
LArSoft: toolkit for simulation, reconstruction and

analysis of liquid argon TPC neutrino detectors

E.L. Snider and G. Petrillo

Fermi National Accelerator Laboratory1, P.O. Box 500, Batavia IL 60510, USA

E-mail: erica@fnal.gov, petrillo@fnal.gov

Abstract.
LArSoft is a set of detector-independent software tools for the simulation, reconstruction

and analysis of data from liquid argon (LAr) neutrino experiments The common features
of LAr time projection chambers (TPCs) enable sharing of algorithm code across detectors
of very different size and configuration. LArSoft is currently used in production simulation
and reconstruction by the ArgoNeuT, DUNE, LArIAT, MicroBooNE, and SBND experiments.
The software suite offers a wide selection of algorithms and utilities, including those for
associated photo-detectors and the handling of auxiliary detectors outside the TPCs. Available
algorithms cover the full range of simulation and reconstruction, from raw waveforms to high-
level reconstructed objects, event topologies and classification. The common code within
LArSoft is contributed by adopting experiments, which also provide detector-specific geometry
descriptions, and code for the treatment of electronic signals. LArSoft is also a collaboration of
experiments, Fermilab and associated software projects which cooperate in setting requirements,
priorities, and schedules. In this talk, we outline the general architecture of the software and the
interaction with external libraries and detector-specific code. We also describe the dynamics of
LArSoft software development between the contributing experiments, the projects supporting
the software infrastructure LArSoft relies on, and the core LArSoft support project.

1. Introduction
Liquid argon time projection chambers (LArTPCs) [1] have become important tools for precision
measurements of neutrino properties and their interactions with nuclear matter, as evidenced
by the raft of recent and future accelerator-based neutrino experiments that utilize LArTPCs
[2]–[6]. Among the leading features in their appeal are a large, uniform sensitive volume, and the
high-precision position and energy deposition information obtained from the TPC. The readout
systems among all of the large scale TPCs currently in operation or in planning utilize multiple,
parallel planes of strips, each of which provides a 2-D projected image of charge deposition onto
a plane perpendicular to the strips. By combining these 2-D images from strips at different
angles, it is possible to construct a a 3-D image of the charge deposition. In addition to the
collection of charge deposited in the TPC volume, most detectors utilize photo-detector systems
to detect scintillation light created in conjunction with ionization processes within the LAr. The
arrival time of this light is used to determine event interaction times.

1 Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.

FERMILAB-CONF-17-052-CD



The similarity of this basic geometry and readout scheme across detectors, combined with the
common physics of the LArTPC itself, opens a unique opportunity within high energy physics for
sharing primary simulation, reconstruction and analysis software that is interoperable among the
various LArTPC-based experiments. Supporting such a shared ecosystem presents challenges of
design, coordination and organization.

The LArSoft collaboration [7] is a group of experiments, laboratories, university groups and
software projects formed to meet these challenges, and to contribute to the shared, detector-
independent software tools and algorithms needed for the simulation, reconstruction and analysis
of data from their respective experiments. By working together, member experiments leverage
expertise across the community, and share knowledge and solutions as embedded directly in
the software. At the time of writing, the collaboration includes the ArgoNeuT [2], DUNE [3],
LArIAT [4], MicroBooNE [5] and SBND [6] experiments.

The work product of the LArSoft collaboration is the body of shared code, developed under a
set of common design principles and practices. At present, the shared repositories contain about
250k lines of C++, with approximately 200k additional lines in experiment-specific repositories.
More than 100 authors from over 25 institutions have contributed to the core software suite.

To provide for the common needs of the collaboration and its members, a dedicated group
of physicists, software engineers, developers and others comprise a core “project” team that
works under management oversight by the experiments. Major elements of the core project’s
mission include provisioning and supporting the LArSoft framework, software architecture and
design; performing release management and testing functions; coordinating code integration
and planning across experiments; and providing software engineering expertise to the LArSoft
community.

In the next two sections, we describe the general architecture of the software, some of the
design principles and practices, and how the shared software interfaces to experiment-specific
code and external libraries. Afterward, we will explore how the contributing experiments,
software projects and the core project team interact to coordinate the support of the software
and related infrastructure, as well as the integration of code into the LArSoft ecosystem. We
conclude with future plans and a summary.

