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Abstract

The sophistication of current predictions for Z+jet production at hadron colliders necessitates a re-
evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such
issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of Z 4 1 jet
and Z 4 2 jet production by presenting exact analytic formulae for amplitudes containing top-quark loops
that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of
1/m? can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their
effect is small and has limited phenomenological interest.
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I. INTRODUCTION

The production of a Z-boson in association with jets is of considerable importance as a tool
for understanding the Standard Model (SM). The Z+jet process has been proposed as a probe of
both parton distribution functions and the high-energy running of the strong coupling, as;. The
production of more than one jet is especially important in the environment of the LHC, where
typical jet reconstruction algorithms routinely result in multiple jets. This means that Z+jets
processes represent significant backgrounds in many searches for New Physics, notably when the
Z-boson decays to neutrinos so that it is a source of large missing transverse energy. Therefore
they must be predicted precisely within the SM.

In order to obtain the level of theoretical precision required to match the small experimental
uncertainties [1} 2], it is imperative to perform perturbative calculations of Z-jet processes beyond
the leading order. The dominant source of corrections arises from QCD, with next-to-leading
order (NLO) calculations available for processes involving up to four jets [3H7]. The expected
experimental precision of measurements of the Z + 1 jet state has motivated the calculation of
this process to the next order (NNLO) [8H11], so that experimental and theoretical uncertainties
in this case are commensurate over a relatively large kinematic range. At this level of theoretical
accuracy it is also necessary to have control over corrections arising from the electroweak sector.
These effects are known for up to two jets in the final state [12-14].

With these results in hand it is important to revisit assumptions and approximations inherent
in the calculations performed so far. One such approximation relates to the inclusion of the effect
of the top quark in one-loop virtual corrections to these processes. Since the mass of the top quark
introduces a new scale into the problem, including its effect results in a significantly more complex
calculation than the usual case in which all quarks are considered massless. In their classic 1997
paper [15], Bern, Dixon and Kosower (BDK) gave results for such contributions to the Z + 1 and
Z + 2 jet processes by performing a large mass expansion in the top-quark mass. Although this
approximation was appropriate in the last century, and in particular for eTe™ annihilation at LEP
energies, it may no longer be appropriate at the LHC and higher energy machines where scales
above the top quark mass are probed.

In this paper we shall compute a class of one-loop corrections to Z + 1 and Z + 2 jet processes,
specifically considering the effects of fermion loops in which the full dependence on the top-quark
mass is retained. The one-loop results for these processes can be obtained with a number of
numerical programs, but it is nevertheless useful to have analytic formulae for these processes,
because of the improvement in evaluation speed and numerical stability that an analytic formula
can provide. The amplitudes that we have computed may be useful for other crossed, or related,
processes and are provided in the appendix. The phenomenological impact of these calculations is
assessed for the Z + 1 jet case in Section [[I] and for the Z + 2 jet process in Section

II. TOP-LOOP EFFECTS IN Z +1 JET PRODUCTION

In the case of Z + 1 jet production, top-quark loop contributions only enter through diagrams
such as the ones shown in Fig. Furry’s theorem means that diagrams containing a vector
coupling of the Z-boson to the quark loop vanish, so that only the axial coupling contributes. In
fact, since we consider all quarks other than the top quark to be massless, due to the opposite
weak isospin of up- and down-type quarks, the only contribution from these diagrams comes from
the third generation. In the original BDK treatment of these diagrams [I5], these contributions
are computed in the limit that m; — oo, with the leading term in a 1/ m? expansion retained. We
have recomputed these contributions retaining the full top-quark mass dependence; the analytic
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FIG. 1. Examples of fermion loop diagrams contributing to Z 4+ 1 jet production. The only non-zero
contribution enters through the axial coupling of the Z-boson to third-generation quarks.
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FIG. 2. The jet pr spectrum for Z-+jet production at NLO, computed for the 13 TeV LHC (left) and a
100 TeV pp collider (right). The calculation uses a scale p, = uy = Hp/2 and no cuts are applied apart
from pr(jet) > 25 GeV. The red (solid) histogram corresponds to the exact result while the blue (dot-dash)
and magenta (dash) histograms represent the large-mass expansion up to 1/m? and 1/m$ respectively, as
detailed in the text.

form of the amplitudes representing this contribution is given in Appendix [A]

This expansion can be extended to include higher-order terms but in the high-energy regime this
can lead to problems since the expansion is properly of the form s/m?, where s becomes large. This
is illustrated in Fig. [2[ (left). The leading term in the expansion (as presented in BDK) agrees very
well with the exact result over the range shown. Including further terms in the 1/m? expansion
spoils this agreement. Although the exact treatment and the 1/m$ approximation agree up to jet
transverse momenta around 1 TeV, beyond that the approximation is no longer under control and
results in a wildly different prediction for the spectrum. The lower panel shows the ratio of the
approximation with the leading term to the exact result. The two differ by around 0.7% for a jet
with 3 TeV transverse momentum. Since the number of events in this region is negligible this is
not a significant difference. We conclude that, although the exact result should be preferred, there
is no observable impact on the phenomenology of this process when using only the leading term in
the 1/m? expansion.

At a 100 TeV collider the differences are more significant, as shown in Fig. [2f (right). Even for
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FIG. 3. Vacuum polarization diagrams contributing to the ¢qgQQZ process, where the Z-boson couples to
an external line of light quarks.
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FIG. 4. Examples of fermion loop (top quark) diagrams in which the Z-boson couples to an external line of
light quarks in the ¢GggZ process.
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10 TeV jets, which would be abundant at such a collider, the effect of the approximate top-quark
loop is a few percent. Since this is at the same level as the NNLO corrections, it is important that
the exact result be available and taken into account.

III. TOP-LOOP EFFECTS IN Z +2 JET PRODUCTION

The Z + 2 jet process is sensitive to a much wider range of virtual corrections that involve a
closed loop of top quarks. This is partly due to the fact that the process is represented by two
separate parton-level reactions (and all appropriate crossings):

0 — q(—p1) + G(—p2) + 9(p3) + g(ps) + €* (ps) + € (ps) , (1)
0— q(—p1) + Q(—p2) + Q(p3) + Glpa) + €™ (ps) + e (ps) - (2)

We will refer to these by the abbreviated forms, ¢gggZ and qgQQZ processes. In the original BDK
paper, all of the top-quark loop contributions have been included using the 1/m? expansion.

In this work we have computed all of the corrections retaining the full dependence on the top-
quark mass. The addition of the mass complicates the analytic form of the amplitudes but we
have still obtained relatively compact expressions. This is achieved through the use of analytic
unitarity methods for computing one-loop box and triangle coefficients [I6H18] and by recycling
BDK results for the massless case whenever possible. Full details of our calculation, including
explicit expressions for all amplitudes, are presented in Appendices [B] and [C]

The top-quark loop contributions can be categorized according to the manner in which the
Z-boson couples to the partons:

1. Contributions where the Z boson couples to the light quark line. These correspond to
vacuum polarization contributions to the ¢GgQ@Q~Z process shown in Fig. [3| and to the loop
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FIG. 5. Examples of fermion loop diagrams contributing when the Z couples to a heavy quark line through
either a vector or an axial coupling. With a vector coupling the triangle diagrams vanish, and hence only
the box diagrams contribute.

FIG. 6. Quark loop diagrams involving the axial coupling of the Z-boson in the ¢gQQZ process.

corrections to the qGggZ process depicted in Fig. |4l These amplitudes are described in detail
in Appendices and

2. A vector coupling of the Z-boson to a closed loop of top quarks, occurring in diagrams such
as the one shown in Fig. (c) These are only present in the qgggZ process and are described

in Appendix

3. An axial coupling of the Z-boson to a closed loop of quarks, as shown in Figs. [f] and [6] for the
93997 and q@QQZ processes, respectively. This contribution vanishes for all but the third
generation of quarks, whose effect is captured here. For the qgQQZ process these corrections
are discussed in Appendix while the corresponding contributions to the ggggZ process
are detailed in Appendices and [C|[6]

We will now examine the effect of each of these contributions separately, both in the 1 /mt2
approximation used in the BDK form of the amplitudes and with the improved treatment pro-
vided by the exact expressions presented here. Our calculation is performed by incorporating our
newly-calculated amplitudes in the Monte Carlo program MCFM [19-21], which already includes a
complete calculation of Z + 2 jet production at NLO that makes use of the BDK loop amplitudes.
The expressions for the amplitudes with the exact top-mass dependence are written in terms of
the scalar integrals described in Appendix @ that are evaluated numerically using the £f [22 23]
and QCDLoop [24], 25] libraries.

