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B.1. Introduction

This Appendix summarises the statistical methods which are used to set
limits on possible signals (Sec. B.2), to compute the significances of ob-
served excesses of events (Sec. B.3), and to measure signal model parame-
ters (Sec. B.4). While these techniques are by now standard, having been
put to use in a broad variety of scientific and other applications over the last
century, there is always more than one valid technique which can be used
to interpret experimental data in order to produce the results. Often, even
within a single publication, a variety of techniques may be chosen in order
to optimise the sensitivity or to best incorporate the e↵ects of systematic
uncertainty on the model predictions. For a comprehensive overview, see,
for example, Refs. [1–5].

Henceforth, the expected event yields for the nominal signal (the Stan-
dard Model Higgs boson in this book) will be generically denoted as s,
and the background predictions as b. Depending on the context, these will
stand for event counts in one or multiple bins (e.g., si) or for unbinned
probability density functions of some observables, whichever approach is
used in an analysis. The notations b and s+b will be also used to represent
symbolically the background-only and the signal+background hypotheses,
respectively; µs+b will stand for a signal+background hypothesis, in which
all nominal signal event yields are scaled by µ. Predictions for the signal
and the background yields are subject to multiple uncertainties that are
handled by introducing a set of nuisance parameters ✓=(✓1, . . . ✓n), so that
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signal and background expectations become functions of the nuisance pa-
rameters: s(✓) and b(✓). Nuisance parameters may a↵ect either the overall
event rates, the shapes of distributions, or both. A set of observed events
collected by the experimental apparatus, again in a binned or unbinned for-
mat, is referred to as the “data” or the “observation”. The term “pseudo-
data” refers to simulated experimental outcomes, or pseudo-observations.

B.2. Limits

The Bayesian method and the classical frequentist method, the latter with
a number of modifications, are two statistical approaches commonly used in
high energy physics for characterising the results of a search for a possible
signal. In the absence of an observed signal, the upper limit on the signal
strength is the primary result of the search.

The frequentist methods set limits that are characterised by a confidence
level (CL). A statement that a signal of strength µ is excluded at 1� � CL
(where � is some small number, usually set at 5%) is expected to imply that
if a signal is truly present at the quoted signal strength, then in repetitions
of the experiment, a fraction of at most � of them will falsely exclude it. A
limit-setting procedure that satisfies this requirement for the error rate is
said to have proper coverage. A limit-setting procedure with a larger error
rate than stated is said to undercover, and a test with a smaller error rate
is said to overcover. The false exclusion of a signal in its presence is known
as a Type II error.⇤

Bayesian results are characterised by a credibility level, which is also
abbreviated CL. At a CL of 1 � �, the integral of the “belief” probability
density function of the signal event rate over values greater than the limit is
�. No claim is made regarding the coverage of Bayesian methods, although
in practice they tend to overcover when flat priors on signal strength are
used (see Sec. B.2.1).

Limits can and should be set even in the case that an excess of events
is observed. Doing so is a condition for proper coverage and eliminates the
flip-flop hazard of quoting limits only when no signal is observed. Lim-
its quoted when an excess is observed also have important physical inter-
pretations as they exclude signal strengths stronger than observed, which
may test interesting models which predict anomalously large cross sections,
branching ratios, or may have kinematic properties that enhance the signal
⇤

A Type I error, to be discussed in Sec. B.3, refers to a false claim of a signal that is not

actually present.
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acceptance.
In addition to reporting the exclusion confidence level for a fully spec-

ified model (e.g., the Standard Model (SM) Higgs boson of a given mH),
null results of a search targeting a specific signal production mechanism
and a particular decay mode can be reported as approximately model-
independent limits on the signal cross section times the branching ratio
(� ⇥ BR) for the decay mode targeted by the analysis. Less model depen-
dence is induced by setting limits on the cross section times the branching
ratio times the experimental acceptance (�⇥BR⇥A). However, neither is
perfect. The former explicitly depends on assumptions made on the fraction
of a signal cross section in the phase space not covered by an experiment.
The latter does not introduce such dependencies, but, in order to allow the-
orists to calculate the signal cross section within experimental acceptance
A, one has to provide a model of that acceptance, the exact definition of
which may be too complicated for a practical use. If an analysis is based on
the distribution of a discriminating observable then, in any case its results
(limits) can be interpreted only in models that yield the same shape as the
signal for which they were derived. Therefore, extrapolating results of an
analysis to make a statement about a signal that has di↵erent kinematic
properties from the one assumed in a given analysis is not trivial and, in
general, requires additional dedicated studies.