2. The event-processing framework
LArSoft is built upon the art [8] event-processing framework developed at Fermilab, and which
is used by most of the neutrino and muon experiments based at Fermilab [9]. The framework
provides a number of facilities to define and configure algorithm workflows that operate on input
data streams (see Fig. 1). The data itself is organized into a hierarchy of runs, sub-runs and
events, with user-defined data structures (“data products”) comprising the content.

Steps within a workflow are performed by experiment-written “modules”, which have methods
called by the framework at well-defined states within the event-processor, for instance, before
or after processing a run, or during a workflow on an event. Algorithms within each module
operate on input data accessed through the data model, and either produce output data to
be placed into the data stream or other analysis streams, or make a filtering decision that can
alter downstream processing or data output actions. Filtering decision can, for instance, stop
processing of a workflow at that point, or cause output data to be written to a particular file.

In addition to modules, users may define “services” that have access to the event processor
state transitions, and that can be used to provide global access to a particular resource within
modules, such as detector geometry. Users may optionally define abstract interfaces for services,
which allows the implementation to be selected at run time via an input configuration file.

The configuration of modules, services, and module workflows is specified by a user-provided
FHiCL [10] configuration file. These files may also specify the input and output data streams,
the actions that result from filter decisions, the data products to be dropped on input or output,



Figure 1. The basic elements of the art event-processing framework.

etc.
The art framework also tracks the provenance of all data products generated during execution

through a combination of tags attached to data products recording the module instance that
created it, and the full FHiCL configuration of the job.

3. Design principles and practices
Writing simulation and reconstruction software that is shared between different detectors and
experiments demands adherence to a number of common design principles and practices.
Together, these rules practices form the pillars that support the entire software sharing regime.
We discuss a few of these below. Other practices, such as continuous integration, peer analysis
of code, and centralized infrastructure support and coordination are discussed in later sections.

3.1. Detector interoperability
The interoperability of the algorithm code forms the cornerstone of the entire project, and
depends upon the common features of LArTPCs. That commonality extends to the output
data from the detector, which consists of digitized waveforms from each TPC readout channel.
These waveforms represent the charge induced by the motion of ionization electrons swept by
the drift field from the volume of the TPC. Similarly, the output data from the photo-detectors
consists of digitized waveforms representing the signals from detected scintillation photons. Each
of these waveforms has a detector independent data product representation.

The output of the reconstruction, from low-level hits characterizing localized charge
deposition, to high-level 3-D objects such as tracks, electromagnetic showers, and their
physical properties such as range, dE/dx and particle ID, also have experiment-independent
representations. These common data products form the basis for uniform interfaces between
various phases of the reconstruction and simulation algorithms.

A wide variety of detector configuration and operating condition information is needed inside
both reconstruction and simulation algorithms. The code must in all cases remain free of implicit



Figure 2. Operation of a LArTPC neutrino detector. (a) Neutrino interactions create secondary
charged particles that leave tracks of ionization in the LAr. Electrons and photons create
electromagnetic showers, leaving regions of ionization with irregular shapes. (b) The ionization
electrons are swept from the TPC under the action of the applied electric field, and drift to
the anode wires or strips, where they induce signals on the associated readout channels. The
resulting waveforms are then digitized.

assumptions as to values or relationships that may vary from detector to detector. Again, the
common features of LArTPC geometries and physics allows all of this information to be described
using a nomenclature that lends itself to detector-independent interfaces. TPCs, for instance,
are rectangular prisms with an applied electric field that drives electrons to a set of anode
planes. Each plane has “wires” (or strips) charactered by a pitch between channels and a fixed
orientation within the plane. Experiments with multiple TPCs are easily accommodated within
this scheme.

To facilitate navigation through various levels within the readout channel and geometry
hierarchies, LArSoft provides generic geometric and readout IDs at each of the various levels,
and tools for constructing generic loops over elements at each level.

The common interfaces to all this information and the navigational tools provide final key
that allows both simulation code to be completely detector-independent.

3.2. Configurable handling of detector-specific customizations
All detectors require a certain level of detector-specific customization during simulation and
reconstruction. LArSoft employs two basic schemes for providing this. The preferred method is
via run-time configuration data, since that allows more sharing of implementation code.