For all of the results in this section we will consider the production of an on-shell Z-boson that
decays to an electron-positron pair, with no cuts applied to the leptons. This is a choice made for
the presentation of our results, and not an intrinsic limitation of MCFM. We use the CT14.NN pdf
set [26] and choose to set both renormalization and factorization scales to Hr/2, where Hr is the
scalar sum of the transverse momenta of all leptons and partons.
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FIG. 7. Upper panel: the distribution of the transverse momentum of the leading jet in Z + 2 jet events at
100 TeV. Predictions are shown with no top-quark loops included, using the 1/m? approximation and with
the exact result (including all contributions). The exact, only vector and only axial histograms are almost
indistinguishable from the result with no top-quark loops. Lower panel: the ratio of the predictions of the
approximate treatment to the one in which no top-quark loops are included.

III.1. Results: 100 TeV collider

Since we expect the problems associated with the 1/m? expansion used in the original BDK
expressions to be exacerbated at high energies, we first present results for a putative 100 TeV
proton-proton collider. We define jets using the anti-kr clustering algorithm with a jet separation
R = 0.5 and demand that they satisfy,

pr(jet) > 500 GeV , y(jet) < 4. (3)

A comparison of the NLO predictions for the lead jet transverse momentum, with various levels
of sophistication, is shown in Fig. The approximation of the contributions with the Z-boson
coupled to a top-quark loop through axial and vector couplings lead to relatively small deviations
in this range. In contrast, approximating the contributions that involve the Z-boson coupling to
light quarks in the same way leads to substantial errors at jet transverse momenta of about 3 TeV
and higher. The NLO rate is over-estimated by a factor of four for a 10 TeV jet. Using the exact
result for the top-quark loops yields a prediction that is essentially unchanged from the one in
which they are not included at all.
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FIG. 8. Upper panel: the distribution of the transverse momentum of the leading jet in Z + 2 jet events at
14 TeV. Predictions are shown with no top-quark loops included, using the 1/m? approximation and with
the exact result (including all contributions). The exact, and only vector and axial, histograms are barely
distinguishable from the result with no top-quark loops. Lower panel: the ratio of the predictions of the
approximate treatment to the one in which no top-quark loops are included.

IT1.2. Results: LHC at /s = 14 TeV

We now turn to results of more immediate interest, namely predictions for the LHC operating
at /s = 14 TeV. We adjust the jet cuts accordingly and now demand,

pr(jet) > 50 GeV, y(jet) < 2.5. (4)

A comparison of our calculations under these cuts is shown in Fig. |8 Note that, in comparison to
the previous figure, the lower panel has a much smaller scale since we consider transverse momenta
for the jet that are much lower. In addition, having observed that the effect of the diagrams in
which the Z-boson couples to a top-quark loop is small, in this case we simply show the sum of
the contributions from the vector and axial couplings of the Z-boson to top quarks. As expected,
at the energies that are accessible at the LHC the error made when using the 1/m? approximation
is much less severe. Even at a jet transverse momentum of 1 TeV it only results in a 4% deviation
from the result with no top-loops included. The effect of the approximation on the cross-section
for both jets above 50 GeV is an enhancement of a mere 0.05%.

IV. CONCLUSIONS

In this paper we have reviewed the importance of top-quark loops in NLO corrections to Z+1 jet
and Z + 2 jet production. To do so, we have computed the effect of these loops with an exact



treatment of the top-quark mass and given analytic forms for all the relevant amplitudes. We find
that the effect of these loops is very small and not important for phenomenology at the LHC. For
a putative 100 TeV proton-proton collider the effects are more significant and, for the Z + 1 jet
case, lead to a few percent change in the prediction for jets with transverse momentum of 10 TeV.
Attempting to include the effect of these loops by using an expansion in powers of 1/m? leads to
the theoretical prediction being over-estimated due to poor high-energy behaviour. While this may
be at a level that is tolerable at the LHC, it can lead to results at 100 TeV that are incorrect by
factors of two or more.
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Appendix A: Five point amplitude A(1,,2,, 35,4z, 5¢)-

In this appendix we consider the five-point amplitudes that enter the calculation of Z + 1 jet
production. Specifically, we consider the process:

0 — q(—p1) + g(p2) + q(—p3) + e (ps) + € (ps) . (A1)

1. Tree graphs

We write the tree-level amplitude as,
AFee = 2eg( = Q1+ vf gvf gPz(s45)) (T%), " AT®(14,24,3q) (A2)

where we have omitted the labels of the electron-positron pair, (5 and 4 respectively). We further
define

sij = (pi +p5)%, sijr = (pi +pj +pr)?. (A3)

e is the QED coupling, g the QCD coupling, Q? is the charge of quark ¢ in units of e, (the positron
charge), and the ratio of Z and photon propagators is given by

S

Pzls) = s— MZ+ily My’

(A4)

where My and I'z are the mass and width of the Z. The definition of the Z/v* couplings is given
in Table [l Colour matrices are normalized such that

Te 7T = §91%2 (A5)

For the tree amplitude A5(1;, 2;, 3754z 5F), the result is,
(34)°

A3 052530 =~y gy sy

q<grvq (AG)
We note that this matrix element has the same sign as BDK, Eq. (D1), as do all of the results
in this section. The (i j) and [ij] are the normal spinor products for massless vectors, such that
(i)[j 1] = sij. For details of their definition see refs. [27, 28].
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Boson Feynman rule Coupling
v —ieQlAH
—ie’y“(v‘f/ - v1f4'y5) v‘f/ = (Tf —2Q sin? Oy / sin 20y, vf; = Tsf/sin 20w, Tg =41

—ieyH (vivL + U'};’}/R) v{ = (27 — 2Q7 sin? Oy )/ sin 20y, v'}; = —2Q/ sin? Oy / sin 20y

A

TABLE I. Feynman rules and couplings of a photon and a Z to a fermion-antifermion pair. For massless
fermions it is convenient to use the left- and right-handed couplings, rather than the vector and axial
couplings, so both are shown. Q7 is the charge of the fermion in units of the positron electric charge.

2. Fermion loop corrections to the tree level amplitude

The one-loop colour decomposition is given by
AL (14,20,30) = 2626 (~Q1+ ! P
- 1
X (T@)ills [NCAE’);l(lqa 2¢,3q) + FAE);Q(LJ? 3g; 2g)]
(&

+2)° vl v§ g Pr(s4s)(T%2), A§;3(1q, 34 29)} . (AT)
f=t,b

The results for the functions As.; and As.» are given in BDK [15]. Since they do not involve fermion
loops we do not repeat them here. The function As.3 contains the terms where a Z couples to a
loop of quarks via the axial coupling, as shown in Fig. [I] where our conventions for the overall
coupling factors are given in Table [[ If we consider all quarks except the top to be massless then
there is a net contribution only for the third generation, because of the opposite weak isospin of
the up- and down-type quarks

The result for the leading order interfered with the NLO and summed over colours is given in
terms of partial amplitudes as,

Z [A:AsxLo = 8¢t g* (N2 — 1) N, Re{ (—Q7+ UL RVL R P (s45)) AE** (14, 24, 37)

colors

1
x [(—Qq + 0L RV g P (545)) [A5:1(14, 29, 3q) + 35 A5:2(10, 335 2)]

C

2 e
A Z U,{x VL.R PZ(345>A5{;3(1q7 3q; 2g)] } : (A8)
€ f=tb

Note that the axial part Ag;3 depends on the flavour of the quark (f) and we have to sum over
the contributions of the top and bottom loops. We choose to follow the conventions of the original
BDK presentation and write the subleading contributions with permuted momentum labels. In
this scheme we further define

AL 5(14,2;3,) = ier AL (17,273 35), (A9)

with

1 TA+el%(1—e)
(4m)2—¢  T(1—2¢) )

cr = (AlO)
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In this case the terms of order € and higher in cr are not needed because the amplitude is finite.
The result for this amplitude is, including both the top and bottom contributions,

[53][31](24)

ALY (15,2735 =2
S45

702733, [f(mt;O, S12, 845) — f(mp; 0, 512,345)] , (A11)
where m ¢ is the mass of the quark running in the triangular loop. We shall take the bottom quark
to be massless, my = 0.