In a combination of multiple analyses sensitive to di↵erent signal pro-
duction mechanisms and di↵erent decay modes, presenting results in a form
of limits on � ⇥ BR or � ⇥ BR⇥A is impossible. The customary alterna-
tive is to set limits on a common signal strength modifier µ that is taken
to change event yields in each (production)⇥(decay) mode by exactly the
same scale. The Standard Model Higgs boson is said to be excluded at,
say, 95%CL, when the 95% CL limit on µ becomes smaller than one. In
the next sub-sections, we will follow this convention and discuss limits on
the common signal strength modifier µ.

B.2.1. Bayesian approach

In the Bayesian approach, a degree of belief is assigned to each value of µ, as
a probability density function for µ. Bayes’s theorem is then invoked to cal-
culate the impact of the experimental data to update the prior probability
density ⇡(µ) to obtain the posterior probability density L(µ):

L(µ) =
1

C

Z

✓
p(data |µ s(✓) + b(✓)) ⇢(✓) ⇡(µ) d✓, (B.1)



4 T. Junk, A. Korytov, and A. L. Read

where p(data |µ s + b) is the probability to observe the data as seen in
an experiment assuming the µ s + b hypothesis. The function ⇢(✓) is the
density function describing our prior belief in the values of the nuisance
parameters which a↵ect the predicted signal and background event yields
and distributions, and is typically a product of prior densities for each of
the ✓i. Popular functional choices for individual nuisance parameter prior
densities ⇢(✓i) are: Gaussian (often truncated so that all signal and back-
ground predictions are non-negative), log-normal, Gamma, or flat (either
constrained, a so-called box distribution, or not). The function ⇡(µ) is the
prior probability density for the signal strength, and is commonly taken to
be uniform for µ � 0 and zero for µ < 0. Other priors are possible, but
have hardly ever been used in high energy physics. The constant C is set
by requiring that

R
L(µ)dµ = 1.

The probability p(data |µ s + b) can be expressed as the product of
Poisson probabilities for the number of observed (or simulated) events (nk)
in each bin (k) given the expected event rates per bin µ sk + bk:

p(data |µ s+ b) =
Y

k

(µ sk + bk)nk

nk!
e�(µ sk+bk) (B.2)

= e�(µS+B)
Y

k

(µ sk + bk)nk

nk!
, (B.3)

where µS + B = µ
P

k sk +
P

k bk is the total expected event rate. An
unbinned approach to data can be thought of as a binned analysis in the
limit of infinitely narrow bins in some observable x, which in general can
be multi-dimensional. In this case, the function p(data |µ s + b), up to an
irrelevant constant factor, becomes:

p(data |µ s+ b) ⇠ e�(µS+B)
Y

i

P(xi |µ s+ b ), (B.4)

where index i runs over all events, and P(xi |µ s + b ) is an event density
function of x such that the expected event rate in the vicinity of a given
value of x is predicted as P(x |µ s+ b )dx.

