RRD with the number of rows equal to the
number of datasets read, and the number of elements in each
row is equal to the user-defined chunk size. Now, we have all
the data we need in RDDs but not in the right format to allow
for easy to use operations. Each task transposes its RDD, and
maps to the appropriate DataFrame schema getting the right
form. We define schema for each DataFrame corresponding to
each HDF5 group. The data partition is based on the chunk
size in each HDF5 dataset per group across all the input files.
The expected outcome from HDF5 Spark reader is several
DataFrames each representing data of a particle type, and
an additional DataFrame with event properties. In future, we
would like to explore more efficient mapping from HDF5 to
Spark, and other data organizations within our HDF5 files.

B. Encoding analysis problem in Spark

The conversion step is extremely important because the
structure of data defines what APIs can be used later on
in the cut-n-count analysis. The next step is to encode the
analysis, by first reducing the contents of the event and the
number of events. We define operations for the DataFrame
as a whole, which will perform selection and filtering of
the data and often use join for DataFrames as we are doing
event-based analysis. This requires adding new columns to
the DataFrames, where each column would define a complex
filter using other columns in the DataFrame. We used the
User-defined Functions (UDF) provided by Spark SQL to
define new column based functions. We implemented several
UDFs, and a few were using inputs from tens of other
columns, see [3] for details. The drawback of using UDFs
is they are treated as black box code, and Spark doesn’t try
to optimize these [17]. In some cases, we divided required
filter conditions into multiple equivalent conditions to simplify
UDFs. Several filter operations per DataFrame are defined; but
all these are lazy evaluated. In our filter implementation, we
used several conditionals, select queries, groupby, and
aggregations (sum, count). After the aggregation
operations, we are usually left with one particle per event in
all the particles DataFrames. We used SQL select queries
to join columns from different DataFrames. The analysis was
implemented in Apache Spark 2.0 DataFrame API using Scala.

Figure 6 shows an example of creating a histogram; we can
identify several distinct steps. The read operation is followed
by filtering, and aggregation. After the aggregation operation,
we only have one electron per event that passes given criteria.

V. RESULTS AND DISCUSSION

We evaluated the performance of reading, and applying
queries to the electron data; there are ≈ 200 million electrons
for the 360 million events in our current data set. There are
many events with no electrons in them, and there are many
events with several electrons. There are 22 datasets in an
electron group, and each dataset corresponds to one property
of an electron. Each dataset is either a float or an integer (4



Task 1

Transpose 

HDF5 Group

Spark DataFrame

Spark RDD[Rows]

Task 2 Task 3

Apply Schema/ 
Convert to 
DataFrame

Read

HDF5 Dataset 1 HDF5 Dataset 2 HDF5 Dataset 3 HDF5 Dataset 4

Chunk 

Fig. 5: This figure shows how our HDF5 custom reader creates a Spark DataFrame for an HDF5 group in a file. In this
example, the HDF5 group has four datasets and each data set is divided into three chunks. Three tasks are created to read data
in parallel. Each task sequentially reads in a chunk from all data sets within a group. Task 1 is highlighted for clarity. The
chunks read by different tasks are not contiguously located in the file. Each chunk from a dataset is read into a row of Spark
RDD. The resulting RDD is transposed and converted to a Spark DataFrame, with the same number of columns as datasets in
HDF5 group.

bytes). Hence, the effective data read for this analysis is linked
to electrons only. The analysis operation also involves reading
information about 360 million events. The resulting DAG from
Spark is also included in Figure 7; when using high level APIs
in Spark, it is always challenging to fine tune an application.

The data in the files is organized such that each file consists
of several groups, and each group has several 1D data sets.
Each group represents one type of particle in an event. Each
HDF5 file has 7 groups. Our data set consists of information
about 360 million events (≈ 0.5 TB). We have used an example
of analyzing electron data.

We ran tests on Edison, which is a Cray XC30 supercom-
puter at NERSC [2]. Each compute node consists of two 12-
core Intel “Ivy Bridge” processors at 2.4 GHz. We set the
number of executors to 24, the driver memory at 40GB, and
the executor memory at 56 GB. The limit on executor memory
is 64GB on Edison, and we can run up to 24 executors. We
used the Lustre filesystem for retrieving input data.

A. Number of tasks and partitions:

We have the data in two forms; a large number of small
compressed HDF5 files (gzip) with total 270 GB, and a few
larger uncompressed HDF5 files with total of 500GB. There

are 928 compressed files, each file is less than 10 GB; they
are distributed across 243 OSTs at NERSC. There are 35
uncompressed files with size ranging between 2GB to 90GB.
These files are distributed on 35 OSTs. We made another copy
with stripe_medium set, and each file was distributed on
24 OSTs, using 236 OSTs in total.

