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Galaxy surveys probe both structure formation and the expansion rate, making them promising
avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribu-
tion of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide
sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D
maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel
(sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and
we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for
the cross-correlation of the two fields. One very powerful application is the ability to simultaneously
constrain the redshift distribution of the photometric sample, the sample biases, and cosmological
parameters. We use our framework to show that combined analysis of DESI and LSST can improve
cosmological constraints by factors of ∼1.2 to ∼1.8 on the region where they overlap relative to
identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe
82, cross-correlating improves photo-z parameter constraints by factors of ∼2 to ∼12 over internal
photo-z reconstructions.

I. INTRODUCTION

The ΛCDM model is successful in explaining nearly
all cosmological observations, yet we lack an underly-
ing physical theory that produces this phenomenological
model. The vacuum energy density Λ is subject to the
well-known cosmological constant problem [1], and cold
dark matter (CDM) could arise from a multitude of ex-
tensions to the standard model of particle physics [2].

Galaxy surveys will shed light on whether the cos-
mological constant is indeed responsible for the current
epoch of acceleration. Galaxy clustering and gravita-
tional lensing are sensitive both to geometric expansion
and to the growth rate of cosmic structure, and models
for cosmic acceleration make a wide variety of predictions
for expansion and structure growth. As a result, galaxy
surveys will test ΛCDM and its rivals with unprecedented
precision over the coming decade.

Galaxy surveys can be broadly classified as either spec-
troscopic or photometric. Spectroscopic surveys mea-
sure individual spectra for the galaxies they observe and
therefore provide three-dimensional galaxy density maps.
Photometric surveys image galaxies in a handful of color
bands, often with high resolution, and therefore measure
the angular positions and shapes of many more galaxies,
with the caveat that the radial position of each is only
estimated based on its colors. The resulting photometric
redshifts are typically accurate at the 1-10 percent level.

Therefore, rather than treat each galaxy individually,
analysts of photometric surveys typically divide objects
into several photometric redshift bins for analysis, treat-
ing each bin as a 2D field [3]. The properties of these bins
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still depend on the photometric redshift properties of the
survey, and therefore their constraining power is often
limited by the accuracy of the photometric redshifts.

Some patches of the sky are observed by both photo-
metric and spectroscopic surveys. For example, the on-
going Dark Energy Survey [4] and the completed Sloan
Digital Sky Survey-III [5] overlap in a portion of the sky
known as Stripe 82, while surveys from the upcoming
Large Synoptic Survey Telescope [6] and Dark Energy
Spectroscopic Instrument [7] will overlap over roughly
∼3000 deg2 of equatorial sky.

In these regions, a combined analysis of the overlapping
photometric and spectroscopic surveys can help overcome
the limitations of both types of surveys. In particular,
because overlapping surveys sample overlapping matter
distributions, we expect a cross-correlation of the two
samples to be sensitive to the redshift distributions of
the photometric survey’s redshift bins, the galaxy biases
of the samples, and cosmological parameters.

This raises a question: Galaxy clustering in spectro-
scopic surveys is typically analyzed in three dimensions,
while photometric probes, such as the lensing field, are
best described in two dimensions. What is the best way
to obtain information from a 2D probe that overlaps with
a 3D probe? If 2D fields are described by the angular cor-
relation function and spectroscopic fields by the 3D cor-
relation function, what is the relevant statistic describing
the cross-correlation between them?

Indeed, several groups (see, e.g., Newman et al. [8], Mc-
Quinn & White [9], Ménard et al. [10]) have already
demonstrated that the cross-correlation between the 2D
photometric surveys and 3D spectroscopic data is a pow-
erful way of understanding the errors on photometric
redshifts. They typically exploit the cross-correlation
by working in several steps. A cosmology is first as-
sumed or measured from the surveys individually. This
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cosmology is then used to compute cross-correlations of
the 2D photometric density bins with the 3D spectro-
scopic galaxy positions, which they also bin into many
2D redshift slices. These cross-correlations are then used
to constrain the photo-z and bias parameters of the 2D
survey. Finally, these nuisance parameter constraints
improve the cosmological constraints from the 2D shear
measurements.

Other groups (see, e.g., Gaztañaga et al. [11], Kirk
et al. [12], Eriksen & Gaztanaga [13]) approach the prob-
lem using a one-step analysis of the overlapping pho-
tometric and spectroscopic surveys, simultaneously con-
straining cosmology, photo-zs, and biases. Again, they
treat the 3D survey as a set of 2D redshift slices, which
potentially discards some of the radial modes in the 3D
survey. [14] and [15] try to recover these 3D modes by
including a small-scale power spectrum P (k).

In this paper, we present a framework for conducting a
one-step analysis of overlapping 2D and 3D surveys while
retaining all radial information. As an application of this
formalism, we quantify the cosmological benefit of hav-
ing LSST and DESI overlap as well as possible photo-z
constraints from the overlap of DES and SDSS. However,
we argue that the formalism itself may prove useful in a
wide variety of cosmological analyses as galaxy surveys
and cosmic microwave background experiments, each of
which have a multitude of probes of the underlying mat-
ter distribution, become more powerful.

Our formalism is based on decomposing 2D fields into
spherical harmonics and 3D fields into spherical Fourier-
Bessel (sFB) modes. The sFB decomposition was pio-
neered in cosmology by [16], [17], and [18] and has seen
renewed attention in works by [19], [20], [21], and [22],
among others. This one-step approach carries advan-
tages: it does not require a fixed cosmology in the initial
determination of photo-z properties; it counts the modes
that constrain both photometric properties and cosmo-
logical parameters once and only once, where two-step
approaches run the risk of counting modes twice (if the
same modes are used separately to constrain photomet-
ric redshifts and cosmological parameters) or not at all
(if the covariance between the 2D and 3D fields is not
used in the cosmological analysis).