Integration over nuisance parameters in Eq. (B.1) is known as marginal-
isation. Marginalising the nuisance parameters sums the credibility of the
parameter of interest over all possible values of the nuisance parameters,
including the e↵ects of systematic uncertainty, even far from the central
predictions ✓̃. This integration step also serves to constrain the values of
the nuisance parameters in situ because the kernel of the integral is large
for nuisance parameter values that fit the data well and is vanishingly small
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for nuisance parameter values that fit the data poorly. The inclusion in the
combination of data sets that constrain nuisance parameters helps improve
the sensitivity of the Bayesian limits in much the same way that fits to nui-
sance parameter values improve the sensitivity of CLs limits as discussed
in Sec. B.2.2.2. The integrals over the space of nuisance parameters are
often performed using Markov Chain Monte Carlo methods, such as the
Metropolis-Hastings algorithm.6 A benefit of this procedure is that pos-
terior credibility density distributions for the nuisance parameters can be
calculated alongside that for the signal, and inspecting these is an impor-
tant validation step of the analysis. If one or more nuisance parameters
are pulled multiple sigmas from their central values, or if the posterior un-
certainties are unusually small for one or more nuisance parameters, this
behavior ought to be investigated and explained. It is also useful to know if
a nuisance parameter is driven against a boundary in its prior distribution.

Figure B.1 gives examples of Bayesian posterior probability densities
L(µ) for experimental situations without or with an event excess. The
distinction is whether the maximum of the posterior probability density is
reached at zero signal strength or at a positive value.

(a) (b)

Fig. B.1. Examples of the Bayesian posterior probability density L(µ) for cases (a)

without and (b) with an event excess observed. The 95% CL limit µ95%CL is defined

such that the integral of the shaded area for 0  µ  µ95%CL equals 0.95. Note that

µ = 1 is excluded in both cases. The plots are taken from Ref. [7].

The Bayesian one-sided 95% CL upper limit on µ is extracted using the
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following equation:
Z µ

95%CL

0

L(µ) dµ = 0.95. (B.5)

This equation implies that one decides a priori to set limits only on high
values of signal strength µ, even in a situation when a large excess of events
is observed and small values of µ become just as unlikely as high values.
Defining Bayesian credibility regions with an upper and a lower bound is
performed with the same posterior probability density function; the proce-
dure is described in Sec. B.4.

The experimental sensitivity is characterised by the limits expected to
be set in the absence of a signal. These are computed by simulating many
repeated runs of the experiment under the assumption of the background-
only hypothesis, and computing an observed limit for each set of pseudo-
data. Pseudo-data are simulated according to the Poisson distribution, as-
suming event rates b(✓). The Bayesian approach is to fluctuate the values
of the nuisance parameters ✓ for each pseudo-experiment according to their
priors ⇢(✓), so that the expected limit distribution is summed over all values
the nuisance parameters can take, according to how much credibility they
have. This is an important step when computing the sensitivity of an ex-
periment that has not yet run and only highly uncertain a priori predictions
are available for the signal and background yields. After the experiment
has collected data, more is known about the expected backgrounds and
the signal e�ciencies, and the sensitivity may be updated. Alternatively,
one may be tempted to take a seemingly conservative approach by setting
the nuisance parameter values to the values that correspond to the least
predicted sensitivity. One must be careful however, as nuisance parameter
values set to increase the background prediction weaken the sensitivity, but
strengthen the observed limit (for a given observed event count, the larger
the assumed background is, the less room is left for a possible signal).

Since the distribution of expected limits is typically asymmetrical, the
sensitivity is quoted as the median expected limit. Typically the distri-
bution of expected limits is indicated by showing intervals containing 68%
and 95% of the integral of the distribution, centered on the median. The
quantiles are thus 0.025, 0.16, 0.5, 0.84, and 0.975. When these intervals
are indicated on a plot of observed and expected limits versus mH , they
are usually shown with colored bands (e.g., see Fig. B.3).

The Bayesian method, in addition to the frequentist methods described
in the next section, was frequently used to quantify results of Higgs boson
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searches at the Tevatron. Its usage at LEP and the LHC was less prominent.