The function f is the axial triangle function that depends on my, for which results have been
given in ref. [I5] and are detailed in Appendix [F] For a massive quark, such as the top quark, in
the special case where one of the legs of the triangle is light-like, we have, (c.f. Eq.)

f(m7 07 q%')q%) - 1 + QWQCO(QLCB;mamv m)

263 - a)
2
+ <(q32—3q%)> [BO((BS m,m) — Bo(ql;m,m)}] : (A12)

By and Cj are the scalar integral functions defined in Appendix [D] In the limit m — oo we get

1 (2¢f +43) | (24743 + 341 + 43)
0,02, g2 = [1 179 193 1 3} O(1/md). A13
The result for a massless quark is,
1 a g7 1 4
£(0:0,¢%.63) — 1+ g (4) | = o (%)
PEITAG -d) | (G -d) g 2¢5 \a
where Lg, L1 are the cut-completed functions,
In(r) Lo(r)+1
L =7 =/ - Al
o) = 12, L) = =4 (A15)

Summing over the third generation isodoublet in the limit m; = 0 we get,

tb(1+ 9=.3+ _M ) RS —S12
Aax(lq ’26 5 3g ) = a5 [2 f(mt, 0, s12, 845) Sis 14 i } . (Alﬁ)

Keeping only the leading term in the m — oo limit given in Eq. (A13)), this agrees with BDK,
Eq. (D.11).
Appendix B: Six point amplitude, A(1,,24,3q, 44, 5e, 6.)-

We now consider processes with one more parton in the final state, starting with processes
containing four quarksﬂ

! We find that the overall sign for the six point processes, using the Feynman rules of ref. [29], is opposite to that of
BDK. Since it is an overall sign it is of no importance; to allow our results to be used as a supplement to BDK,
we have adjusted our overall sign to agree with the conventions of BDK.
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1. Tree graphs

The general decomposition for the tree process requires that we include the two terms corre-
sponding to the Z/v* attaching to one or the other of the quark lines,

A (1,,25,30,4g) = 26%9° [(Qq 05 10 P (s56) ) A8 (14,2, 30, 47)

+ (—QQ +0f gV g Pz(s%))Ag%@Q,zxq, 1, QQ)]
7 2, 1 7. 2
x (0050 ~ Ao 6. (B1)

The result for the tree process is,

[12){45)BI(1 +2)|6] | (34O[16]GIG+ )12

5235565123 5235565234

AGe(1F, 25,35, 47,52,67) = —i

Q qo-er Ve (BQ)

This result is in agreement with BDK Eq. (12.3).

2. One-loop results general structure

The general structure of the decomposition at one loop is [30]

AT (14,2, 3¢, 4q) =
26294 I:(—Qq + UivangZ(S%)) |:NC 552 51’24 A6;1(1q, 2@, 3@, 45) + 5;14 (5122 A6;2(1q7 2@, 3@, 4(7)}

+ <—QQ + vz,Rng PZ(356)) [Nc (51512 5%4 A6;1(3Q, 4(77 lq, 2@) + (5;14 (51? A6;2(3Q7 4(7, lq, 2@)}

e
YL.R
sin 260w

72 S 7. 1 Z. 2
PZ(SSG) (51 2 51‘34 - ﬁéif 52-32)146;3(1(1, 2@, 3Q, 4@) . (B3)

For the case of identical quark flavours (¢ = @) see ref. [30].

We are only concerned with the terms containing heavy quark loops. The formulas for the
four-quark partial amplitudes, Ag;i(lj, 225, 33, 4; ), expressed in terms of primitive amplitudes are

2

Aﬁ;l(l;,%,?,é,zlg) = AF1(1,2,3,4) e
(&

1
(AFT(1,2,3,4) + AT (1,3,2,4)) + 1545(2,3,1,4)
C

o 1
+ MA;’++(1123374) - EA.f67++(1727374) + 7Ag’++(17273? 4) ) (B4)
N, Ne Ne

[

1 1

As2(14,25,30,47) = A§(1,3,2,4) + m(Ag*(l,?,, 2,4) + Ad(1,2,3,4)) — WAEI(Q’ 3,1,4)

Ng — Nf
Ne

Ass(1y,25,30,47) = A§(1,4,2,3), (B6)

1
ASTH(1,2,3,4) + L ALYT(1,2,3,4) — —A5TH(1,2,3,4), (BS)
N, Ne
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and

2 1
Asi(14,25,35,47) = Ag~(1,2,3,4) — W(Ag—(1,2,3,4) + AF*(1,3,2,4)) — ﬁAzl(:a, 2,1,4)
Cc C
s — Tf 44— N af - 1o+
——1A 1,2,3,4) — A 1,2,3,4) + —A 1,2,3,4), (B7
+ Nc 6 (7 y ) Nc 6 (7 » Yy )+Nc 6 (7 » Yy )7 ( )
1 1
As2(14,25,30,47) = A{T(1,3,2,4) + m(Ag*(l,?), 2,4) + Af7(1,2,3,4)) + WA%I(?” 2,1,4)
Cc C
s =T ys,+— N pf A Lo+
- A 1,2,3,4) + > A4 1,2,3,4) — —A 1,2,3,4
Nc 6 (a a37 )+Nc 6 (7 737 ) Nc (6] (7 73> )a
A6;3(1;,25,35,4g) = —A%(1,4,3,2). (BS)

3. Top loops — vacuum polarization contribution

The one-loop contribution to the unrenormalized vacuum polarization is given by,
T (p) = iger [9‘“’1?2 — 'Y |m(p?), (BY)
with cr given in Eq. (A10). The contribution of a top quark loop to 7(p?) is

m2
ﬂ-(pg) = _gTR [BO(p7 m, m) + QPQ[B()(]?, m, m) - B0(07 m, m)] - é] ’ (BlO)

where T = % Renormalization is effected by performing subtraction at zero momentum transfer
(p? = 0), so that the effect of the top quark decouples at large momentum transfer. In this scheme
both the running of the coupling and the evolution of the parton distributions remain in the five
flavour scheme. We find

m2
7(p?) — 7(0) = —g [(1 + ;)[Bo(p,m,m) — Bo(0,m, m)] + % ) (B11)

In this subtraction scheme, the renormalized contribution coming from the diagrams shown in
Fig. [3] is,

) ) 9 2m2 1
ARt 28, 30:44,5:,60) = —cr[ <1 + > (Bo(pas, m,m) — Bo(ps, m,m)) + *}

@ 3 523 3
x Afe(ly,25,35,47 .52 ,68). (B12)

Performing the large mass expansion, in the limit m — oo we get,

b+ oF 3= 4+ 5= 6F) — 2 593 1 /523\2 2 /8933 593\ 4
AT 25304705000 = a5 5 + 55 (02) o () +o((2) )]

x AGe(1y,25,35,47 .5 ,60). (B13)
This result agrees with BDK, Eq. (12.2).
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4. Top loops - axial vector coupling contribution

The contribution of the top and bottom quarks to the diagrams shown in Fig. [6] is,

AF(1F,25,30.4q) = _Qim;?sie
x [([631<<§22>><25> U 1”[11?;]]<45>)(f<mt;512,S34,S56> = J(ms; 12, 534, 556))
(6 1]<<?3i>><4 5) _[63] [[:;11]]<2 ) (s s, s12.530) = F(mis saa, 512 ] B

The axial triangle function f is presented in appendix [F] In particular, the reduction of f to scalar
integrals for the case at hand is given in Eq. (F10).
Appendix C: Six point amplitude, A(1,,2,,3,,43, 5z, 6¢)-

We now consider the process

0 — q(p1) + 9(p2) + 9(p3) + q@(pa) + €* (ps) + € (ps) , (C1)

where we have adopted the labelling convention of BDK for this case. The amplitudes for this pro-

cess are most conveniently defined using the operation exchsq, which just represents the exchange
of labels 3 and 4,

exchgy : 34 (C2)
as well as the following “flip” functions:
flip;: 14, 243, 56, (ij)<[ij]. (C3)
flipy: 1422, 34, 56, (ij) <> [i]] (C4)
flips: 12, 56, (ij) <« [ij]. (C5)

The latter symmetry operation is not defined in BDK, although it is a combination of exchss (Eq. (C2))
and flip, (Eq. (C4)).
1. Tree graphs

Following ref. [I5], the colour decomposition of the tree-level contribution to Ag is

AGe(14,2,3,47) = 2¢%¢* (—Q7 + v g} ; Pz(ss6)) Z (T T%@), ™ AF(14,0(2),0(3),4q) -
oES2

(C6)
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The independent results for helicities of the gluons in the tree amplitude are, c.f. BDK Egs. (8.4),
(8.9) and (8.15).

- Atree — 45 ?

—IAT(1, 25,85, 4) = - (1 2><2<3><;4) (56) (€7)
—iAg(1F,25,3,,45) =
[—(31)[12](45)(3[(1 + 2)[6] n (34)[42][16](5[(3 +4)[2] n (63 +4)[2]3|(1 + 2)|6]] (C8)
L (12)s235123556 [3 4] 5235234556 (12)[34]s23556 ’
—iAg(1F,2,,35,47) =

C[3PE5)@EI+3)l6]  (24)*[16](B|(2+4)13]  [13](24)[16](4 5>] (C9)

[12]s235123556 (34) 5235234556 (34)[12]s23556

The remaining helicity combination may be obtained by combining the operations of parity (in-
terchanging (i j) and [i j]) and charge conjugation (exchanging identities of external fermions and
anti-fermions). Thus we have,

Agree(lt-ll-’?g—’g;’zlg) = flip; [Agree(1;r’2;73;,4g)] ) (C10)

where the operation flip; is defined in Eq. (C3) (and also BDK Eq. (6.7)).