We develop our framework in Sec. II. We then apply
this formalism in a Fisher matrix forecast in Sec. III,
results of which for LSST-DESI and DES-SDSS are pre-
sented in Sec. IV. Finally, we conclude in Sec. V.

II. THE 2D × 3D FORMALISM

A. Decompositions and correlations of 2D and 3D
fields

We wish to extract all the information present in over-
lapping 2D and 3D scalar fields. In this work, the 2D
fields will be tomographically binned density or shear
fields from a photometric survey, while the 3D field will

be a density field from a spectroscopic survey.
Let A(n̂) be an observed 2D scalar field, the sky-

projection of the true matter density contrast δ(rn̂)
weighted by some efficiency kernel FA(r):

A(n̂) =

∫
drFA(r)δ(rn̂), (1)

where r is the line-of-sight comoving distance, and we
assume spatial flatness throughout. We will consider two
kinds of scalar fields, the galaxy density field with A =
g and the lensing convergence field with A = κ. The
efficiency kernel for galaxy clustering is

Fg(r) ≡ b(r)
H(z)

c

dn

dz

∣∣∣∣
z=r

, (2)

while the efficiency kernel for weak lensing is

Fκ(r) ≡ 3

2

H2
0

c2
Ω0
m

r

a(r)

∫ ∞
z(r)

dzs
dn

dzs

[
1− r

r(zs)

]
. (3)

b(r) is the scale-independent linear bias evaluated at
the time when a photon that reaches us today was a
comoving distance r away from us. dn

dz is the field’s
redshift-space selection function, normalized such that∫

dz dndz = 1.
We will absorb all partial sky coverage into a factor

fsky in the Fisher matrix. We refer the reader to [23]
for a more detailed discussion of the mode-mixing that
occurs with proper treatment of angular masks.

The 2D field A(n̂) lives on the sky, and therefore we
can expand it in a set of complete basis functions on the
sphere, the orthonormal spherical harmonics Y`m(n̂). We
then have:

A(n̂) =
∑
`,m

A`mY`m(n̂). (4)

The spherical harmonic coefficients can be directly com-
puted from the data (see, e.g., [24]). We relate these ob-
served quantities to the underlying density field by mul-
tiplying each side of Eq. (4) by Y ∗`′m′(n̂) and integrating
over the solid angle dΩ corresponding to n̂ :

A`m =

∫
drFA(r)

∫
dΩY ∗`m(n̂)δ(rn̂)

=

∫
dr

∫
d3~k

(2π)3
δ̃(~k)4πi`j`(kr)Y

∗
`m(k̂)FA(r, k). (5)

To get the second equality, we used the spherical har-
monic form of the plane wave expansion,

ei
~k·~x = 4π

∑
`,m

i`j`(kx)Y ∗`m(k̂)Y`m(x̂), (6)

and we defined FA(r, k) ≡ D(r, k)FA(r), where D(r, k)
is the scale-dependent growth function, in order to iden-

tify δ̃(~k) with a Fourier mode of the present-day matter
density constrast.
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Cosmological information is present in the correlations

of this field. Since 〈δ̃(~k)δ̃(~k′)〉 = (2π)3δD(~k + ~k′)P (k),
where P (k) is the matter power spectrum today, the en-
semble average of the expansion coefficients of two 2D
fields A(n̂) and B(n̂) is

〈A`mB∗`′m′〉 = δ``′δmm′CAB` , (7)

with the angular spectrum CAB` equal to:

CAB` =

[
2

π

∫
dr1

∫
dr2

∫
k2 dkP (k)

×FA(r1, k)FB(r2, k)j`(kr1)j`(kr2) +NA
` δAB

]
. (8)

We have added shot noise in the case where A and B
are the same field. With n2D the number of galaxies per
steradian in the sample, the noise for galaxy clustering
is Ng

` = 1/n2D and the noise for weak lensing is Nκ
` =

.32/(2n2D) (e.g., see Hearin et al. [25]).
We can follow [26] and do the above radial integrals

in the Limber approximation at the expense of accu-
racy at small ` by making the substitution j`(kr) →√

π
2`+1δ

D(kr − `− 1/2). Thus:

CAB` '
∫

dk
P (k)

`+ 1
2

FA(
`+ 1

2

k
, k)FB(

`+ 1
2

k
, k)

+NA
` δAB . (9)

A photometric survey will in general have several 2D to-
mographic bins, and every bin can have galaxy-galaxy,
lensing-lensing, and galaxy-lensing information. There
will also be information in the correlations across bins.
All of these correlations can be computed with the ap-
propriate kernels in Eq. (9). For Gaussian fields, these
two-point functions contain all of the cosmological infor-
mation in the 2D fields.

Now consider a 3D galaxy over-density field β(~x) that
overlaps with these 2D fields. Just as we expanded 2D
fields in a basis on the sphere, we wish to expand the 3D
field in a family of 3D basis functions for scalar fields.

We anticipate cross-correlating our expansion of the
3D field with the spherical harmonic expansions of the
2D fields, and thus we retain spherical harmonics as the
angular basis functions. Motivated by the plane wave
expansion, Eq. (6), we include the spherical Bessel func-
tions as the radial basis functions. Any cosmological field
should be well behaved at the origin, so we need use only
the spherical Bessel functions of the first kind, j`(kr).
Together, the spherical Bessel functions and spherical
harmonics form the spherical Fourier-Bessel (sFB) basis.
This basis is the solution set to the Helmholtz equation in
spherical coordinates with a nonsingular boundary con-
dition at the origin.