B.2.2. Frequentist approach and its modifications

B.2.2.1. Classical frequentist

The classical frequentist approach is formulated for the case of no sys-
tematic uncertainties and begins by defining a test statistic qµ designed
to discriminate signal-like from background-like events. The test statis-
tic summarises all signal-vs-background discriminating information in one
number. By the Neyman-Pearson lemma,8 the ratio of likelihoods Q is the
most powerful discriminator. For a number of practical reasons, the actual
quantity used is a logarithm of the ratio, or more accurately, �2 lnQ:

qµ = �2 ln
p(data |µ s+ b)

p(data | b) . (B.6)

Modulo the modifications associated with handling systematic uncertain-
ties, this is the test statistic used in quantifying null Higgs boson search
results at LEP and the Tevatron in the frequentist paradigm context. In
LEP papers, this test statistic was referred to as �2 lnQ, and in Tevatron
papers, it was denoted LLR. There is another definition of the test statistic
that has taken a prominent role at the LHC:

qµ = �2 ln
p(data |µ s+ b)

p(data |µ̂ s+ b)
, with a constraint: 0  µ̂  µ, (B.7)

where µ̂ maximises the likelihood p(data |µ s + b). The advantage of this
test statistic is that its distribution can be approximated by asymptotic
formulae based on the theorems of Wilks and Wald, as derived in Ref. [9].
The upper bound on µ̂ (µ̂  µ) is needed when one desires to set one-sided
limits only on high values of signal strength µ, even if an excess of events
is observed.

Having chosen the test statistic qµ, its distributions are constructed
under the signal+background and background-only hypotheses by means
of generating toy pseudo-observations according to the very same Poisson
probabilities p(data | rate). Figure B.2 shows examples of distributions of
the test statistics �2 lnQ and qµ defined by Eqs. (B.6) and (B.7) for the
hypotheses of signal+background (µ = 1) and background-only (µ = 0).

For the test statistic defined by Eq. (B.6), experimental outcomes with
qµ > 0 are more likely to appear under the background-only hypothe-
sis than under the background+signal assumption. Assuming the sig-
nal+background hypothesis, the smaller number of observed events, the
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Fig. B.2. Examples of distributions of the test statistic qµ defined by (a) Eq. (B.6) and

(b) Eq. (B.7) for the signal+background and background-only hypotheses. Plots (a) and

(b) are taken from Refs. [10] and [7], respectively.

larger value of the test statistic is. For the test statistic defined by Eq. (B.7),
the test statistic is always positive definite; the smaller number of observed
events, the larger value of the test statistic is.

Using these distributions, one can then evaluate the probability for the
observed value qdataµ to be as or less compatible with the background+signal
hypothesis. Such a probability, P (qµ � qdataµ |µ s+ b), is denoted as CLs+b.
These probabilities correspond to the green and blue areas in Fig. B.2 (a)
and ig. B.2 (b), respectively. In the classical frequentist approach, one says
that the signal is excluded at, say, 95% CL, if CLs+b = 0.05.

However, such a definition has a pitfall: by taking the signal strength
equal to zero, one expects, by construction, that CLs+b  0.05 with a 5%
chance in the background-only hypothesis — hence, 5% of all searches will
end up excluding a signal of zero strength. In these cases, what has actually
been observed is a downward fluctuation of the background. The exclusion
of a zero-strength signal is certainly a questionable physics-wise result, even
though proper mathematical coverage is guaranteed by the method. The
problem with excluding a signal of zero strength is that an experiment
cannot possibly test for the presence or absence of such a signal, and thus
should not make a statement about it. To prevent, at least partially, the
inference of a signal in presence of such downward fluctuations, a number
of solutions have been suggested.
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B.2.2.2. Modifications of the classical frequentist method

A method of constructing unified (i.e. one/two-sided) confidence intervals
was suggested in Ref. [11] by Feldman and Cousins (FC). In this method,
confidence intervals are constructed using ranking of experimental outcomes
based on the value of the likelihood-ratio test statistic:

qµ = �2 ln
p(data |µ s+ b)

p(data | µ̂ s+ b)
, with a constraint: 0  µ̂, (B.8)

where µ̂ maximises the likelihood p(data |µ s+ b). Such construction auto-
matically protects the limits on signal strength from the undesired e↵ects
of downward fluctuations of background, preserves coverage, and does not
su↵er from undercoverage due to having to make flip-flop decisions between
reporting one-sided upper limits (no excess) and two-sided intervals when
a considerable excess of events is observed. One, however, faces a conun-
drum: the FC method starts giving a lower limit on signal strength µ for
excesses not yet significant enough for claiming a discovery (see Sec. B.3).
To avoid the “inconvenience” of giving a statistical interpretation of report-
ing a lower limit on signal strength, while not claiming an observation of a
signal, one can choose to report upper limits only—the price is overcoverage
for the cases in which an excess of events is observed.