2. General structure at one-loop

The one-loop colour decomposition is given by [15]

Aé—loop(lq’ 2,3, 4(7) — 962 94{ (_Qq + UE,R’U%,R PZ<S56))
" |:Nc Y geg, (T Tw®), ™ Agy(14,0(2),0(3),4q) + 8729 6, ™ Ag3(1q,44; 2, 3)

+37 (—Qi + viva{;PZ(S%))

X [(TeaTes), B (o), - 2 ges s, 8] A (14,45:2,3)

1
+ X ja 2005, 1 P (536) {desg ((ree@meem), B = 5006, ) A5 (14,45 0(2), 0(3)

+ 307203 5, AR (14,4552, 3)] } , (C11)

where ' is the electric charge (in units of the positron charge) of the ith quark and ny is the number
of light quark flavours. The partial amplitudes Ag.; and Ag.3 represent contributions where the Z
couples to the fermion line as shown in Fig. @ The partial amplitudes Ag,, AgY and A§Y represent
the contributions from a photon or Z coupling to a fermion loop through a vector or axial-vector
coupling. The full results with massless partons running in the loop have been given in BDK. The
addition of this paper is to insert the full top quark mass dependence of Ag;1, A§ 4, Ay and AgY.

The partial amplitudes were further decomposed in the original BDK paper into primitive

15



amplitudes as follows:

1
As:1(14,2,3,45) = A6(14,2,3,44) — WA6(1q74q, 3,2)

C
ns — ny

n 1
Ag(lﬂh 273746) - FfAéc(lﬂh 27 3745) + FAE‘)<1‘17 27 374(7) ’
c c c
A6;3(1q74t7; 273) = A6(1Q7 27 3746) + Aﬁ(lqv 37 27467) + A6(1q> 274(7? 3) + A6(1q> 3?4l7> 2)
+A6(1Qa 4@ 27 3) + Aﬁ(ltb 4(77 37 2) 3
A%,;4(1Q74q; 273) = _Ags(lqv4tia 27 3) - Agf(lqvéltfv 2a 3) )
%ﬁl(lq,‘lq; 273) = Agx(ltp41ﬁ 273) )

ax ax,sl
6;5(11174(?;273) - A6 (1Q74§7273)' (012)

We must therefore provide new expressions, containing the full top quark mass dependence, for
the following quantities:

o Al(1,4,2,3,4;), in which the Z boson couples to the light quark line.

o Af4(14,44,2,3), in which the Z boson is radiated from a quark loop through the vector
coupling. In our approach it is not useful to perform an additional decomposition into Ag*
and A

6

o A%*(14,44,2,3) and AZX’Sl(lq,Zlq, 2,3), where the Z boson is radiated from a top or bottom
quark loop through the axial coupling.

For the quantities Ay, AF* and AZX’SI we will follow the conventions of the original BDK paper
and not present expressions for the momentum labelling as in Eq. , but instead do so for the
configuration (14, 24;3,4).

The colour sum for et e~ — gqgg in terms of partial amplitudes is,

> s AdInio = 8¢t g® (N2 — 1>Re{ (~Q7 + vf vl Ph(s56)) A (14,2,3,4,)

colors

X [(—Qq + 0% gV R Pz(s56)) [(VZ — 1) Ae1 (14,2, 3, 45)

—A6:1(14,3,2,44) + As:3(1¢,45;2,3)]

ny
. 4
+ D0 (—Q v gl Pa(ss6) (Ve = 1 ) A1y, 453 2,3)

f=1
2 2
+3 2ng@£732(556)[(1\@— ﬁ) (10 44 2,3) — —AFi(14,44:3,2)
f=tb c c
1
+ gf5(1q,4q;2,3)]]} + {263} (C13)
C

3. Result for Aj(1,,2,3,45)

The aim of this section is to calculate the full mass dependence of the quantity Af, which is
part of Ag;; that is defined in Eq. (C12|). The relevant diagrams do not contribute to Ag.3. The
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minus sign for the fermion loop is included in Af. For this case the only non-zero amplitudes occur
when the gluons have the same helicity.

The amplitude can be written as

Ab(1,,27,37 45) = A5(1,,27,37,45) x Fl(s3,m?), (C14)
where
s TN _ (45)[6](1+2)3)[31] | [16](5](4+2)[3](34)
Aol 27,37, 4g) =1 3 (23)%s56 5123 * 5234 - (C15)

This agrees with BDK Eq. (8.2). The function A§ is anti-symmetric under the exchange of 2 and
3. The mass-dependence enters through the function

12m?2

523

Ft(523am2) =—11 + 6m200(p2ap37m5m5 m) + (BO(p237mam) - BO(vamvm)):| 7(016)

which accounts for the effect of vertex and bubble corrections such as those shown in Fig. [d In our
renormalization scheme there is no net effect from top-quark self-energy corrections on external
gluons. The large mass expansion of F'(s,m?) is

Fis,m®) = ot b o0 () 4 1 () +0((5)). (c1)

After using this expansion the result for A} agrees with BDK Eq. (8.3).

4. Result for Af,(14,24,3,4)

The result for loops of massless quarks that couple via a vector coupling have been given in
BDK, in particular through their Egs. (11.1-11.2) and Egs. (11.5-11.7). In their approximation,
which retains only terms of order 1/m?, the top quark loop does not contribute since it enters only
at order 1/ m? and beyond. We therefore introduce the extra contribution of the top quark loop
through,

Aga(1g:24,3,4) = Age "™ (14, 24,3,4) + A5 (14,24,3,4) . (C18)

We will not present explicit results for the term Ag;’i since they can be simply related to
previously published results for the process gg — ZZ [31]. This exploits the fact that Ag;’i only

receives contributions from box (not triangle) diagrams, so that replacing a single Z — ¢/ current
by a g* — g one is trivial. We have,

A‘Glfl(lqa 2(77 37 4) = - [ALL(3g7 4g7 187 2éa 6/17 5,L_L) + ALR(3ga 4ga 1e> 257 6;“ 5/7)] . (019)

This is in accord with the procedure for extracting the vector-vector contribution given in Eq. (24)

of Ref. [31], up to an expected change in the overall factor and a sign to match the conventions of
BDK.
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5. Result for AaX’SI(lq,2q739,4g)

The sub-leading colour piece receives contributions from the diagram of the type shown in
Fig. [fp. The full result for the third generation isodoublet is

( —S123
—S56

(25)[46]@2[(1 +3)|4]

_ 'Aax,sl 1t 9223t 45 =
LA™ )= 8 (23] sng

q14q9g%g +eXCh347
(C20)
where exchgy is defined in Eq. (C2)). This expression agrees with BDK Eq.(11.4). The result when

the gluons have opposite helicities is,

[Qf(mt; 0, 5123, S56) — o

L —S8123
1(356)] +flip, . (C21)
556

(24)(45)2|(1 + 3)|6]
<1 3> <2 3)856

—i AP (15,20 3% 47) = ¢p

q 1431995 %g |:2f(mt;0731231856)_

The function L; is defined in Eq. (A15)) and f is defined in Eq. . The swap flips is defined in
Eq. (C4).

AFSN LS, 27,3, ,48) = AFS (L, 27,35 ,45)|3604 - (C22)

This agrees with BDK Eq.(11.12).

6. Result for A*(14,25,34,44)

The most complicated case in which to account for the top-quark mass is the calculation of
the leading-colour contribution from a loop of massive fermions with an axial vector coupling to
the Z-boson. For a complete isodoublet of massless quarks there is no net contribution of this
type since the diagrams precisely cancel between the isospin partners. For the (¢,b) isodoublet
this is no longer the case once a non-zero mass for the top quark is assumed. The contribution of
this isodoublet has been presented, retaining only the leading 1/ m% terms in an expansion of the
top-quark diagrams, in the paper of BDK. The result for the massless diagrams can be extracted
from their Egs. (11.3)-(11.4) and Eqgs. (11.8)-(11.12), simply by discarding the terms proportional
to 1/m?.

Our base amplitude can be written as follows,

— AP, 27,30 41 57,68 = 3 dyy (37, 47 DEE 43 ¢y, (310, 4Ry 5

T,Y,2 z,Y

+) ba(3",4") By + R(3",4") (C23)

This is an expansion in terms of the scalar box (Dj |y|z), triangle (Cy |y) and bubble (Bf) integrals,
defined explicitly in Appendix E as well as a left-over rational part (R). The box and triangle
coefficients in that expansion have a further mass expansion,

0 2
dyjyo(3",4M) = dff) (3%, 4h) + m2d() (3", 4M0), (C24)
0 2
Cafy (372, 47) = clf) (3", M) 4 m?2cD) (303 4h4) (C25)

while the bubble coefficients and rational part are independent of the mass m. We use this feature
to simplify the presentation of our results by replacing the expansion of Eq. (C23|) by the more

18



compact form,
. — oha ah _ . — oha 4h _
_ZAgX(lg_v 2(} 739374947 5é ’ 62_) - _ZA?S‘?BDK(I(—;_’ 2q ) 39374g47 5é ) 63)
3|12)4 43|12 314/12
+d3|12|4(3h3,4h4)D0‘ 4 d4|3\12(3h3,4h4)Do‘ 2y d3|4\12(3h374h4)Do‘ |

+03|4(3h374h4)03|4 + 012|3(3h374h4)032|3 + 012|4(3h374h4)032|4

3(124 4[123 2 12|34
+03|124(3h3 N 4h4)C0‘1 + C4|123(3h3 y 4h4)COI + C§2)|34(3h3, 4h4)CO | . (026)

The function Ag‘f‘B pr collects the bubble and rational terms as well as the contribution from the

(0)

triangle coefficient Claj347 all of which may be extracted from the previous calculation of BDK.
In the paper of BDK, the bubble coefficients have been re-organized to perform cut completion,
leading to more compact expressions. It is thus more efficient to use this compact form as our
point of departure in presenting the results. Note though that, in our case, the relevant completed
functions will be replaced by combinations of scalar bubble integrals that involve the internal top-
quark mass. This is a consequence of the fact that the bubble coefficients are unchanged in the
massive case, but the integrals themselves are changed.