The sFB basis has been used in the context of galaxy
surveys before. [27] provide a code to quickly compute

sFB decompositions from data, and [22] study the cross-
correlation of the 2D thermal SZ map with the 3D weak
lensing potential in a similar language. [23] conduct a
detailed study of the benefits of analysing 3D galaxy sur-
veys in the sFB basis. Here we apply this formalism to
overlapping 2D and 3D galaxy surveys.

Consider the 3D galaxy density field:

β(rn̂) = φβ(r)bβ(r)δ(rn̂), (10)

where φβ(r) is the comoving-space survey selection func-
tion, normalized so that

∫
d3~rφβ(r) = Vβ , the volume of

the survey in comoving units, and again neglecting par-
tial sky coverage. Expanding in the sFB basis, we have:

β(rn̂) =

√
2

π

∑
`,m

∫ ∞
0

q dq β`m(q)Y`m(n̂)j`(qr). (11)

The j`’s satisfy the following orthogonality condition:∫ ∞
0

r2 drj`(q1r)j`(q2r) =
π

2q2
1

δD(q1 − q2), (12)

which allows us to solve for the expansion coefficients

β`m(q) =

√
2

π

[ ∫
r2 dr

∫
dΩ

× q Y ∗`m(n̂)j`(qr)φβ(r)bβ(r)δ(rn̂)

]
. (13)

We then express the coefficient in terms of the Fourier
transform of the field and introduce the growth function
to obtain:

β`m(q) =

√
2

π

∫
d3~k

(2π)3
δ̃(~k)4πi`Y ∗`m(k̂)W β

` (k, q), (14)

where we have defined

W β
` (k, q) ≡ q

∫
r̃2 dr̃j`(qr̃)j`(kr)D(r, k)bβ(r)φβ(r). (15)

The r̃ ≡ rfid(z) that appears in Eq. (15) is the dis-
tance computed using the fiducial redshift-distance rela-
tion, which appears because spectroscopic surveys mea-
sure redshifts rather than distances. See Appendix A for
a derivation and discussion of this subtlety.

Cosmological information is in the autocorrelation of
the field:

〈β`m(q)β∗`′m′(q′)〉 = δ``′δmm′Cββ` (q, q′), (16)

with the autospectrum

Cββ` (q, q′) ≡
(

2

π

)2 ∫
k2 dkP (k)W β

` (k, q)W β
` (k, q′)

+
2

π

qq′

n3D

∫
φβ(r)j`(qr)j`(q

′r)r2 dr. (17)
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n3D is the survey’s mean number of objects per comoving
megaparsec, NV . The galaxy shot noise term is derived in
Appendix C of [23] as well as in [28], who do a fully rela-
tivistic treatment of galaxy clustering in the sFB frame-
work. For an isotropic and homogeneous Gaussian field,

Cββ` (q, q′) contains all of the cosmological information in
the 3D clustering field.

One advantage of this formalism is its ability to handle
the cross-correlation of the 2D and 3D fields while retain-
ing all of the 3D field’s radial information. In particular,

〈A`mβ∗`′m′(q)〉 = CAβ` (q)δ``′δmm′ (18)

with the cross-spectrum

CAβ` (q) ≡
(

2

π

) 3
2
∫
k2 dkP (k)W β

` (k, q)

∫
drFA(r, k)j`(kr).

(19)

We can again compute the radial integral in the Limber
approximation, leaving a very simple expression for the
cross-correlation:

CAβ` (q) ' 2

π

1√
`

∫
k dkP (k)W β

` (k, q)FA(
`

k
, k). (20)

We now have a formalism in which to jointly analyze
overlapping 2D and 3D samples without loss of informa-
tion. All the information in the overlapping samples is
contained in the 2D correlations [Eq. (9)], the 3D auto-
correlation [Eq. (17)], and the 2D-3D cross-correlations
[Eq. (20)].

B. Discretization of the radial degree of freedom

Redshift surveys have limited radial extent, and there-
fore we can impose the boundary condition that φ(r ≥
rmax) = 0. In this work, the sharp redshift cutoffs of our
3D samples set rmax. This boundary condition provides
us with a useful discretization of the spherical Bessel
function’s radial degree of freedom q, because only spher-
ical Bessel functions with zeros at rmax will be involved
in the expansion. For a given `, the previously contin-
uous q spectrum is now discretized at nmax(`) different

values q`n = ζ`n
rmax

, where ζ`n denotes the n’th zero of the
`’th spherical Bessel function.

This limited radial extent breaks the normalization of
the j`’s. Rather than the normalization in Eq. (12), we
now have from [16] that:

∫ rmax

0

r2 drj`(q`nr)j`(q`n′r) = δnn′
r3
max

2
[j`+1(q`nrmax)]

2
.

(21)

Because of this different normalization, in order to pre-
serve the form of the coefficients in Eq. (13) we must

0.13 0.14 0.15 0.16 0.17

Power Spectrum Scale k (Mpc−1)

0.0

0.2

0.4

0.6

0.8

1.0

W
l(
k
,q

=
.1

5
M

p
c−

1
)/

m
ax
{W

l(
k
,q

)}

` = 20

` = 300

FIG. 1. Physical scales k probed by our choice of qmax =
.15 Mpc−1, for SDSS. We see that at both low and high l,
our maximum sFB radial degree of freedom qmax corresponds
closely to the maximum physical scale which we wish to con-
sider. For a discussion of the qualitative behavior of W`(k, q),
refer to Sec. II C.

write the transform of the density field, Eq. (11), as:

β(rn̂) =
∑
`,m,n

√
2πq`nβ`m(q`n)Y`m(n̂)j`(q`nr)

r3
max[j`+1(q`nrmax)]2

. (22)

With Eq. (13) for the coefficients preserved, all the re-
sults in the previous section still hold, and the spectra

CAβ` (q`n) and Cββ` (q`n, q`n′) are now discrete.