At the time of LEP, the so-called modified frequentist approach was
introduced with the same goal to “protect” against too-strong statements
made about vanishingly weak signals when downward fluctuations occur in
the observed data.12–14 In this method, in addition to probability CLs+b =
P (qµ � qdataµ |µs + b), one also calculates CLb = P (qµ � qdataµ | b), by
simulating pseudo-data for assuming the background-only hypothesis, and,
then calculating the quantity CLs as the ratio of these two probabilities:

CLs =
CLs+b

CLb
. (B.9)

The method does not prescribe the test statistic to be used. In the modified
frequentist approach, it is this value, CLs, that is required to be less than or
equal to 0.05 in order to declare the 95% CL exclusion. By construction, the
CLs-based limits are one-sided. For µ = 0, CLs ⌘ 1; hence, µ = 0 cannot be
excluded, regardless of how low the observed event count is. The price of the
protection from background downward fluctuations is a gradual increase in
the overcoverage as one observes fewer and fewer events. For an observation
right on the top of the background-only expectation (CLb ⇠ 0.5), CLs is
twice as large as CLs+b.
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Between the two modifications, Feldman-Cousins and CLs, the latter
was most frequently used at LEP, the Tevatron, and the LHC. However,
there were distinct variations of the CLs method, stemming form the dif-
ferences in the choice of the test statistic and in the methods used to in-
corporate systematic uncertainties.

B.2.2.3. Introducing systematic uncertainties

Systematic uncertainties on the predicted signal and background rates, s(✓)
and b(✓), are introduced via modifications to the test statistic itself and/or
the way pseudo-data are generated. In the following, the prior densities
for the nuisance ✓ will be written as ⇢(✓|✓̃), where ✓̃ is the “nominal”
best-guess value of the nuisance parameter.

At LEP, the test statistic given by Eq. (B.6) was used; it was always
evaluated at the nominal values of the signal and background rates, i.e. at
s(✓̃) and b(✓̃). The e↵ect of systematic uncertainties was then introduced
via modifying s(✓) and b(✓) before each pseudo-data set was generated by
drawing random numbers from the ⇢(✓|✓̃) distributions. This method was
first introduced to the field by Cousins and Highland15 and is now known
as a hybrid Bayesian-frequentist method, since the treatment of nuisance
parameters in this case is explicitly Bayesian.

At the Tevatron, the hybrid Bayesian-frequentist approach to generating
the pseudo-data remained the same as at LEP, but the test statistic given
by Eq. (B.6) was redefined in order to improve the sensitivity in the face of
large systematic uncertainties. The Poisson-like likelihoods were extended
to include the nuisance parameter densities ⇢(✓|✓̃)

L(data |µ,✓) = p( data |µ · s(✓) + b(✓) ) · ⇢(✓|✓̃) (B.10)

Before taking the ratio, both the numerator and the denominator like-
lihoods were maximised with respect to nuisance parameters. The test
statistic then takes the following form:

qµ = �2 ln
L(data |µ, ✓̂µ)

L(data | 0, ✓̂0)
, (B.11)

where ✓̂µ and ✓̂0 are maximum likelihood estimators for the sig-
nal+background hypothesis (with the signal strength factor µ) and for the
background-only hypothesis (µ = 0).