For each of these three configurations, we defined four
different data partition sizes; 100K means that each task
has 100 thousand rows of the DataFrame, 500K means 500
thousand, oneM means one million and tenM means ten
million rows. For example, for the 100K size, our partitioning
scheme divides all the electron data into 22x100K elements,
and 2K tasks are generated. With 24 cores per node, the
number of tasks will even out as the number of nodes increase
from 64 to 128 nodes. Hence, for 100K partition we expect
to see performance curve flattening out.

We observed no affect of partitioning on execution time for
the compressed files on 243 OSTs, and for the uncompressed
files distributed on 236 OSTs. Upon further investigation,
we found out that Spark is not always creating tasks based
on our data partitioning but mostly it is using some system
optimizations to identify what would be better data and task
assignment. In short, we have no control on changing the



read HDF5 Files 
(val electron_df = createElectronDF(filename, groupname, …))

val tau_df = ….

DataframeDataframeDataframeDataframe
(Electron DF)

Transfor
mation Action

fdf = filterEDF(electron_df)
df = fdf.groupBy(..).max(“Electron_pt”)
…

df.rdd.histogram(…)

Output

One DataFrame per 
particle type

Fig. 6: This figure shows the sequence of operations that take
place for histogram calculation. The blue dotted box shows the
read operation. The output is created when an action is called,
and several transformations are applied on the DataFrame.

Fig. 7: This figure shows a rather complex DAG Spark creates
to calculate the histogram. The first two stages correspond
to the parallel read followed by a join operation and further
transformations in stage 2. Stage 3 shows the DataFrame to
RDD conversion for histogram calculation. The green dot in
the last stage shows caching of the resulting DataFrame. The
cached DataFrame is used to create histogram.

partitions size, when the data is distributed across almost all
the OSTs (246 is the maximum).

In the last configuration, our dataset is using 35 OSTs,
i.e. each file is residing on exactly one OST, even the larger
ones. The results are shown in Figure 8. 100K and ten
million appears to be either a lot of partitions or too few
partitions to benefit from the existing resources. Regardless
of the partitions, we observe scaling with number of cores to
a point where current data size can not optimally use all the
cores.
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Fig. 8: This figure shows the impact of different number of
partitions with varying number of cores. We used four different
partition sizes: 100K means that each task has 100 thousand
rows of the DataFrame, 500K means 500 thousand, oneM
means one million and tenM means ten million rows.

B. Compressed and uncompressed data:

Using the same configurations for file distribution and sizes,
and partition of 500K, we compared the execution time for
the histogram query as shown in Figure 9. The test using
compressed files on 243 OSTs show the best performance as
compared with the tests using uncompressed files. However,
we observe convergence in the performance by all three
tests as the number of cores outnumber the data partitions.
The better performance of compressed file is attributed to
the following: decompressing data in memory is faster than
reading more data from the disks. The uncompressed files
on fewer OSTs, performs worse than the other two because
of the OST contention, while reading the files. All three
organizations show similar scaling behavior.

C. Different Steps in Spark:

In Spark, it is difficult to isolate different internal stages.
We divided the analysis operation in several steps, and forced
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Fig. 9: This figure compares the time for histogram query us-
ing both compressed and uncompressed data. The compressed
data is using 243 OSTs, and uncompressed is using 35 OSTs
in one case and 236 in another.

evaluation at end of each step by using an appropriate Spark
action. As already described, the analysis operation is to
create histogram of transverse momentum of electrons that
pass certain criteria. The task is to look at each electron
independently to see if it passes the given filter, group by
event, and then keep the electrons with the highest transverse
momentum. The high level operations we used are:

• Step 1: Read in the electron group from HDF5 files into
an unformatted RDD

• Step 2: Format the RDD to right shape (transpose)
• Step 3: Convert to DataFrame using the schema based on

HDF5 group
• Step 4: Histogram of transverse momentum (Read in

info group into a Spark DataFrame, join with electron
DataFrame, and several operations using UDFs on the
DataFrame, e.g. aggregation, filtering)

In Figure 10, step 1 shows good scaling with increase in
number of cores to the point where number of cores outnumber
the number of tasks, same is the case with Step 4. Step 4 is
rather complex, and involves few global synchronization and
several transformations, e.g. filter defined in UDFs. Once data
is correctly loaded into memory, the best time for step 4 is
≈ 28 sec to run the user query. It shows the expected time
for the similar wide range of operations. Step 2 and 3 do not
involve any reading from disk operation or computation, and
we see a constant overhead regardless of the number of cores
used.
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Fig. 10: Time taken by different steps in Spark for the his-
togram query. The read in step 1 scales, step 2 and step3 show
a constant overhead regardless of scale. Step 4 is the most
complicated and involves several operations; it demonstrates
that once a DataFrame is created, we observe good scaling for
1534 cores and degraded performance after that.