As previously discussed, geometric information, detector configuration and operating
conditions can be accessed and applied via detector-independent interfaces. In the case of the
geometry, initializing the interface for a particular detector is a simple matter of specifying the
appropriate geometry description file2.

Similarly, differences in a number of detector operating parameters, such as drift field maps,
common calibration parameters, etc., can be obtained from sources specified at run-time. Typical
sources include databases, configuration data files, or the input FHiCL file itself. Where
necessary, different implementations for the services that provide this information can also be
specified as part of the input FHiCL configuration.

Some customizations require detector-specific code. Examples of such cases currently include

2 LArSoft uses GDML [11] as the standard geometry and material description format. The source of the GDML
description is left to the experiments, which are free to use scripts or databases as the reference source.



readout channel to geometry mappings, raw data noise removal and signal processing, handling
of the electronics response in the simulation and reconstruction, and the simulation of raw data
digitization. In the case of the channel mappings, an art service interface allows a run-time
implementation to be selected that is then accessed via the generic geometry service. For the
other cases, LArSoft relies on the common data structures to define standard interfaces to
the relevant algorithms. Most of these algorithms live in dedicated art modules in experiment
repositories.

Work is currently in progress to create a more flexible framework for these algorithms that
will allow more of the underlying code to be shared. This change would allow much of the signal
processing to become a matter of configuration data.

3.3. Standardized interfaces and usage patterns
The use of standardized interfaces extends beyond the detector-specific customization and into
the algorithm code itself. There are in many cases multiple algorithms available at each stage
through the reconstruction and simulation. Examples include hit finding within the raw data
waveforms, clustering of TPC hits into 2-D “cluster” objects, identifying photo-detector hits
and determining interaction times, finding tracks and vertices, etc.

An even more important use case is the layering of algorithms that perform incremental
refinements within a single reconstruction phase. Such strategies generally provide a
more maintainable, extensible, and understandable model for introducing high degrees of
sophistication within a larger reconstruction algorithm. Again, the communication of data
between algorithms via common data structures allows for the definition of the interfaces needed
to support this layering,

LArSoft promotes the definition of common, standardized interfaces whenever possible in all
of these cases.

Along with standardized interfaces comes standard usage patterns. Conventions such as this
can greatly simplify the task of learning the software, and reduce the time needed to become a
code author.

3.4. Framework independence of data structures and algorithm code
The architecture of LArSoft is based on a layering model in which data structures and algorithm
code are uncoupled from the art framework, external software products (except by prior
community agreement), and any experiment-specific code. In this scheme, art modules serve
only as an interface to framework functionality, performing such tasks as retrieving input data
products from the event record, writing output data products to the event record, retrieving
art services from the service registry, or obtaining algorithm configuration information that was
specified by the user.

Similarly, art services within LArSoft are designed to operate independently of the framework,
and have no knowledge of the framework service registry from which they were obtained.

A number of benefits accrue from this separation, particularly given that the event data
model is also independent of the art framework, and can be used as an external product with
minimal dependencies. Algorithm code structured in this way can be fully unit tested outside
the framework in a very lightweight test environment. In addition, such code is naturally more
modular than algorithms tied to the framework, which broadens the toolkit nature of the LArSoft
suite, and encourages the further layering of algorithms.

Code that is independent of the art framework also allows for the creation of minimalist
development environments, which can facilitate or promote easier and faster development cycles.
One such environment is enabled by the gallery product [12], which provides a simple event loop
capability built on top of the event data model product. This tool is also widely used on its own
as an analysis framework for the final stages of data analysis that is extremely light-weight, yet



in principle still provides access to the full power of shared data products, tools and algorithms
within LArSoft.

3.5. Interfacing to external software products
There are a number of external products that provide simulation and reconstruction algorithms
or capabilities that are of great utility to LArSoft users. Principal among these are event
generators such as GENIE [13], the Geant4 simulation package [14], and the Pandora pattern
recognition package [15]. In each case, there is a mapping between the common data structures
within LArSoft, and some input or output data structure for the external product.

The strategy for interfacing to these products within LArSoft involves isolating the
dependence on the product to a single library. Classes and functions within that library
perform conversions between the relevant LArSoft data products and those structures used
by the external product. An art module can then use this library to provide a direct interface
between the product and LArSoft.