Apart from the contribution that can be extracted from the results of BDK, Eq. also
enumerates all of the remaining box and triangle integral coefficients that must be specified to
complete the amplitudes. Although it appears that we should specify three box integral coeffi-
cients and six triangle coefficients this is not the case. A number of relations between the various
coefficients can be used to minimize the number of independent expressions that must be given
explicitly. The simplest relations are those that just correspond to a relabelling of momenta, for
example,

d4|3\12(3337424) = —d3\4|12(4247333) . (C27)
An additional simplification is due to the structure of the infrared divergences that are present
when m = 0, which requires that the box and triangle coefficients are related. Explicitly, we make
use of the identities,

(0) hs Ah (0) hs ph
C(O)(3h3 4h4) _ _d4|3‘12(39374g4) o d3|4|12(393’4g4) (028)
3l4\7g 7 g 5123 5124 '
and
(0) hs Ah (0) hs ph (0) (ahs 4h
o (31, 414) = (556 — 512) LijanaBg’ 4g")  daapa(3g”,4g")  c1aa (3% 49%) (C29)
) = (S56 — S1 - N ’
123]4\°g * g 5345123 5345124 5124 — 512

together with the partner relation that can be obtained by exchanging labels 3 and 4. The coeffi-

cients of the m? term in the triangle expansion of Eq. (C25)), i.e. cﬁ;, are related to the rational

(2
12[34

part, R [18] We exploit this relation in order to determine the coefficient ¢ which would

normally require much simplification in an explicit analytic calculation,
2 2 2
Claaa (357 45°) = 2RO 45 = e (37,450 — i35, 45 (C30)

Explicit results for the remaining independent coefficients will be given below.

2 This relation would normally also involve the m* terms in the expansion of the box integral coefficients, but they
vanish in this case.
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a. Boz coefficients

For the box coefficients d¥ it is sufficient to consider only 374 and 374~ helicity combinations.
The remaining helicities are obtained from these ones according to,

d®(37,47) = —flip; [d(")(3+,4+)} . dD(3,4%) = —flip; [d<i>(3+,4*)} , (C31)
where flip; is defined in Eq. (CF).

a.1. dgjio4 coefficients: The coefficients of the box integrals with gluons situated on opposite
corners are:

(51235124 — $12556)((23)(45) + (24)(35))(25)

iz (3% 4°) = 4(12)(34)3(56) (C32)
B34 = s [<23>2<45> (i + 2 e[23] - 12+ 3)[6][12)[34])
+ %<2 3)(4](1 + 2)|3] ((34)(45>[1 4)[4 6] + (34)(35)[14][3 6]
— (4[(142)[4](35)[16] — (34)(25)[12][46] —2(23)(45)[1 6][24])
+ %<2 3)(45)[16](3|(1 + 2)[4](4](1 +2)|3]| — [3 = 4] , (C33)
dyf)y,(3%,47) =0, (C34)
Ay, (3%.47) = W[ [13][34]2[36](24) (3 4)(45)

_M([ 311 4][46)(25)(13)(14) + [23][14](5](2 + 4)[3][46](24)(2 3)
(45) — (15)(34))

(

— L3I 4)[3412/(1 + 3)[6]({13)

— [L3[L4][46](1](2 + 4)[3)(23)(45) + [23][14][36)(21 (1 + 3)[4)(24)(35)
a

+ 2[14][36](45)(3](2 +4)[3](2|(1 + 3)|4] — 2[21][34][1 3][46](24)(25)(1 3>)

- W([l 3]2[46](24)(15) — [13][14][36](21)(45) — 2[13][34][36](23)(45)
+ (512 + 3) 3 4)[36](24) + [13][46] 2 4)(5l(2 + 4)13]) | (C35)

a.2. dgz coefficients: 'The box integrals corresponding to two contiguous gluons have the
following coefficients:

dé?i|12<3+a 4" =0, (C36)
(2) _ (25)[12][34] 5124(23)[64]  5124(24)[6 3]
Baan23 4T = s g | 3B~ CIOH DI = 70T~ i v oy | (O30
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Coefficient [c© @

C12)34 extracted from BDK rational relation, Eq. (]@[)

2|3 Section vanishes

C12)4 Section Eq. m relabelling | vanishes

C4)123 infrared relation, Eq. (C29 Section

C3)124 infrared relation, Eq. (C29 Section Eq. relabelling
C3)4 infrared relation, Eq. (C28§ vanishes

TABLE II. Determination of triangle coefficients.

.1 31(2 + D125 (1 + 2)[4]% — [14])3(35)2s?
1013 47) = Ly, [ 12 E Y [12<1]r<<6 5f<3|)<'1}+ 2)[|4}41< st (C38)
U103 47) = g (2B 6l25) + L3lfo443)

$124(2 3)(4](1 + 2)|3][4 6] (B[ (2 + 4)|1]
2(3’(1 + 2)’4]2812856

+3

(4](1+2)|3
2(3|(1 + 2)|4]s12556 (<5|<2 +4)[1)([36](23) — [46](24)) — [16](25)5124
o4 ps)) - HLEHENET (C39)

b. Triangle coefficients

In general there are six possible kinematic configurations of triangle integrals that may con-
tribute to this partial amplitude. These are:

C314, €123, C12014, C12|34, C4]123, C3[124; (C40)

where the third leg is clear from momentum conservation. A summary of the method for deter-
mining each of these coefficients is shown in Table [T Note that, since the box integral coefficients

d:(a?i\m and df;?;m vanish in the same-sign helicity amplitudes, the infrared relation of Eq. (C28
implies that cé?i(?)i, 4*) = 0. The only coefficients that remain to be given explicitly are CS%)B and

cﬁi%, which will be specified in Sections and respectively below.

b.1. cyo3 coefficients: For the triangle coefficients c;y3 it is sufficient to consider only 34+
and 374~ helicity combinations. The remaining helicities are obtained from these ones according
to,

Cro3(37,47) = —flips [e193(37,47)] Cra)3(37,47) = —flips [e193(37,47)] , (C41)

where flip; is defined in Eq. (C5)). As indicated in Table the mass-dependent terms in the

coeflicient vanish:

2 2 _
652)\3<3+ﬂ 4+) = C§Q)|3(3+7 4 ) =0. (C42)
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These triangle coefficients are thus fully-specified by,

1 (3123 — Su)[l 2] [3 4]
2 (3 4> 512556

0
Clo(347) =

x [(242(35)[46] + (23)(45)2](1 + 3)]6] + 24)(25)(3](1 +2)/6]] .

Aa(3,47) = (<3\<1+2)\6]<5\<3+4>\11<12>[12](—<12>[141+2<23>[34})

—@3[(1+2)]6](23)*(45)[12][34] +2<5|(1+2)|3]<23>2[12H46]<2I(1+3)|2]
+(51(3 + 4)[1)(23)2[12] ((12)[23][46] + 1)36])
+(12)%(35)[12°[14][16] + (1 ><23><25>[ ][46]
—3(12)%(23)(35)[12]?[16][34] + 3(12)(23)%(35)[12]*[34][3 6]
—(12)(23)*(45)[12)[14][23][46] + (13)(15)(23)?[12][1 3]*[46]
—(13)(23)*(45)[12)[14](34][36] — (23)°(25)[1 2][23]*[4 6]

+(23)3(35)[12][23][34][3 6]

534(5123 — 512)
@Bl +2)143

b.2.  cyp23 coefficients:  There are no simple symmetry relations between the cyj123 coeflicients

of different helicities. We must therefore specify them all.