D. Comparing MPI and Spark

In this subsection, we provide preliminary results for ex-
ploring alternate approaches to Spark. It was not feasible
to run the relevant parts of the original analysis code on
Edison. We are using MPI as an alternate to our Spark
implementation. Reading HDF5 files using MPI on Edison is
extremely efficient. The availability of Python interface in MPI
along with the high performance I/O makes MPI a possible
approach to address this problem.

Global reduction operations are frequently done in several
analysis; in this test we compared the time it takes to read
a single HDF5 dataset and compute sum of its elements
using Spark and MPI. Both implementations are configured
to read from the uncompressed HDF5 files distributed on
236 nodes. We kept the same partitioning scheme with 500K
elements for Spark. We used agg(sum("weights")) on
the DataFrame, which has weights as one of the columns.

The MPI implementation used parallel read with in each
file utilizing the Python interface for reading HDF5 files,
h5py [4], with MPI/IO support (mpi4py [8]). In MPI, we
used NumPy [9] arrays to hold the data in memory and
MPI.COMM_WORLD.Reduce() with op as MPI.SUM. The
interface provided by h5py, mpi4py, and numpy is simple
to use, and offers a competitive approach to the high level
API offered by Spark. The results are shown in Table 1. MPI
implementation always performs better as compared with the
Spark implementation; both are reading the same data, and
doing the exact same calculation. We also observed that once



data is loaded into the Spark DataFrame, the sum operation
takes less than 4 seconds to complete.

Due to the size of data, we haven’t seen any performance
scaling beyond 384 cores for both MPI and Spark. However,
we have observed good scaling behavior in Spark in general.
With the MPI implementation, providing scalability is chal-
lenging and requires a different distribution of input files every
time with the varying number of tasks. Additional algorithm
need to be written and maintained for this implementation to
work well as a system.

TABLE I: Comparing Read and Summation time for the MPI
and Spark implementation

Number of Cores 96 192 384
Time for MPI 4.89 sec 7.01 sec 7.14 sec

Time for Spark 107 sec 69 sec 48 sec

VI. LESSONS LEARNED

We discuss observations and lessons learned as a result of
our project:

1) Input data format and organization: The structure and
organization of data defines what APIs can be used
later on in the analysis. We had the option to define
data organization to allow for efficient read into Spark
DataFrame and use its API efficiently. The DataFrame
API provides all the features we needed to implement
the use case. The CMS data is stored in the form of
ROOT trees [13], which is the most common data format
in HEP, which is hierarchical and complex and Spark
DataFrames are tabular. Hence, we need flattened tables
to effectively use the API. We used HDF5 data format
to define logical tables into groups for this project. We
have used RDDs in the past, but the API results in more
complex code. Use of Dataset API will be explored in
our future work.

2) Operations on multiple DataFrames: Currently we
read data in multiple logical tables, e.g. all information
regarding a given reconstructed particle type can be
found in one table. The nature of this analysis is to
combine the data from different tables and make several
histograms for different particles properties. If we read
data from multiple DataFrames, adding a new column to
the DataFrame from another DataFrame is not supported
within Spark. Spark only supports adding new columns
within the same DataFrame. We use join or SQL select
queries to add columns from a different DataFrame.

3) High Level API: There are functions available to
perform transformations, aggregations, global reduction
in a distributed environment, which can be readily used.
Such a set-up provides ease-of-programming, however, it
does mean that the user has to rely on system optimiza-
tions provided by Spark’s implementation to improve
any performance. Similarly, it is hard to understand a
DAG created by Spark for SQL queries on DataFrames,
and users have minimal control over optimizing the
query structure, data partitions, etc.

4) Orchestration: We defined partition size, and number of
tasks for our use case but for many use cases we can use
the default partition size, which is equal to file system
block size. But figuring out the best partition size for
a job is challenging. Allocating tasks and data partition
to the worker nodes is abstracted from the user. Users
don’t have to change the number of tasks to match with
the number of cores available.

5) Scaling: The Spark implementation provided good
scaling without requiring any tuning to the implemen-
tation and developer expertise in parallel algorithms.
When the number of partitions is less than number of
cores allocated, we are wasting resources and observe
degraded performance. However, it has been challenging
to control number of tasks in some cases. We anticipate
good scaling behavior when we use bigger data sets (≈
200TB).