4. The development environment
The reference copy of LArSoft code is held in git repositories maintained at Fermilab [16].
Experiment-specific code lives in separate repositories maintained by the respective experiments.
The features of git combined with the gitflow branching model [?] are well suited to maintaining
a rapidly evolving yet stable development environment involving many users and developers.

The source code build infrastructure is currently based on that used for art. The system
consists of four basic tools: ups, a product packaging and environment configuration tool
maintained by Fermilab; the cmake open-source build management tool; cetbuildtools, a
cmake macro package used by art; and mrb, a tool based on cetbuildtools that provides
utilities to help manage the end-user development and build environment, and operate the build
infrastructure across multiple git repositories.

In order to provide a stable development platform, LArSoft provides weekly integration
releases. Developers typically work on a git branch against one of these releases until a desired
functionality works, then merge changes from the main development branch (called “develop”)
into the working branch, and finally back to develop, where it is picked up in a subsequent
integration release. Breaking changes are merged during the final stages of the release process,
a procedure that ensure that the head of the develop branch always builds.

While most large scale processing occurs on Linux-based machines, much of the developer
base uses machines running Mac OS X or Ubuntu. At present, LArSoft distributes code for
Scientific Linux Fermi [18] versions 6 and 7, Mac OS X Yosemite, El Capitan and Sierra, and
Ubuntu 16 LTS.

Code is distributed via both self-building source installs, or binary-only installs that are
accessible via a dedicated web site. Source code and binaries for Linux and Mac OS X are also
accessible via cvmfs [19], a software distribution service implemented as a POSIX read-only file
system in user space. The use of cvmfs eliminates the need for local installs of any sort.

The core LArSoft project strives always to improve the overall quality the the code and
compliance with design principles. One strategy LArSoft employs is to hold in-depth code
analyses. Targets for these sessions are identified by the experiments, and are performed
collaboratively with developers and C++ experts. The specific goals and scope of the analyses
are highly tailored to the needs of the experiment for the particular code offered for inspection.
Analyses typically focus on issues of CPU and memory performance, architecture, and general
coding practices, and take about a day of effort for each participant.



4.1. Continuous integration and testing
LArSoft relies on a continuous integration (CI) and testing model in order to ensure compliance
with detector interoperability standards, check basic functionality for unexpected behavior, and
obtain rapid feedback in cases where breaking changes are inadvertently committed to the central
repositories. LArSoft uses a Fermilab-supported CI system built on top of the Jenkins open-
source automation system [20]. The system provides a number of features and tools to facilitate
construction of integration test workflows and analysis of program output.

With every commit to the develop branch of the central git repositories, this system launches
a set of builds of the full software suite followed by rapid cycling unit and integration tests. Test
results are monitored by LArSoft team members, and optionally via automated emails sent to
the developers responsible for the changes.

In addition to basic functionality testing, the system tracks historical memory and CPU usage
across builds. This feature can be used to identify both discrete problems introduced into the
code, and long-term trends that can be addressed before they become problems.

Two important design features of the test system are local configurability and executability.
All tests can be defined and configured by individual developers via simple configuration files
within each repository. In addition, any user can locally execute the full test infrastructure
without any interaction with the Jenkins automation system. These features allow users to
create new tests, then run them locally on private branches in their local git repositories before
committing any changes to the central repositories. Users can also execute the tests on arbitrary
branches on the central repositories via the Jenkins system.

The system supports distributed and remote build nodes. This feature can be used to provide
builds and CI testing on systems not supported at Fermilab. For instance, LArSoft recently
added Ubuntu 16 to the set of supported platforms via this mechanism.

5. Coordination of collaboration work
Developing code within such a large community working on different experiments requires good
coordination and communication across experiment boundaries. The core LArSoft project
facilitates this exchange in a number of ways. The primary means is via a regular “coordination
meeting.” Members of from the various experiments attend this highly technical forum to
propose, discuss and coordinate code and policy changes, release plans and other issues relevant
to the collaboration.

The project also gathers requirements on a regular basis via a special series of meetings with
experiment offline coordinators, and more broadly from the community at dedicated workshops.
Discussion of major technical issues and initiatives and short term project work occur in regularly
scheduled meetings with experiment offline coordinators.

The overall direction of the collaboration, and the priorities and goals of the core project are
set or approved in meetings with the experiment spokespeople held quarterly.