The coefficients that appear in the m — 0 limit are simply obtained by using the infrared
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relation, Eq. |j The ¢?) coefficients are more complicated:

(3549 = |
2W (2(1 2)(25)[12] — (15)(24)[14] — (24)(35)[34] + 2(25)(34)[3 4])

215+ 6)|44[(5 + 6)13
G O (29 840120140)
2[(5+6)[4] 2|(5 + 6)|4]
516 + 6 e (L2 1B COEHN W) + 5 - or el ((45)14] - 25)12])
BI(5 +6)14

Y

6o (45713156) + 47

i’@ +6)[1] (( 2)(45)[1 3][4 6]) n g:g i giljﬂ (35)[14] (2(2 A)[46] + (25)[5 6])
{

{

{

((12)(24)(25)(34)[12][23][46])

{
{
{
K

-2

(5 +6)[3]
6)/4] 12)(34)(56)[12][46]
Qo ((12)20)(12][46))

(5+ {
Er o (296N 3E) 4 e
2)(25)(34)[12][46](4|(1 + 3)[4] +4<12><25><34>[12H46] _ ,(23)(45)[14][46]
(13)(4](5+6)4] (13) 3[(5+6)[4]
s 2
e ER o Tt (2434561 4a6P) + %ﬁfﬁg,ﬁ (o)1)~ @23)[12)

5123 S123 )
—m(<24><45>[16][34]) T AGTORAGT oA ((24><45> [14][34][56])

m (<1 2)(45)[1 3][14] + 2(24)(25)[12)[34] — (24)(35)[13][34] — (25)(34)[1 3] {34])

34)(5 6)[1 3][4 6]
(4[(5+6)[4]s123
—2(12)(34)[14][36] — 2(14)(23)[13][46] + 2(23)(34)[34][36] + (24)(34)[34] [46])

4]
4]
1

5123

—4

19! ((13><24>[13][46] —(12)(24)[14][26] — (14)(24)[14][46] + (23)(24)[26][34]

(24)(45)[14][4 6] [46]
4 4l re)a M<4<14><25><34>[13][14]+2<24>2<56>[12M46]
—2(24)(25)(34)[12][34] + 2(24)(25)(34)[1 4][2 3]) + (24)(25)[12][46] — 2(24)(45)[14][4 6]
—3(25)(45)[14][56] | /(4(34)s12556) , (C45)
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(3 47) = |

o {4 >< 19)

2(
3123
—2(12)
+2(23)

+(23)

(13)[13][14][16] 4 (12)(23)[13][16][24] — 2(12)(24)[12][1 4][46]
)

(34)[1412[36] + 2(1 3)(23)[1 3][16][34] — (14)(23)[14]2[36] — (23)2[12][34][3 6]

21 3][26][34] — 2(23)(24)[14][23][46] — (23)(24)[16][24][3 4] + (23)(25)[1 2][34][5 6]
(34)[14][34][36] — 2(23)(34)[16][34)2 + (23)(45)[1 4][34][56]>
+6)[4

TR >(2<2 3)[12)[46] — (13)[14][16] — (23)[14][26] — 4(34)]1 4}[46])

(12){23)(45)[14)[26][34]  {4|(5+6)|3
4|(5+6)|4]8123 5123

< (2<15>(23>[14][16])

64‘(5+ i‘?’] 4] 6](<1 3)(23)(45)[34] + (14)(23)(56)[46] — 2(12)(1 3><45>[14])
|

\

(/2 + 3)[1]
(4[(5+ 6)[4]s123

s123[14][4 6] <<2 3)(45) + 4(25)(3 4>>

(23)(34)(45)[34[56))

2)(24) (45)[12][14][16][34] 1
[13](4](5 + 6)|4] 35+ 6)[4

(24><34>(56>[14][46]2 <23><56)[46]
6)[441(5 +6)[4 "'~ BI(5+ 6)[4]

(<2 4)[12)[46] + 4(34)[14][3 6])

[1 4”36]8123 . <24><45>2[1 4”34”56}8123 . <2 4><45>[1 4”46]8123

)

5+6)[3] 4|(5 +6)|3](4|(5 + 6)|4] @5+ 6)4
45)[34][56]

76)’3]( <23><45>[13]+<24><25>[12]+<25><34>[13]>
>[14H56]
4] 5123

(2<2 3)(24)[12)[34][46] — 2(25)(34)[14][34][5 6]

5
(

(2(1 2)(34)(45)[14][34] — (12)(23)(45)[12][34] — (14)(23)(56)[13] [46})

@G+ 64
~(12)(@5)[142[56] — (1 4)(23)[13][1 4][46] - (23)(45)[14][34][56])
+(23)(45)[13][46] + 4(23)(45)[16][34] — (24)(25)[12][46] — 5(24)(45)[1 4][46]

—(25)(34)[13][46] + (25)(45)[14][56] | /(4]3 4] s12556) , (C46)
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o2y (35,47) = [
45)

5 {45)
5123

<3<1 4)(24)[1 3][16][34] — (12)(24)[1 3]?[26] — 2(14)(25)[1 3]*[5 6]
—4(24)2[12][34][36] + 2(24)*[1 3][26][34] — (24)(25)[1 3][23][5 6] + (24)(34)[13][34][3 6])
2[5+ 6)[4]{4[(5 + 6)[3](25) (3 4)[1 2][4 6] n (2[(5 + 6)[4](4|(5 + 6)|3](4 5)[1 6]
@3I(5+6)4] B3I(5+6)[4]

VB0 s (3 i) 2y 2) - ELOILAIG + 0125

(3[(5+6)|4] (3/(5+6)[4]
Hy 3)%1’]((21?)’&]5123 (1201 4)25)@5) 23 4)56])

(4[(5+6)[1] (4](5+6)[1]
5 Lot (2VERBALE) + g oo 45341 (329146] + (25)(56))
_4<4\(5g%i’i@él)(’z]jts)u](<25><34>[ 4[46]) - 2:Eig;:ﬂ(<23><45>[13][46])
g 3)%1’;((2166))’3]5123 (12) 34 Usn2AB4 (12016 - 23)36)

E+6)3 (4(5+6)[3
MR e ((2 5)(34)[14][4 6]) - W<2 4)(56)[46]* ((2 3)[12] + 4(34)[1 4])
+2 OIS (5) 50y 41260+ 2023 )0 3 634) + 20 4 25) 13 456

—(23)(24)[13][26][34] — 2(23)(34)[13][34][36] — 2(24)(25)[1 2][34][56] + (24)(25)[1 3][24][56])

(41(5 + 6)|4] (12)(24)(45)[12][34]
el g e (eaBY - 12)03) +4 (200016 + (34)(36])
(

} (13)s123
12)(24)(45)[12][34][5 6]
(13)(4](5 + 6)[4] 5123 <<2 5)(34)[23] — (34)(45)[34] — (14)(25)[12] —2(14)(45)[1 4})
6

7]

(24)(34)(56)[13][46]*s123 (24)
+ Bl + 647 + GG (2<24>(56>[1 2][36][4 6]
—(25)(45)[12][34][56] — (34)(56)[13][36][46] — (45)2[14][34][5 6])

]
(24)(45)[34][56]
25+ 6)/ 512 (4<2 4)(45)[12][34] — 3(14)(45)[13][14] — 2(14)(25)[12][1 3]

+4

—2(24)(25)[12][23] — 2(24)(45)[13][24] — (13)(45)[13]* — (34)(45)[13][3 4])
(24)(45)2[1 3][34][5 6]
—2 (5 + 6)] +(24)(45)[13][36] | /(4(34)[3 4]s12556) , (C47)
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2
ity 40 = |

(23)(34) 1 4][46] 215+ 6)l4

2 5123 ((5)14] - 35)[34]) - Y06 1 0 (23) 306 12)462)
@3[(5 +6)[4]

o 4)(45)[34][5 6] <<2 5)[12] + (35)[1 3})

(3[(5+6)[4]
+m(4<2 3)(45)[13][46] + 2(24)(25)[1 2][46] + (24)(45)[14][46]
+2(25)(34)[13][46] + 3(25)(45)[1 4][56])
(3[(5+6)]4](34)[46]

A5 6o ((2)@m)12)[14) + 23)(25)[1 2)[34) + 23)(35)[1 3][34))

|

4 :

O L6 - 122G P4
<

(4[(5+6)]4 [13](4|(5 +6)[4]

(4|(5+6)[4]
ROEEDE] 25) (2(23)[12][46] + 23 )[14[46] + (35)[14][56])

[14]
+M(<1 2)(24)(35)[12)[46] + (12)(34)(35)[13][46] — (24)(34)(56)[4 6]
—2(12)(35)(45)[14][5 6] — 2(23)(35)(45)[34][5 6] + (23)(45)(56)[46][5 6])
(34)[14][46]
eIy e (2<1 2)(23)(35)[12][34] — 2(1 2)%(35)[12][1 4]
+5(12)(23)(56)[12][46] + (12)(23)(56)[14][26] + 2(13)(23)(56)[14][36]
H(14)(23)(56)[14][46] + (23)2(56)[24][36] — (23)(34)(56)[3 4][4 6])

(34)[1 446
T T ((2 3)(35)[34] — (12)(35)[14] — (13)(25)[14] — (23)(5 6)[4 6])