C. Representations of physical scales

Shell-crossing and baryonic effects complicate galaxy
clustering at small physical scales, the nonlinear regime.
It is therefore important to understand how a given phys-
ical scale k is probed by the decompositions we have pre-
sented.

When decomposing a 2D field, Eq. (5), the radial inte-
gral gets its largest contributions from kr ' ` for large `.
Therefore, in a narrow tomographic bin with a median
redshift zmed, a physical scale k is probed by the set of
A`m with ` ' kr(zmed).

In a 3D decomposition, Eq. (14), the window function

W β
` (k, q) in Eq. (14) is sharply peaked around k ' q. In

fact, in the large survey, unity bias, and no growth limit,

W β
` (k, q)→ π

2k δ
D(k− q). In this limit, the physical scale

k is probed only by the set of β`m(q) with q = k.

In practice, W β
` (k, q) will mix scales due to the sur-

vey selection function, redshift dependent bias, and lin-
ear growth, but Fig. 1 shows that for the model surveys
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we consider, a physical scale k is still in large part probed
by the data β`m(q ' k).

The qualitative behavior of the window functions
W`(k, q) in Fig. 1 can be understood by inspection of
the relevant integrals. For a relatively flat survey dN/dz,
such as the SDSS dN/dz (see Fig. 2), the 3D selection
function φ(r) which enters into W`(k, q) will go as 1/r2.
This 1/r2 weighting of the integral cancels with the ex-
plicit r2 factor, and therefore, neglecting bias and growth
effects, W`(k, q) becomes an unweighted integral of j`(qr)
and j`(kr). The maximum will occur when k = q, and
the integral will go to zero once the Bessel functions de-
cohere. This will occur roughly once the first peaks of the
Bessel functions no longer overlap. As a function of r, the
width of the first peak of a Bessel function is roughly 1/k,
independent of `, and the location of the peak is roughly
`/k. Therefore the two Bessel functions destroy each
other, and W`(k, q) goes to zero, once |k − q| ∼ q/`. We
can therefore expect higher ` modes to be more sharply
peaked, as seen in Fig. 1.

Nonlinear scales are rich in information about cosmol-
ogy, photo-z, and bias. Observers do measure the power
spectrum on these scales. Though the framework we have
presented is completely capable of handling the nonlin-
ear scales, the importance of scale-dependent bias makes
galaxy clustering difficult to interpret on these scales.
When forecasting the effectiveness of our framework, we
therefore limit our clustering analysis to the quasilinear
scale, which we define as klin = .15 Mpc−1. Our results
are insensitive to this choice. The [29] HaloFit power
spectrum at this scale should be ∼ 5% accurate at the
redshifts we consider.

The maximum scale klin translates to a maximum an-
gular mode `max = klinr(zmed) in our 2D clustering de-
compositions and a maximum radial degree of freedom
q`nmax = klin in our 3D clustering decompositions.

Lensing is sensitive to the underlying matter distri-
bution rather than biased tracers, and therefore we use
shear observables on all scales until we become noise-
dominated around ` ∼ 5000.

Finally, we only use scales ` > `min = 20 to avoid
errors in the Limber approximation, though our results
are unchanged with `min = 10.

III. FORECASTING

We have presented a framework for combined analy-
sis of overlapping photometric and spectroscopic surveys.
We would like to apply our framework to quantify the
cosmological and photo-z benefits of survey overlap. We
therefore need to quantify the information content of an
analysis using our framework. The Fisher information
matrix (see, e.g., [30]) allows us to do this. For a set
of observables with covariance matrix C and parameter-
independent mean, the Fisher matrix is composed of el-

ements:

Fµν =
1

2
Tr(C−1C,µC−1C,ν), (23)

where , µ denotes a derivative with respect to the param-
eter θµ. and µ, ν run over the cosmological, photo-z, and
bias parameters that describe the data.

The covariance matrices of our observables are block
diagonal in ` and m, and blocks at the same ` are equal
for all m. We denote these blocks C`, simplifying Eq. (23)
to:

Fµν =
fsky

2

∑
`

(2`+ 1)Tr(C−1
` C`,µC−1

` C`,ν) (24)

where we have included an fsky factor to account for the
angular mask of the survey.

For a full 2D×3D analysis with nT tomographic clus-
tering and shear bins in the 2D sample and an overlap-
ping 3D clustering sample, our data vector is comprised
of spherical harmonic coefficients for each 2D field and
sFB coefficients for the 3D field:

{
pi`m, β`m(q`n)

}
, where

p ∈ {g, κ}, i ∈ [1, nT ], and n ∈ [1, nmax(`)]. Thus the
covariance matrix C` of the data vector is[

Cp
iqj

` Cp
iβ
` (q`n′)

Cq
jβ
` (q`n)T Cββ` (q`n, q`n′)

]
(25)

where:

• Cp
iqj

` is the 2 · nT × 2 · nT matrix of auto- and
cross-correlations of clustering and lensing in the
2D tomographic bins, computed with Eq. (9).

• Cq
jβ
` (q`n) is the nmax(`) × 2 · nT matrix of the

cross-correlations of the 2D spherical harmonic co-
efficients with the 3D field’s sFB coefficients, com-
puted with Eq. (20).