At the LHC, the ATLAS and CMS experiments started to use the profile
likelihood test statistic given by Eq. (B.7), which was further modified
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to incorporate systematic uncertainties in the definition of likelihoods, as
described below. The overall treatment of systematic uncertainties was
conceptually di↵erent with respect to that used by LEP and the Tevatron;
it was brought to be closer to the frequentist treatment of data fluctuations.
First, following the Bayesian paradigm, systematic uncertainty densities
⇢(✓|✓̃) were reinterpreted as posteriors of some measurements of ✓̃, either
real (e.g., measurements in control regions) or imaginary (e.g., uncertainties
on theoretical cross sections):

⇢(✓|✓̃) ⇠ p(✓̃|✓) · ⇡✓(✓), (B.12)

where priors ⇡✓(✓) were assumed to be flat. Second, these initial best-guess
values ✓̃ were treated on par with data in construction of the likelihoods
and in generation of pseudo-data. The likelihood was as follows:

L(data, ✓̃ |µ,✓) = p( data |µ · s(✓) + b(✓) ) · p(✓̃|✓), (B.13)

which formally coincided with that used by the Tevatron. Then, as in the
case of the Tevatron, to take advantage of data constraining a priori uncer-
tainties, the test statistic was defined with the numerator and denominator
likelihoods maximised:

qµ = �2 ln
L(data, ✓̃ |µ, ✓̂µ)

L(data, ✓̃ | µ̂, ✓̂) , 0  µ̂  µ, (B.14)

where the pair of parameters µ̂ and ✓̂ gives the global maximum of the
likelihood. Finally, the treatment of nuisance parameters in generation of
pseudo-observations is where the approach taken by LHC was very dif-
ferent from that used at LEP and the Tevatron. Using the best val-
ues of the nuisance parameters for the background-only and for the sig-
nal+backhround hypotheses (✓0 and ✓µ, respectively), the pseudo-data
and pseudo-measurements of ✓̃ were generated. In other words, instead of
using a Bayesian-frequentist hybrid method, the nuisance parameters were
treated in a nearly pure frequentist way.

B.2.2.4. Summary of the frequentist approaches used in the Higgs
boson search at LEP, the Tevatron, and the LHC

For comparison purposes, the di↵erences in the CLs method, as used at
LEP, the Tevatron, and the LHC, are summarised in Table B.1 below.
The LEP prescription does not allow one to take full advantage of the
constraints imposed on the nuisance parameters by the data used in the
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statistical analysis. The Tevatron and LHC versions of CLs, though con-
structed di↵erently, in practice give nearly identical results. The benefit
of the LHC-type CLs is that it uses a test statistic with useful asymptotic
properties, as shown in Fig. B.3. Also, the sampling distributions of the
test statistic can be built following the pure frequentist language.

Table B.1. Comparison of CLs definitions as used at LEP, Tevatron, and LHC.

Collider Test statistic Profiled? Test statistic sampling

LEP qµ = �2 ln

L(data|µ, ˜✓)
L(data|0, ˜✓) no Bayesian-frequentist hybrid

Tevatron qµ = �2 ln

L(data|µ, ˆ✓µ)
L(data|0, ˆ✓0)

yes Bayesian-frequentist hybrid

LHC qµ = �2 ln

L(data|µ, ˆ✓µ)
L(data|µ̂, ˆ✓) yes frequentist

(0  µ̂  µ)

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L 
lim

it 
on

 

-110

1

10

 ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
 Obs.

S
Asymptotic CL

 ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
 Obs.

S
Asymptotic CL

/experiment-1 = 1.0-2.3 fbintL
 = 7 TeVsATLAS + CMS Preliminary,   ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
 Obs.

S
Asymptotic CL

/experiment-1 = 1.0-2.3 fbintL
 = 7 TeVsATLAS + CMS Preliminary,  

Fig. B.3. An example of limits on signal strength µ as obtained by generating pseudo-

observations (exact) and via asymptotic formula (approximate). Also shown are limits

obtained with the Bayesian technique. The results of the three calculations are very

similar in the full Higgs boson mass range. The plot is taken from Ref. [16].

In all cases, the sensitivity of the experiment is given by the median
limit expected to be set in the absence of a signal, and in nearly all cases,
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the intervals containing 68% and 95% of the limits expected in pseudo-data
are shown, centered on the median.

B.3. Significance of an excess of events

B.3.1. Quantifying an excess of events for a given model

In the case of observing an excess of events, characterisation of it begins
with evaluating the p-value, i.e. the probability for background alone to
yield an outcome as signal-like as observed. This can be done by gen-
erating background-only pseudo-data and building up the corresponding
probability distribution for the test statistic of choice.