6. Future plans
The primary goal for future work is to expand and improve the capabilities, usability and design
of the shared code base while maintaining a close collaboration among experiments.

Support for multi-threading will become increasingly important in order to fully exploit the
continuing growth in the number of cores per processor, and be an important tool to control
memory usage for large detectors. The project will begin to review and revise the architecture as
needed to support multi-threading in LArSoft algorithms over the next year. The art framework
is expected to support multi-threading on the time scale of summer 2017.

Vectorization of applicable algorithms represents a complementary approach aimed at
improving processing throughput by accessing vector resources on existing and future processors
that are not currently being utilized.



Integration with additional external products are also under way or on the horizon. The
WireCell 3-D reconstruction package [21] developed at Brookhaven National Laboratory is one
such package recently integrated. Architectural changes to the LArSoft simulation interface will
simplify integration with the other detector simulation products, such as FLUKA [22].

Possible extensions needed to facilitate interfacing to image-based machine learning
algorithms, such as convolutional neural networks, is also under review.

Extending LArSoft to other detectors is also a high priority. At present, LArSoft team
members are working to extend support to the ProtoDUNE dual-phase detector. The project
is also working with members of the ICARUS collaboration with the same goal. Expertise from
both of those experiments have a great deal to offer the rest of the LArSoft community.

7. Summary
LArSoft demonstrates what has been a novel and successful model for sharing primary LArTPC
simulation and reconstruction software across detectors and experiments. The common data
structures and algorithms have proven themselves to be enabling technologies in the case of
small experiments and teams where the effort needed to develop proprietary solutions is limited.
The architectural choice to separate framework from data and algorithms has also shown itself
to be a powerful tool in shortening code development cycles, integrating light-weight analysis
frameworks, and enhancing user satisfaction.

The collaborating experiments remain highly engaged in LArSoft at all levels, from providing
new ideas and requirements, to contributing new code, or using and improving existing code
shared by other experiments. New experiments will find a welcoming and vibrant community
that has many plans and ideas for future work.

References
[1] C. Rubbia, 1977, Preprint CERN-EP-INT-77-08.
[2] C. anderson et al , 2012, The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab, JINST

7, P10019. See also http://t962.fnal.gov.
[3] R. Accarri et al , 2016, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment

(DUNE) Conceptual Design Report Vol. 1: The LBNF and DUNE Projects, Preprint arXiv:1601.05471.
See also http://www.dunescience.org/.

[4] J. Paley et al , 2014, LArIAT: Liquid Argon In A Testbeam, Preprint arXiv:1406.5560. See also
http://lariat.fnal.gov.

[5] R. Accarri et al , 2016, submitted to JINST (Preprint FERMILAB-PUB-16-613-ND. See also
http://www-microboone.fnal.gov.

[6] See R. Accarri et al , 2015, A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program
in the Fermilab Booster Neutrino Beam, Preprint arXiv:1503.01520. See also http://sbn-nd.fnal.gov.

[7] R. Pordes and E. Snider, 2016, Proceedings of Science (ICHEP2016), 182. See also http://larsoft.org.
[8] http://art.fnal.gov
[9] See http://art.fnal.gov/who-uses-art/ for a list of experiments currently using art.

[10] The Fermilab Hierarchical Configuration Language, https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki.
[11] R. Chytracek, 2006, Geometry Description Markup Language for Physics Simulation and Analysis

Applications, IEEE Trans. Nucl. Sci 53, p. 2892. See also http://cern.ch/GDML1.
[12] See http://art.fnal.gov/gallery.
[13] C. Andreopoulos et al , 2006, Acta Phys. Polon. b37, p. 2349. See also https://genie.hepforge.org.
[14] See http://www.geant4.org.
[15] J.S. Marshall and M.A. Thomson, 2015, Eur. Phys. J. C75 no.9, 439.
[16] See https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/ LArSoft repositories packages and dependencies .
[17] http://nvie.com/posts/a-successful-git-branching-model.
[18] https://fermilinux.fnal.gov.
[19] https://cernvm.cern.ch/portal/filesystem.
[20] https://jenkins.io.
[21] http://www.phy.bnl.gov/wire-cell.
[22] G. Battistoni et al , 2015, Annals Nucl. Energy 82 p. 10. See also http://www.fluka.org.