—3(23)(35)[14][4 6]] /(4(34)[34]s12556) - (C48)

c. BDK contribution

The final contribution in Eq. that must be specified is Agf‘B pi- This consists of terms
representing the contributions of the bubble integrals and rational terms, as well as the mass-
independent coefficient of the triangle ¢ gj34. Although the bubble and triangle coefficients are the
same as in the original BDK paper, the integrals that they multiply are of course the ones with

non-zero masses in the loop. Our recasting therefore necessitates the introduction of the following
functions related to scalar bubble integrals,

L_1(z,y,m*) = By — Bb*
Y

(y — )

o Y > Loy, m?) +1] (C49)

f0(‘7”7?]77712) = f—l(mayva)

fl($7y7m2) =

such that z = p2,y = pz. In the limit m — 0 these reduce to the standard BDK functions,

.9
Lo, o =1 (). ()
y
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with L_j(x,y,0) = In(—x) — In(—y). The overall sign of our expressions is also opposite to the
one of BDK, due to the fact that our result describes the amplitudes for a top quark (73 =+1/2)

rather than the (massless) bottom quark (7'3 = —1/2) in BDK. As in the massless case, we only
need consider three helicity combinations. The final one is related by,
%f(BDK( q ’2q ,3g 74g75e 762_) ﬂpo [A%?(BDK( q a2q a3;—742_a5e 762_)] . (051)

With the preliminaries understood we can make use of BDK Eq. (11.3) to write the amplitude
with two gluons of positive helicity as,

(252

— iAFspr(17,27,3;,45,52,60) = [—< ) L_1(s123, 856, ™m7)

12)(56)(3 4)2

2/41625) (‘57 - )

T (1 2><34> 556 \ S56 1(51237556>mt>+ 0(8123,356,mt)
(5|3|1](25) Lo(s123, s12, m7)
(56)(34) 512

— (S14 + S34) <<2 5>><[4 6]> ?Z 1(s123, 556, M7 )
[
4)

- exch34

2|3]1](25
M*M (s124, 556, M7 ) - (C52)
(24)(3 556
The amplitudes with gluons of opposite helicity are not related by a symmetry, but do share a
common structure. We note also that the recasting of BDK Egs. (11.9) and (11.10) also requires

the following replacements to be made in the BDK formulae,

034 512556
g

3
) I3™ (512, 834, S56)
2 5123

9mh
Ls=" (s34, 5123, 512, S56) — (

12[34

Igm(slz, 534, 856) — C (C53)

in order to isolate the contribution of the triangle with three off-shell legs (c.f. BDK Eq. (B.3)) in
the notation of this paper. By adapting the formulae in this way we obtain,

ax (24)(14)[46](2|(1 + 3)|6] L1 (s56, s123, m7)
iAo (12730 40.50,60) = —CN R BRI T D s
(2/(1+ 3)[6{31(1 + 2)[6][1.3] To(s125. s12.m3)
56 3I(L + 2)/42
24)(1](2 + 3)[42)(1 + 3)]6)BI(L +2)|6] Tols123. 536 m3)
(L2135 6]3](1 + 2)|47 -
ROGRHAA+ING o5

 (13)(34)s56(3](1+2)|4]

and,

[14]2(45)(5[(2 + 3)[1]  Li(ss6, 5123, m7)

—1 %?(BDK( q72q 739’4+ 5 6+) Cax(3<—>4) —

[12][13](56){4[(1 + 2)|3] S123
(51(2 + 3)[1(5](1 + 2)[3](23) Lo(s123, 512, m7)
(56)(4|(1+2)[3]2 S12
_ [L4J{4]2 + 3)[1(51(2 + 3)[1) (5] (1 + 2)[3] Lo(s123, 856, m7)
[12][13](56) (4] (1 + 2)3? $56
[14°(25)[3 + flip, . (C55)

T [13][34)s56(4](1+2)3]

27



The auxiliary common quantity is adapted from BDK Eq. (11.9) and is given by,

ax _ _[_3 B @l +2)}3]
¥ = [ ((5[2[1](2[116] + (5]6[1](2[5]6] — {5[3[1](2|4|6] <5|4|1]<2’3|6])<3\(1+2)\4]A3

3534(<5I2|1]612 — (516/1]d56) (4] (1 + 2)[3]2|(1 +3)[6]  [13](45)(24)[36]
(3[(1+2)4]A3 As
[14](35)(s123 — s124) (4] (1 + 2)|3]<2\(1 +3)6]  1[13](45)(2[(1 + 3)|6]
(BI(1+2)[42A3 2 s123(3[(1 4 2)[4]
L)1+ 3)[4P3[(1 + 2)[6]* — (23)%[46]*s755 (@ n %)}0”‘3“
2 (12)[56](3|(1 + 2)|4] 2 5123 0
+ O+ C(1+ 6,24 5)
@IL+3)6> )
T9E6BI0+ 2)|4]2L71(3567 $34, M7 ) (C56)

(24)[36] <<2|4\61634 B A6 GBI 2463 )
B+ \ (125685 (12)(34)A;  [3456]As -~ A | (12)(34)s50

where the function C7* is defined as,
cox _ [ _ l1 2210+ 3)|6]({25)d54 — 2(21)[16](65)) (4](1 +2)[3] _ [13][46](2[(1 + 3)[6]
' BI(1+2)[41A3 [34][56]B3[(1 +2)|4]”

+ 2[(1 +3)[6/(3B[(1 + 2)[4][3 6] — [46](s123 — 5124)) (4] (1 + 2)|3]
[34][56](3[(1 + 2)[4]2A3

2
— W>L_l(slg,334,m?) . (057)

These functions are defined in terms of the additional quantities,
Az = 7y + 55, + S5 — 2512534 — 2534556 — 2556512 ,

012 = S12 — 534 — S56, 034 = 534 — S56 — 512, 056 = S56 — S12 — 534 - (C5h8)

Finally, we note that the determination of the triangle coefficient c§2)|3 4 using Eq. (C30)) requires

knowledge of the rational part of the amplitudes. We do not list these explicitly here since they
may be simply obtained from the expressions for A%y through the relation,

R(3",4M) = | ARG e (15,27, 300 404 52 67)

g 79> 12(34
Co

—0, f—l(xvyva)_)()
Appendix D: Definition of scalar integrals

The scalar integrals themselves are defined as follows,

4—d 1

. / d?l
T2 d(l7m1)d(l+pwvm2)
1

im2

B = Bo(pz;mi,me) =

Cgly = CO(pzapy;m17m2am3) =
/d4l 1
d(l,m1) d(l 4+ pz, m2) d(l + py + py, m3)
1

im2

(D1)

DIYE = Do(pe, pys paima, ma, m3, my) =
/d4l 1
d(l,m1) d(l 4 pz,m2) d(l 4 pe + py, m3) d(l + pe + Dy + P2, Mm4)

(D2)
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2999 qu4A 2990 qaV.B

Z.P l'HIx Z-P _l_ql

l+q,+q:

L2909 gaV.B L2090 quuA

FIG. 9. Triangle graphs with an axial coupling to the Z-boson.

where the denominator function is
d(l,m) = (1> = m? +ie). (D3)

For the purposes of this paper we take the masses in the propagators to be real. Near four
dimensions we use d = 4 — 2¢ (and for clarity the small imaginary part which fixes the analytic
continuations is specified by +ie). p is a scale introduced so that the integrals preserve their
natural dimensions, despite excursions away from d = 4. We have removed the overall constant
which occurs in d-dimensional integrals

2(1—e € 2 7
rp = a (lI‘(l )_F2(2)+ ) = F(ll— 5 +0(S3)=1—ey+¢é [% — ﬁ] +0O(e%). (D4)

Appendix E: Numerical values of coefficients

The test momenta are, in the notation p = (E, py, py,pz) (in GeV),

p1 = (—3.0,2.1213203435596424, 1.0606601717798212, 1.8371173070873839) ,

po = (—3.0, —2.1213203435596424, —1.0606601717798212, —1.8371173070873839) ,

ps = (0.85714285714285710, —0.31578947368421051, 0.79685060448070799, 0.0) ,

p1 = (2.0,2.0,0.0,0.0),

ps = (1.0, —0.18421052631578949, 0.46482951928041311, 0.86602540378443860) ,

pe = (2.1428571428571432, —1.5, —1.2616801237611210, —0.86602540378443860) . (E1)

with
p1+p2+p3+ps+ps+ps=0. (E2)

We use m; = 0.4255266775 GeV.