The four test statistics given in Eqs. (B.6), (B.11), (B.8), and (B.14)
can be used. The first two compare the models µ = 0 with µ = 1, while
the profile likelihood ratio used by the LHC is constructed for µ = 0 and µ̂,
where µ̂ is either unconstrained or constrained to be positive, which makes
no di↵erence to the tail of the distribution:

q0 = �2 ln
L(data | 0, ✓̂0)

L(data | µ̂, ✓̂) . (B.15)

For the first two test statistics, Eqs. (B.6) and (B.11), observations with
a large excess of events would form a left-hand tail (see Fig. B.2), while
the profile likelihood test statistic would stretch to the right as shown in
Fig. B.4.

The p-value, i.e. the probability of getting an observation as or less
compatible as seen in data for the background-only hypothesis, is then de-
fined as P (q1  qdata1 ) for the test statistics given by Eqs. (B.6) and (B.11),
and P (q0 � qdata0 ) for the profile likelihood test statistic given by Eq. (B.15).

In addition to the p-value, the significance Z, commonly described as
the number of standard deviations, is reported. A significance Z of three
standard deviations is the customary criterion for “evidence”, while a sig-
nificance of five standard deviations is the commonly accepted criterion for
“observation” of a new particle or process. Two conventions have been used
to compute Z from the p-value (one-sided or two-sided normal distribution
tail probability):

p =

Z
1

Z

1p
2⇡

exp(�x2/2) dx, (B.16)

p =

Z
�Z

�1

1p
2⇡

exp(�x2/2) dx +

Z
1

Z

1p
2⇡

exp(�x2/2) dx. (B.17)
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Fig. B.4. Example of a distribution of the profile likelihood test statistic q0 (Eq. (B.15)).

The shaded area represents the p-value, or the probability P (q0 � qdata0 ). The solid green

curve shows the asymptotic �2
-distribution for one degree of freedom. The plot is taken

from Ref. [7].

The two-sided convention of Eq. B.17 was used by the four LEP collab-
orations, while the one-sided convention of Eq. B.16 was used by the two
Tevatron collaborations and the two LHC collaborations. In the one-sided
convention, the Type-I error rate, that is, the probability that the null hy-
pothesis will generate an experimental outcome that elicits a false claim
of evidence (Z > 3), is approximately 0.00135, and the Type-I error rate
for observation (Z > 5) is approximately 2.87 ⇥ 10�7. For the two-sided
convention, the Type-I error rates are twice as large.

In the asymptotic regime the profile likelihood test statistic (Eq. B.15)
has the very attractive property of being distributed as a half �2 for one
degree of freedom, which allows one to approximately estimate the signifi-
cance, Z, as defined by Eq. (B.16) from the following formula:

Z ⇡
q

qdata0 . (B.18)

The asymptotic approximation gives very satisfactory results for signif-
icance estimations even when one is far from the asymptotic regime (e.g., if
one observes a few events, while the expected background rate is less than
one event).
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B.3.2. Look-elsewhere e↵ect

In the Higgs boson search, the experimental collaborations scan over Higgs
boson mass hypotheses and look for the one giving the minimum local p-
value pmin

local (corresponding to local significance Zlocal), which describes the
probability of a background fluctuation for that particular Higgs boson mass
hypothesis, as shown in Fig. B.5 (b). The probability to find a fluctuation
with a local p-value lower or equal to the observed pmin

local anywhere in the
explored mass range is referred to as the global p-value, pglobal:

pglobal = P(p0  pmin
local | b), (B.19)

The fact that the global p-value can be significantly larger than pmin
local is

often referred to as the look-elsewhere e↵ect (LEE). The global significance
(and global p-value) of the observed excess can be evaluated in this case by
generating pseudo-datasets, which, however, becomes too CPU-intensive
and not practical for very small p-values. Therefore, the method suggested
in Ref. [18] was used. The relationship between the global and local p-values
is given by:

pglobal = pmin
local + C · e�Z2

local

/2. (B.20)

Assuming one can simulate correlations in data selected for di↵erent
Higgs boson mass hypotheses, the constant C can be found by generating
a relatively small set of pseudo-data and then use it to evaluate the global
p-value corresponding to the value pmin

local observed in the experiment.
For a very wide mass range, the constant C can be evaluated directly

from the data19 by counting the number Nup of times that µ̂(mH) crosses
the line µ = 0 in the upwards direction, as shown in Fig. B.5 (c), and
setting C = Nup.