• Cββ` (q`n, q`n′) is the nmax(`) × nmax(`) matrix of
the auto-correlation of the 3D field, computed with
Eq. (17).

The marginalized Gaussian error on parameter θµ is

given by σµ =
√

(F−1)µµ.

A. Fiducial models

Our fiducial cosmology consists of a flat Planck 2015
ΛCDM universe, with Ωm = .316, σ8 = .8, h = .67,
Ωb = .049, ns = .96, and w = −1 [31]. We compute the
linear matter power spectrum in this model using the
CAMB package [32] and apply the HaloFit prescription
[33] to the linear power spectrum to get the nonlinear
power spectrum. We use the [29] HaloFit version, but
obtain similar results with the [34] version.
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FIG. 2. Redshift distributions of the 4 DES tomographic
bins (solid red) and the SDSS spectroscopic galaxies (dashed
blue). Each tomographic bin has been normalized to have
unit integral, as has the 3D distribution.

Following [35], we model photometric redshift errors as
Gaussian at each redshift:

p(zph|z) =
1√

2πσz
exp

[
− (z − zph − zbias)

2

2σ2
z

]
. (26)

We allow the photometric redshift bias zbias(z) and scat-
ter σz(z) to be free functions of redshift. In practice, we
represent these functions at discrete redshifts, the me-
dian of each of the photometric survey’s redshift bins,
and linearly interpolate to evaluate the function at arbi-
trary redshifts. The effect of the photo-z uncertainty is
to smear tomographic redshift bins, and a sharp bin in
photometric redshift space will be diffuse in the space of
true redshifts.

We model the linear bias for each survey as a scale-
independent function b(z), which we again represent at
the median of the 2D survey’s redshift bins and linearly
interpolate between bins. Allowing the bias to vary from
bin to bin is important because, as highlighted by, e.g.
[36], the effect of the redshift evolution of galaxy bias
on angular correlations is degenerate with the effect of
photo-z errors.

We consider two different sets of fiducial surveys, one
for which a 2D×3D analysis could be done today, and
one based on upcoming surveys.

Our set of contemporary surveys is modeled after the
∼180 deg2 overlap of the Dark Energy Survey and the
Sloan Digital Sky Survey in Stripe 82. We consider only
galaxy clustering data for these surveys and are mainly
interested in photo-z parameter constraints. The SDSS
sample is comprised of SDSS DR12 CMASS and LOWZ
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z
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N
or

m
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iz
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d
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/d
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DESI

FIG. 3. Redshift distributions of the 10 LSST tomographic
bins (solid red) and the DESI spectroscopic galaxies (dashed
blue). Each 2D tomographic bin has been normalized to have
unit integral, as has the 3D distribution.

spectroscopic galaxies as well as SDSS DR7 galaxies.
We treat the SDSS sample using the 3D sFB formal-
ism. The photometric DES data, though not yet pub-
licly available in Stripe 82, will have properties similar
to the DES Science Verification data1. We split the DES
sample into 4 photo-z bins of equal number density, and
we treat each photo-z bin as a 2D sample. The sur-
veys have number density nSDSS

2D = 0.065 gal/arcmin
2

and nDES
2D = 6 gal/arcmin

2
. In Fig. 2, we plot the nor-

malized redshift distributions of SDSS and DES. At each
tomographic bin’s median redshift zi, we choose fidu-
cial photo-z parameter values σz(zi) = 0.05(1 + zi) and
zbias(zi) = 0. We choose fiducial linear bias parameters
bDES(zi) = bSDSS(zi) = 1/D(zi) [5, 37].

Our set of upcoming surveys approximates LSST and
DESI. These surveys are expected to overlap in a ∼3000
deg2 patch. We split the LSST sample into 10 tomo-
graphic bins of equal number density, each with cluster-
ing and lensing information. We show the LSST bins
and the DESI 3D redshift distribution in Fig. 3. The
LSST sample has nLSST

2D = 50 gal/arcmin
2
, and the DESI

sample has nDESI
2D = 0.63 gal/arcmin

2
. We choose fidu-

cial values σz(zi) = 0.05(1 + zi), and zbias(zi) = 0. We
choose fiducial bias parameters bLSST(zi) = bDESI(zi) =
1/D(zi). [6, 7, 15]

We performed our Fisher matrix analysis on the
set of parameters Θ = (Θcosmo,Θbias,Θphoto-z), with
Θcosmo = (Ωm, σ8, h,Ωb, ns, w) and Ωk = 0 fixed, Θbias =

1 http://des.ncsa.illinois.edu/releases/sva1
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(bA(zi), b
β(zi)) and Θphoto-z = (σz(zi)

1+zi
, zbias(zi)). We do

not include any galaxy-shear cross-correlation bias pa-
rameters rg since these should be ∼1 in the quasilinear
regime [38]. We do not impose any external priors.

IV. RESULTS

A. Cosmological benefit of LSST/DESI overlap

LSST and DESI will overlap over a large portion of the
equatorial sky. We want to understand how this overlap
region will improve cosmological parameter constraints.
We therefore conduct a combined analysis of these two
flagship surveys on the overlap region in the framework
we presented in Sec. II. We use the Fisher matrix formal-
ism of Sec. III to compare parameter constraints from
a complete analysis using the covariance matrix from
Eq. (25) to the constraints in which the survey cross-
correlation elements are set to zero, i.e. the constraints
from disjoint patches.

h Ωm σ8 Ωb w ns

Full Analysis .38 .89 .40 2.3 1.5 .45

LSST Nuisances Fixed .37 .62 .21 2.2 .83 .40

DESI Nuisances Fixed .23 .40 .23 2.0 .89 .39

Cosmology Only .14 .32 .13 2.0 .51 .36

TABLE I. Forecasted cosmological constraints (|σθ/θ| × 100)
from the 3000 deg2 overlap of LSST and DESI.