The results for the various contributions to the A§* partial amplitudes are shown in Tables @»
[VIT, We show results for the non-zero box and triangle coefficients as well as the remaining contri-
bution Agf‘B pr that includes both bubbles and rational terms. The coefficient 9. is not shown

12|34
explicitly for the amplitudes with opposite gluon helicity even though it is non-zero, since its effect

. . . ax
is also included in A67 BDK-

Appendix F: Axial triangle

The amplitude for a Z coupling to two gluons is denoted by T%%. We calculate the triangle
shown in Fig. |§|, where all momenta are outgoing q1 + ¢2 + g3 = 0 and qf #0.
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Coeff

Re y©(37,47)

Im 3@ (3+,4T)

Re y®)(37,47)

C3|124
C4]123

-0.13353418
-0.79126348

-0.49827218
0.38570625

bss
b123
b124

R

0.20772009
-0.13126100
-0.07645909
-0.46239883

0.22131702
0.06398398
-0.28530101
-0.05628296

Coeff

Re s (3,47

m 4@ (3,47

Re y@(3~,47)

Im 4@ (3,47

C3]124
C4]123

0.20571266
-0.29104980

-0.0325607
1.0411831

bse
b123

b124
R

-0.06950546
-0.04828163

0.11778709
-0.04266857

-0.15407601
0.17271964
-0.01864363
0.50431124

Coeff

Re y@(3,47)

Im y@(3F,47)

Re yP(37,4)

Im y@(37,4)

C3|124
C4]123

0.01389374
-0.01145015

-0.00477234
0.07951003

bse
b123

bi24
R

-0.00605585
-0.00189944
0.00795529
0.00122180

-0.01045720
0.01318975
-0.00273255
0.03736885

Coeff

Re y(37,47)

Im y©(3-,47)

Re y@(37,47)

Im y®(3-,47)

C3]124
C4]123

0.01389374
-0.01145015

-0.00477234
0.07951003

bss
b123
b124

R

0.03831823
-0.01341259
-0.02490565
-0.06217526

-0.00009208
0.00497689
-0.00488480
0.01073516

TABLE II1. Non-zero integral coefficients for the axial contribution to A3*(1F, 2>

tribution of the isospin +1 quark is included.

q’=q>

Coeff|Re y©@ (37, 4%)[Im y© (3+,47)[Re ¢y (3F,47) [Im ¢y (3F,4T)
d3j1214| 0.9847638139| -0.8139317869| -0.0826002899| 0.2135941623
dyj3)12 0.0291379239| -0.5509736787
d3|4)12 0.2392276202| 0.0407498609
Cral34 0.1143994146| -0.2174992557
cizi3| 0.1299341143| -0.1073937774
ci2j4| 0.3031796001| -0.2505854807
c3j124| -0.0706659218| 0.0584071421| 0.0542191910| 0.1995748531
Cqj123| -0.2439114076| 0.2015988454| 0.1822387437| -0.0369792184
AT | 0.0744415301] -0.0504750372

TABLE IV. Non-zero box and triangle coefficients and Agj‘B pi contribution for the partial amplitude

AZ<(1F,25 35, 4%),

The result for the two triangle diagrams shown in Fig. [0} (including the minus sign for a fermion

loop) is,

T (q1,92)

_ge

~ "16m2
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Coeff

Re y©(3~,4%)

Im @ (3-,4T)

Re y(3,4%)

Im 3@ (3-,4T)

d3|12)4
dy3)12
d3|a|12

3.4035534642
-1.5958557084

4.4512143946
0.0483030299

-0.6553781232
0.7044032221
-0.5569345916

0.2267711354
0.0506388969
0.1188692057

C12|34
C12|3
C12|4

C3]124

C4123

C3l4

0.2901747505
-0.6802846449
0.1585625864
-0.5447140053
0.0006275632

0.3794945606
0.0205907147
-0.0047993395
-0.7123845260
-0.1771280345

0.0862624911

-0.0253157939
0.0537029872

0.0311702697

0.0094553225
-0.2691326008

ax
A6 BDK

0.2424976515

0.0640430134

TABLE V. Non-zero box

A2x(1F,27,3-,47F). Note that the coefficient Ci(lg)l34 is non-zero, but not listed explicitly here since it is

q2437%g>%g
1 1 ax
included in A§% -

and triangle coefficients and A§zpj contribution for the partial amplitude

Coeff

Re @ (37,4°)

Im y©(3+,47)

Re yP(37,4°)

Im y@(37,47)

d3|12)4
dgj312
d3jaj12

-1.6787391821
-0.0292425126

3.5273786346
-0.0031829012

0.0211964344
-0.0813082954
-0.0630934240

0.0565331937
0.1402683777
-0.0104948556

C12|34
C12|3
C12|4
C3]124
C4)123
C3l4

-0.1431232764
-0.0124655582
0.0029055061
0.2686700101
0.0677211776

0.3007316400
-0.0013568136
0.0003162498
-0.5645313242
-0.1369105940

-0.0042375804

-0.0025971585
-0.0144060528

0.0022554921

-0.0016437585
-0.0236227320

ax
AG BDK

-0.0513599766

0.1115536722

TABLE VI. Non-zero box and triangle coefficients and Agj‘B pk contribution for the partial amplitude
Note that the coefficient °)

Asx(1F 2= 3+ 47).

q14q 991 %g
M M ax
included in AG’BDK.

where vf; is given in Table [[| and

11
TP (g1, q2,m) = QW/ ddlﬂ{v”%

12|34

is non-zero, but not listed explicitly here since it is

1

v

1
=" T d

The most general form of I' consistent with QCD gauge invariance,

can be written as,

e = Gy

+ Ga Ty v dodh sl + Tr(v* v v divs) 45
a + qg){Tf[’Y“’YVGﬁGfQ%]}
- qu){Trh“’deldﬂs)]} -

The functions G; are Lorentz invariant functions of ¢2, (i = 1,3) and m. By direct calculation it is

+ G3 (
(

1
+ Gy (&)

q’lTqu =@l =0,

{Tr[vpv”mfm]%‘ + Tr[y* "7 dorys)at

fy
—m

)
)

found that G4 = 0. To define the other G; we define the axial triangle function f

1
fm;di, a3, q3) = / da;d(1 — a1 — ag — a3)
0
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Coeff[Re y@(3=,47)[Im y©(3=,47)[Re y@(3=,47)[Im 4y (37,47)
d3j1214| 0.3650137298| 1.8497925731| 0.0537351845| 0.2954518713
dyj3)12 0.1734167739| 0.0931722390
d3|4)12 -0.0895807857| 0.0584032726

Cral34 0.0357377770] 0.0646139200

ciz)3| 0.0481615338| 0.2440698534

cro4| 0.1123769122| 0.5694963246
34| -0.0261931149| -0.1327397448| 0.0196845554| -0.0097033679
cq123| -0.0904084933| -0.4581662160| -0.0075863869| -0.0498510937

C3l4
A¥spr| 0.0071292120| -0.0070092524

TABLE VII. Non-zero box and triangle coefficients and A§*zpj contribution for the partial amplitude
AF(1F,27,3,47).

q°7q97%g°7g

Full results for the function f have been given in ref. [I5]. We further define the integral

1
. a;a
I[], k] = / d3ai5(1 — a1 — a2 — a3) 2 ) 1k D) 27 3 (F6)
0 [m? — a1a2q7 — a2a3q; — azaiqs]
so that we have,
Gr = f(m;g3,q7,43) = I1,2]
Go = f(m;qi, 43, 43) = 12,3]
Gs = f(m;qt, 43, 435) = 113, 1] . (F7)
Contracting with the momentum of the Z boson we find that,
(a2)p T = | = 4 G — 63 G2 — a3 Gia| Tx 1oy o). (F8)
The divergence of the axial current is easily seen to be,
1
(g3), TP = [WQC'O(Qh q2; ™M, m, m) + 5] Tr[v*" q14275] » (F9)

showing the contribution of the pseudoscalar current proportional to m? and the anomalous term.
Summation over one complete quark doublet (7; = £1/2) cancels the anomaly term and solely the
piece proportional to the top-quark mass remains.

The function f can be reduced to scalar integrals,

S2  (¢3q3 —m?5y

A% Ag :|CO(q17QQ7m7m7 m)

5 2
2 293 il
+ |:3QIq3A§ - 2A3i| (BO((D»m,m) - BO(qlvmvm))
01 0% 1 49
322 L 3](3 ~B )—7— F10
+ |:( q143 A% 2A3 0((127 m, m) O(Q37m7m> 2 A3 ) ( )
in terms of the kinematic quantities,
i=¢—G—a, =G-¢ -6, d=d¢-dq-—d,
Az = g6 + 362 + 4303 (F11)
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In the limit ¢f = 0 we get
1=~ a3 Oo=-03=0q5—q5 DNs=(s—a)°, (F12)

and the result is,

f(m7 07 Q%7Q§) = 1 + QWQCO(Q27(]3;m7m7 m)

2(¢3 — 43)
4
+———5(B qs;m,m _BO q2;m,m ) F13
gy (Bolasm.m) = Bolgzsm.m) (F13)
1 G %
f@mﬂaf)—1+bg( : (F14)
20 2(g3 - g3) (63 — ¢3) A

When we are interested in the special case of an on-shell Z, with ¢3 =2 -q2 = 0, €3 - g3 = 0,
then we only get a contribution from G;. The result for Gy in this limit is G = f(m;0, ¢, ¢3).
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