B.3.3. Discovery sensitivity

In analogy to the procedure to compute the sensitivity of the experiment
using the median expected limit, the discovery sensitivity is quantified using
the median expected p-value assuming the presence of a signal. This is
often quoted as the median expected Z value. Sensitivities are often shown
without correction for the LEE, as curves on plots of median expected
p-values as functions of the Higgs boson mass (e.g, see Fig. B.5 (b)).



16 T. Junk, A. Korytov, and A. L. Read

Fig. B.5. (a) Observed and expected limits on signal strength vs hypothesized Higgs

boson mass. (b) Observed p-value vs hypothesized Higgs boson mass. (c) Best-fit µ
as a function of a hypothesized Higgs boson mass. The number of times µ crosses 0

from negative to the positive value is called the number of upcrossings. The number

of upcrossings can be used to evaluate the look-elsewhere e↵ect directly from data as

described in the text. The plot is taken from Ref. [17].

B.4. Extracting signal model parameters

Signal model parameters a (the signal strength modifier µ can be one of
them) are evaluated from a scan of the profile likelihood ratio q(a):

q(a) = �2 ln
L(obs | s(a) + b, ✓̂a)

L(obs | s(â) + b, ✓̂)
, (B.21)
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The parameter values â and ✓̂ that maximise the likelihood, L(obs | s(â)+
b, ✓̂) = Lmax, are called the best-fit set. The 68% (95%) CL on a single
parameter of interest a is evaluated from q(a) = 1 (3.84) with all other
unconstrained model parameters treated in the same way as the nuisance
parameters. The 2D 68% (95%) CL contours for pairs of parameters are
derived from q(a1, a2) = 2.3 (6.0), as shown in Fig. B.6 (a) for a pair of
parameters of interest (mH ;µ). One should keep in mind that boundaries of
2D confidence regions projected on either parameter axis are not identical
to the 1D confidence interval for that parameter.

Alternatively, model parameters can be extracted using the Bayesian
technique. For example, the posterior probability density L(a) is com-
puted by marginalising over the nuisance parameters, usually using a uni-
form prior density for the parameters of interest a. The best-fit values
â are those which maximise L(a), and the 68% (95%) CL region is the
smallest-area region that contains 68% (95%) of the integral of the poste-
rior density. Figure B.6 (b) shows the Bayesian posterior density L(a) and
68% (95%) CL contours for the same datasets used for the profile likeli-
hood scan presented in Fig. B.6 (a). The CL contours on both plots are
remarkably similar. As is the case with limits, the marginalisation of the
nuisance parameters explores the behavior of the likelihood function for all
values of the nuisance parameters and not just those near the maximum.
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Fig. B.6. Examples of (a) 2D profile likelihood scan and (b) Bayesian posterior like-

lihood function. Solid (dashed) lines indicate 68% (95%) CL intervals. The plots are

taken from Ref. [7].



18 T. Junk, A. Korytov, and A. L. Read

The measurement sensitivity is quantified by computing the distribution
of expected measurement uncertainties in pseudo-data drawn from models
with known values of the parameters of interest. Usually the uncertainty
obtained in the data fit is compared with the distribution of expected un-
certainties in the process of validating a result in order to determine if the
experiment is much luckier or unluckier than expected, and the median ex-
pected uncertainty is the figure of merit used to optimise the analysis. An
observed uncertainty that is very di↵erent from what is expected requires
investigation and explanation. The expected measurement uncertainty is
also of value when averaging parameters, as the observed uncertainty is
often correlated with the value of the parameter being measured, and this
can bias weighted averages. Optimising simultaneous measurements of two
or more parameters leaves more choices for figures of merit to use.
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