Table I shows the absolute constraints on cosmological
parameters from LSST and DESI in the case of overlap-
ping surveys, while Fig. 4 shows these constraints relative
to the case of disjoint surveys. Our results show that the
LSST-DESI overlap will lead to factors of ∼1.2 to ∼1.8
improvement in cosmological parameter constraints.

In order to qualitatively understand the origin of our
parameter improvements, Table I and Fig. 4 show the ab-
solute constraints and the same-sky improvement factors
with various sets of parameters fixed.

Figure 4 is perhaps best understood by examining the
bars from bottom to top for each cosmological parame-
ter. When all nuisance parameters are fixed, we see that
the constraints on cosmological parameters are in fact
lower for overlapping surveys than for disjoint surveys
by factors of ∼.9 to ∼1. In this case, the cosmological
information in the 2D-3D cross-correlation does not fully
overcome the double counting of modes that occurs when
the surveys overlap.

Once we include nuisance parameters in our analysis,
all cosmological parameters see improvements from sur-
vey overlap. The middle lower green bars keep DESI’s
galaxy biases fixed, but allow LSST’s photo-z and bias
parameters to vary, while the middle upper blue bars
do the reverse. Since nuisance parameters are partly

0.0 0.5 1.0 1.5 2.0
σdisjoint
α /σoverlap

α

ns

w

Ωb

σ8

Ωm

h
Full Analysis
All 2D Nuisances Fixed
All 3D Nuisances Fixed
Cosmology Only

FIG. 4. Errors on cosmological parameters for overlap-
ping LSST and DESI patches compared to errors in disjoint
patches of the same size. Larger bars indicate a larger same-
sky benefit. The red upper bars show the improvements when
all parameters are marginalized over, the blue upper middle
bars when LSST’s nuisance parameters are fixed, the green
lower middle bars when DESI’s nuisance parameters are fixed,
and the pink bottom bars when all nuisance parameters are
fixed. When all nuisance parameters are marginalized over,
the LSST-DESI overlap will lead to factors of∼1.2 to∼1.8 im-
provement in cosmological parameter constraints over disjoint
patches. For a discussion of the behavior of the parameters
under the fixing of various sets of nuisance parameters, refer
to Sec. IV A.

degenerate with cosmological parameters, survey cross-
correlation helps to break the degeneracy and improves
cosmological parameter constraints.

By comparing the middle lower green bars with the
middle upper blue bars, we can see that, for example, h
is much more degenerate with the 3D biases than the 2D
photo-zs and 2D biases. When the 3D biases are free, in
the middle upper blue bar, the benefit of overlapping is
dramatic relative to the benefit when the 3D biases are
fixed, the green and pink lower bars. In fact, we have
checked that much of the constraint on h comes from the
autocorrelation of the 3D survey. Since this autocorrela-
tion is sensitive to the 3D survey’s 10 bias parameters the
survey overlap leads to a significant improvement in h by
providing an independent calibration, the 2D-3D cross-
correlation. When the 3D bias parameters are fixed, the
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lower middle green bar, the same-sky benefit is much
smaller.

The top red bars, our final result, show that h and
Ωm benefit the most from survey overlap. While the im-
proved constraint on h can easily be tied to the improved
constraint on the DESI biases that LSST provides, Ωm is
constrained by both LSST and DESI and thus is sensitive
to all nuisance parameters in the problem.
σ8 also shows large improvement with overlap, while

ns, w, and Ωb show more modest overlap improvements.
As expected, all the improvements are related to im-
proved photo-z and bias constraints and none of the pa-
rameters prefer disjoint surveys.

Our results are consistent with previous work by [14]
and [15]. They do not include photo-z errors and
find only only modest improvement in cosmological con-
straints from overlapping surveys. The upper middle blue
bars in our Fig. 4 reproduce this result, showing that
when we do not marginalize over photo-z errors or 2D
biases the same-sky benefit for most parameters is of or-
der ∼1.1 to ∼1.2. The constraint on h shows a much
larger same-sky improvement of ∼1.8. Since h is primar-
ily constrained by the 3D survey, and they performed
their analysis of the 3D sample in redshift slices with an
additional small scale P (k) to recover the radial informa-
tion, we do not expect exact agreement with their work.

Our result also generally agrees with [36], who showed
that if the bias is well behaved, photo-z constraints can
significantly improve cosmological constraints from weak
lensing. Our work makes the broader statement that
even with free bias parameters for each survey in every
bin, overlapping surveys lead to important improvements
in cosmological constraints.

We tend to see more modest cosmological parameter
improvements than [12] and [39], though direct com-
parison is not possible as those works represent their
spectroscopic survey solely using redshift slices of width
δz = 0.05, discarding some of DESI’s BAO-scale radial
information.

In addition to the direct cosmological parameter im-
provement on the overlap patch, nuisance parameter con-
straints derived from a survey overlap region will trans-
late outside the overlap patch and improve cosmological
parameter constraints there.

In particular, photo-z constraints from the overlapping
region will be applicable outside the patch. While we
do not include the details of this effect in this work, we
can nonetheless examine how photo-z constraints derived
from an overlapping survey region compare to internally
reconstructed photo-z constraints.

