Major Report

LHC forward physics

doi:10.1088/0954-3899/43/11/110201

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Fermilab, Batavia, USA
3 INFN Torino, Italy
4 Università del Piemonte Orientale, Novara, Italy
5 AGH University of Science and Technology, Krakow, Poland
6 CERN, Geneva, Switzerland
7 Central China Normal University (CCNU), Wuhan, Hubei, People’s Republic of China
8 University of Hamburg, Germany
9 University of Antwerpen, Belgium
10 DESY, Hamburg, Germany
11 NIKHEF and GRAPPA, Amsterdam, The Netherlands
12 INFN Pisa, Pisa, Italy and Universita degli Studi di Siena, Siena, Italy
13 LPT, Université Paris-Sud, CNRS, F-91405, Orsay, France
14 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
15 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
16 Universita and INFN, Bologna, Italy
17 University of Glasgow, UK
18 Pontificia Universidad Catolica del Peru (PUCP), Lima, Peru
19 Universita della Calabria, Cosenza, Italy
20 Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
21 Instituto de Fisica Teorica UAM/CSIC and Universidad Autonoma de Madrid, Cantoblanco, Madrid, Spain
22 LLR, Ecole Polytechnique, Paliseau, France
23 IPN, Institut de Physique Nuclaire, Université Claude Bernard Lyon-I, CNRS/IN2P3, Lyon, France
24 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
25 The Rockefeller University, New York, USA
26 School of Physics and Astronomy, University of Manchester, UK
27 University of Alberta, Canada
28 Research and Development Institute of Power Engineering (NIKIET), Moscow, Russia
29 Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
30 Department of Physics, University of Helsinki, Helsinki, Finland
31 INFN Genova, Italy
32 ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica, Sao Paulo State University, Brazil
33 Stony Brook University, Stony Brook, New York, USA
Russian Academy of Sciences, Institute for Nuclear Research (INR), Moscow
Gruppo Collegato INFN of Cosenza, Italy
LIP, Lisbon, Portugal
University of Rzeszow, Rzeszow, Poland
High and Medium Energy Group, Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Pelotas, Brazil
Department of Physics and Astronomy, University College London, UK
Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico
Centro de Investigacion y de Estudios Avanzados del IPN CINVESTAV , Dep. de Fisica and Dep. de Fisica Applicada, Mexico
Institute of Physics, Academy of Sciences, Prague, Czech Republic
IPM, Institute for Research in Fundamental Sciences, Tehran, Iran
Moscow State University, Moscow, Russia
Alikhanyan National Scientific Laboratory (ANSL), Armenia
Institute for Particle Physics Phenomenology, Physics Department, University of Durham, UK
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Instytut Fizyki Jadrowej Polskiej Akademii, Krakow, Poland
Institut de Physique Theorique, CEA Saclay, Gif-sur-Yvette, France
Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau, France
University of Warwick, UK
Benemerita Autonomous University of Puebla, Mexico
University College Dublin, Dublin, Ireland
University of Athens, Greece
Dipartimento Inter-ateneo di Fisica di Bari, Italy; INFN Sezione di Bari, Bari, Italy
University of Kansas, Lawrence, USA
Case Western Reserve University, Department of Physics, Cleveland, USA
Department of Physics and Technology, University of Bergen, Bergen, Norway
Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Brazil
Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
Theoretical High Energy Physics, Department of Astronomy and Theoretical Physics, Lund University, Sweden
Utrecht University and Nikhef, Utrecht, The Netherlands
Creighton University, Omaha, USA
Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, Brazil
ITEP, Moscow, Russia
Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Centro Studi e Ricerche ‘Enrico Fermi’, Roma, Italy
Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia
STEL/KMI, Nagoya University, Nagoya, Japan
IRFU-SPP, CEA Saclay, Gif-sur-Yvette, France
Ruprecht-Karls-Universitaet Heidelberg, Germany
Hacettepe University, Ankara, Turkey
School of Physics and Astronomy, Monash University, Clayton, Australia
Department of Physics, University of Oxford, Oxford, UK
Penn State University, University Park, USA
National Center for Nuclear Research, Warsaw, Poland
Yonsei University, Seoul, Korea
University of Catania and INFN Sezione di Catania, Italy
Universita degli Studi di Genova, Dipartimento di Fisica and INFN, Genova, Italy
Cracow University of Technology, Poland
We give here an introduction to the complete report that may be found at: stacks.iop.org/43/110201/mmedia

In early 2013 the LHC forward physics and diffraction working group (WG) was formed, as part of the activities of common interest to the LHC experiments organized by the LHC Physics Centre at CERN (LPCC, http://cern.ch/lpcc). The primary goal of the WG was to coordinate, across the experiments and with the theoretical community, the discussion of the physics opportunities, experimental challenges and accelerator requirements arising from the study of forward phenomena and diffraction at the LHC. The mandate of the group included the preparation of a report, to outline a coherent picture of the forward physics programme at the LHC, taking into account the potential of the existing experiments—including possible detector upgrades—the possible beam configurations and performance of the accelerator, and the optimization of the LHC availability for these measurements, in view of the priority need to maximize the LHC total integrated luminosity.

The WG was set up by the LPCC in coordination with the management of the ALICE, ATLAS, CMS, LHCb, LHCf and TOTEM experiments, which nominated their representatives in the WG steering group and the WG co-chairs. The steering group identified theory conveners, to oversee the relevant sections of the report, and created three subgroups to focus the WG activity, reflecting the physics goals appropriate to different LHC running conditions:

- low pileup and luminosity (few 10 pb$^{-1}$),
- medium luminosity (few 100 pb$^{-1}$),
- high luminosity (100 fb$^{-1}$).

All interested physicists were then invited to attend the 16 WG meetings held so far, and to contribute to the writing of this report, which hopefully represents the unanimous views of the broad forward-physics community. The detailed information about the WG, including the composition of the steering committee and of the subgroups’ conveners, the list of meetings, the link to the WG material and to its mailing list subscription, can be found in the WG web page at: http://cern.ch/LPCC/index.php?page=fwd_wg.

As requested by the LHC experiments committee (LHCC), and following the several presentations delivered to the committee in the course of the WG activity, this final report has been submitted to the LHCC, and forms the basis for its internal discussions and recommendations on the requests by the experiments for beam time and detector upgrades, related to forward physics, during Run 2 of the LHC and beyond. More in general, we trust that this report will promote the deeper understanding and appreciation of the value of this component of the LHC physics programme, and will encourage further progress and the development of new ideas, both on the theoretical and experimental fronts.
We give a comprehensive overview of the rich field of forward physics, with special attention to the topics that can be studied at the LHC. The report starts by presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, cosmic ray and heavy ion physics are presented in chapters 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

The chairs of the LHC Forward Physics working group.