6) Application tuning: All the transformations in Spark
are lazy, with delayed calculation of results. The trans-
formations applied to the base dataset e.g. a file are
remembered by the system and only computed when
an action is carried out on the dataset. This design
enables Spark to run more efficiently. For example, it
can recognize that a dataset created through map will be
used in a reduce and return only the result of the reduce
to the driver, rather than the larger mapped dataset.
Due to the lazy evaluation, it is hard to isolate slow-
performing tasks and report timing for different stages.

7) Using appropriate Spark flags: Without an expert help it
is challenging to identify what configuration and options
to use for an application. For example, memory per
node, number of cores per node, debug level, etc.

8) Multiple Language Support: The availability of Python
and R interface for end user analyses is also a key feature
desired by the HEP community.

9) Debugging and Error Messages: Most of the times error
messages in Spark are misleading and need more work
just to understand the error message before working on
a fix. Use of graphical interface and history server can
be useful but when using DataFrame API, understanding
different stages and partitions is not straightforward.

10) Documentation: Spark could be used more effectively
with comprehensive documentation with reasonable ex-
amples.

VII. RELATED WORK

Using big data technologies from industry is not a new area
in HEP, but we are the first group exploring the use of big
data technology and HPC for HEP. In the past, we have done
some exploratory work by implementing a compute intensive
event classification algorithm using Spark, but the algorithm
itself was unsuitable to use caching and in-memory repeated
processing provided by Spark [20] resulting in poor perfor-
mance as compared with the MPI implementation. Our CMS
use case, however, presents us with the opportunity to fully
explore the attractive features of Spark as discussed previously.



Our current work on using Spark for CMS Dark Matter use
case is part of CMS big data project, which also includes
using industry standard data format, a data organization that
is consistent with the existing data organization in ROOT, and
Hadoop ecosystem instead of HPC platforms [16].

Using MapReduce for High Energy Physics Data Analy-
sis [15] makes use of ROOT in Hadoop eco-system. The use
of MapReduce does not solve the iterative and interactive HEP
analysis problems. Our approach uses Spark on HPC, which
enables iterative and interactive analysis as well as the use of
HDF5 which is a supported HPC format.

h5spark [18] provides the ability to read HDF5 1D datasets
into Spark RDDs. We needed higher level API access to the
datasets, and converting RDDs to DataFrame was an extra
overhead. Also, we needed the ability to read data such that all
the datasets in a group should be in one DataFrame. These two
requirements made it inconvenient for us to use h5spark. hdf5-
spark [5] is a Spark plugin to read HDF5 data in DataFrames,
however it doesn’t meet our requirement of reading all HDF5
datasets into a Spark DataFrame. The only way to achieve
this requirement is to use join operation, which is extremely
inefficient if we have to call join for each dataset. Our HDF5
to Spark DataFrame reader allows us to create one DataFrame
per HDF5 group, but customized to our current data layout.

VIII. CONCLUSION AND FUTURE WORK

We chose the CMS Dark Matter use case because its
processing stages represents an important class of problems
in experimental HEP. These stages include reducing the event
contents and event count by applying several selection criteria,
and plotting. Here is a summary of our contributions:

• Implemented a prototype of an HDF5 Spark reader for
reading several 1D HDF5 datasets within a HDF5 group
into a single Spark DataFrame with user specified parti-
tioning size across multiple files

• Provided a tabular data representation and ability to
perform key operations in distributed environment beyond
batch processing.

• Provided encoding of analysis in Spark environment,
which eliminated the need of intermediate file storage

Spark is relatively new and emerging technology, and its
use, especially in the HEP community, is in exploratory
stages. The learning curve involved with its use, especially
using Scala, cannot be ignored. However, the availability of
APIs in R and Python improves beginner’s experience. Other
advantages include task distribution and user controlled data
partitioning. We have seen good scaling behavior of Spark
applications with increase in dataset size and the number of
nodes with no extra work. Encoding analysis workflow using
Scala best practices and the optimal use of DataFrame features
is challenging. The documentation and error reporting should
be improved. However, the ease of use, reasonable perfor-
mance and good scalability makes Spark a viable candidate
for our future work.

In the future, we would like to study the impact of various
HDF5 data layouts and their efficient reading in Spark. We

are collaborating with the data analytics team at NERSC to
understand performance of our use case in Spark. We will
explore the use of OST for maximal parallelism. We will also
study the usability of the new Dataset APIs for our use case.
We will study scalability with 100 times larger data. We will
also implement the full use case using MPI, and compare ease
of use and performance with the Spark implementation. We
will also implement more use cases from HEP analyses and
explore multi-user aspect of interactive analysis.
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