In Fig. 5, we show that cross-correlating LSST and
DESI will produce significant constraints on LSST photo-
z parameters, with improvements over constraints from
disjoint patches ranging from factors of ∼2 to ∼8. Con-
straints on σz generally benefit more from the cross-
correlation than constraints on zbias. We fixed all cosmo-
logical parameters for this comparison, so as not to in-
clude any photo-z constraint improvement derived solely

from improved cosmological parameter constraints. In
practice, marginalizing over cosmological parameters de-
grades only the constraints from LSST internal recon-
struction, not constraints including cross-correlation with
DESI.

We note that even where there are few spectroscopic
galaxies, photo-z constraints are improved when surveys
overlap. In particular, at high z, where the 2D-3D over-
lap is smallest and zbias sees its weakest constraint, it also
sees its largest improvement relative to the disjoint anal-
ysis. With few spectroscopic galaxies overlapping with
this high-z 2D bin, the primary way to constrain the
photo-z error is by cross-correlating with the adjacent
lower redshift 2D bin. This lower-z bin is itself subject
to photo-z and bias uncertainties. In the case of overlap-
ping surveys, the lower-z bin overlaps with the 3D survey
and therefore the 2D-3D cross-correlation constrains the
lower-z bin’s photo-z and bias parameters. These im-
proved constraints are then propagated to the high-z bin
through the 2D-2D bin cross-correlation.

This same phenomenon can be seen at z ∼ .5, where
our DESI-like survey has a gap between low-z bright
galaxies and high-z emission line galaxies, luminous red
galaxies, and quasars. Despite this gap, LSST photo-z
errors are well constrained at z ∼ .5. Though there are
plans to fill this gap with an intermediate-z luminous red
galaxy sample, our forecast suggests that such plans are
not required for LSST photo-z constraints.

Therefore, using our framework to include all radial in-
formation, and account for all photo-z and bias nuisance
parameter covariances, we find that there is a benefit to
having a DESI-LSST overlap, both in direct cosmological
parameter constraints from clustering and weak lensing
on the overlap patch and in constraints on superpatch
nuisance parameters such as photo-z errors.

B. Photo-z constraints from DES/SDSS overlap

DES and SDSS overlap in a small patch of sky in Stripe
82. We want to quantify the benefits of combining SDSS
spec-z galaxies with the DES photometric galaxies in the
Stripe 82 region.

We first note that if one wishes to combine DES and
SDSS cosmological constraints correctly, computing the
survey cross-correlations in Stripe82 is not optional, since
DES and SDSS sample some of the same cosmological
modes on the overlap patch. Our framework provides
an easy way to compute those cross-correlations and the
resulting combined cosmological constraints of the two
surveys.

However, because the overlap region is small relative
to the full survey sizes, we do not expect direct cosmo-
logical parameter constraints from Stripe 82 to be signif-
icant relative to the full constraining power of the rest
of DES and SDSS. Therefore any error from neglecting
the cross-correlation should be small. Similarly, any im-
provement in direct cosmological parameter constraints
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FIG. 5. Errors on LSST photo-z parameters on a patch overlapping with DESI (blue circles) and on an isolated patch (red
crosses), with cosmological parameters fixed. We connect the discrete parameter constraints with dashed lines as a visual aid.
Note the logarithmic scale. Cross-correlations between LSST and DESI on the overlap region shrink marginalized errors on
the photo-z parameters by factors ranging from ∼2 to ∼8. Constraints on σz generally benefit more from the cross-correlation
than constraints on zbias. We fixed all cosmological parameters for this plot, so as not to include any photo-z constraint
improvement derived solely from improved cosmological parameter constraints. In practice, marginalizing over cosmological
parameters degrades only the internal reconstruction points, not the cross-correlation points.

from including the cross-correlation, such as that found
for the LSST and DESI overlap, will be insignificant rel-
ative to the constraining power of the rest of the surveys.

Nonetheless, we can hope that nuisance parameter con-
straints in Stripe 82 will translate outside of the patch
to the rest of DES and improve cosmological constraints
there. In particular, photo-z errors are an important
source of uncertainty for DES. Therefore, we would like
to quantify the photo-z constraining power of the overlap
in Stripe 82 and compare it to constraints from a simi-
larly sized disjoint patch of sky. Because we expect weak
lensing to have little photo-z constraining power, we can
do this analysis considering galaxy clustering only.

We see in Fig. 6 that a combined 2D×3D analysis,
including the field cross-correlation, drastically improves
constraints on the redshift parameters of the photometric
survey when compared to an analysis of disjoint patches
of the same size, i.e. a DES self-calibrated photo-z recon-
struction. By cross-correlating the fields in our frame-
work, marginalized errors on the photometric redshift
bias parameters zbias and σz are improved by factors
ranging from ∼2 at high-z, where there is little overlap
between the DES and SDSS samples, to ∼12 at low-z,
where there is significant DES/SDSS overlap. Just as in
the LSST-DESI case, we have fixed cosmological param-

eters so as to focus on photo-z constraints derived from
the cross-correlation with the 3D sample.

Our estimated constraints of ∼0.03 on the photo-z
bias errors using our framework indicate that correlat-
ing SDSS spectroscopic galaxies with DES in Stripe 82
could be quite useful. We propose that such an analy-
sis could profitably be done in the framework we have
presented here, decomposing SDSS in sFB modes and
DES in spherical harmonics. In this way, one can ap-
propriately account for bias, cosmology, and photo-z co-
variances while retaining all radial information in SDSS.
Our framework allows the production of joint cosmology-
photo-z constraints, such as the joint covariance on con-
straints in the w-zbias(z1) plane illustrated in Fig. 7, with-
out any loss of information.

V. CONCLUSION

We have presented a framework in which to jointly
analyze overlapping 2D and 3D galaxy samples with-
out loss of information. The framework exploits over-
lapping photometric and spectroscopic surveys to simul-
taneously constrain photometric redshift error parame-
ters, galaxy bias parameters, and cosmological parame-
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FIG. 6. Errors on DES photo-z parameters on a patch overlapping with SDSS (blue circles) and on an isolated patch (red
crosses), with cosmological parameters fixed. We connect the discrete parameter constraints with dashed lines as a visual
aid. Note that the scale is linear, and each panel has a different scale. Results are generally very similar to the LSST-DESI
forecast, with same-sky improvement factors ranging from ∼2 to ∼12. Just as in the LSST case, marginalizing over cosmological
parameters degrades only the internal reconstruction points, not the cross-correlation points.

ters. The framework is simple, theoretically well moti-
vated, and data ready. Codes already exist to perform
the decompositions we propose.

As an example, we forecasted the benefits of the LSST-
DESI overlap region and showed that the survey overlap
will lead to improvements both in direct cosmological
constraints and in photo-z constraints. We accounted for
bias evolution and photo-z uncertainties, and we incor-
porated all available modes in both galaxy clustering and
weak lensing. We did not model cosmological constraints
from the disjoint survey regions, nor did we include CMB
priors, covariance with overlapping CMB surveys, and
RSDs, and thus we have not conducted a truly complete
forecast of the benefits of an LSST/DESI overlap region.
Rather, we showed that the sFB formalism is a fruitful
framework in which such an analysis can be done.

We also used the framework to show that the cross-
correlation of SDSS-III and DES on Stripe 82 can place
strong constraints on DES photo-z parameters, and we
emphasized the importance of a combined analysis frame-
work when conducting this cross-correlation.

While the framework we have presented here is ready
for application on data, our work suggests several avenues
of theoretical development.

In particular, the strong photo-z constraints that we
showed are enabled by survey overlap highlight that more
work remains to be done on the best way to translate

photo-z constraints from the overlap patch to the rest of
the photometric survey footprint. Such a calibration is
essential to obtaining the strongest possible cosmological
constraints with upcoming spectroscopic and photomet-
ric surveys.

More broadly, the sFB decompositions we used here
for spectroscopic surveys are applicable to a wide array
of issues related to galaxy surveys. In particular, the sep-
aration of radial and angular basis functions mean the
sFB decomposition might provide a useful framework to
describe photometric redshift surveys themselves. Pho-
tometric surveys often contain subsets of objects with
relatively well behaved photo-z errors, such as, e.g., the
redMaGiC galaxies in DES. Rather than binning these
photometric galaxies into 2D slices, it might be possible
to represent them directly in the sFB framework. This
would require incorporating photo-z errors into the sFB
framework, which [40] have explored for shear fields. Ex-
tending this work to clustering fields has the potential to
extract more radial information from photometric red-
shift surveys and therefore augment their ability to con-
strain late-universe physics.
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FIG. 7. Simultaneous marginalized constraints from DES and
SDSS on w and the photo-z bias parameter in the first bin,
zbias(z1). The smaller solid blue ellipse shows constraints
from the DES and SDSS overlap in Stripe82, while the larger
dashed red ellipse shows constraints on disjoint patches of the
same size. Constraints on photo-z parameters improve signif-
icantly when the cross-correlation is used, while constraints
on cosmological parameters show more modest improvement.
Combined constraint ellipses like this one are only possible in
one-step combined analysis frameworks like the one presented
here.
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Appendix A: Fiducial Cosmology

A fiducial redshift-distance relation rfid(z) ≡ r̃ is re-
quired to convert a spectroscopic survey’s redshift data
into the comoving galaxy overdensity. In general, this
redshift-distance relation will not be the cosmologically
correct one. [41] emphasized that this error will degrade
cosmological constraints. Any P (k) style analysis will
suffer from this degradation. An analysis that remains
completely in redshift space will preserve all information,
but such analyses are hampered by the large number of
redshift bins needed to fully conserve the radial informa-
tion in the 3D field.

With an assumed redshift-distance relation, the data
in hand from a spectroscopic redshift survey is not the
true 3D overdensity β(rn̂), but rather an estimated one

β̂(r̃n̂), related to the true overdensity by β̂(r̃n̂) = β(rn̂).

Expanding the estimated field β̂(r̃n̂) in the sFB basis, we
have:

β(rn̂) = β̂(r̃n̂) =

√
2

π

∑
`,m

∫ ∞
0

q dq β`m(q)Y`m(n̂)j`(qr̃).

(A1)

Note the presence of the fiducial distance in the Bessel
function argument. We again solve for the expansion

coefficients,

β`m(q) =

√
2

π

∫ ∞
0

r̃2 dr̃

∫
dΩ

[
qY ∗`m(n̂)j`(qr̃)φβ(r)bβ(r)δ(rn̂)

]
, (A2)

and take the Fourier transform,

β`m(q) =

√
2

π

∫
d3~k

(2π)3
δ̃(~k)(4π)i`Y ∗`m(k̂)W β

` (k, q). (A3)

We find that the effect of the fiducial cosmology can be

entirely absorbed into the window W β
` (k, q):

W β
` (k, q) ≡ q

∫
r̃2 dr̃j`(qr̃)j`(kr)D(r, k)bβ(r)φβ(r).

(A4)

The specific way in which the fiducial distance relation
appears here is different than in [23]. Though a priori this
difference could have some impact on our constraints, in
practice we find it only affects the constraint on w, and
that by at most a few percent.
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