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Transverse mode coupling instability of a bunch with space charge and wake field is considered
within the frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used
as a basis for the solution of the equations with the wake field included. A dispersion equation for
constant wake is presented in the form of an infinite continued fraction and also as the recursive
relation with an arbitrary number of the basis functions. Realistic wake fields are considered as well
including resistive wall, square, and oscillating wakes. It is shown that the TMCI threshold of the
negative wake grows up in absolute value when the SC tune shift increases. Threshold of positive
wake goes down at the increasing SC tune shift. The explanation is developed by an analysis of the
bunch spectrum.

PACS numbers: 29.27.Bd

I. INTRODUCTION

Transverse mode coupling instability (TMCI) has been
observed first in PETRA and explained by Kohaupt on
the base of the two-particle model [1]. A lot of papers on
this subject have been published later, including hand-
books and surveys (see e.g. [2]). It is established that
the instability occurs as a result of a coalescence of the
neighboring head-tail tunes caused by the bunch wake
field.

TMCI with space charge has been considered first by
Blaskiewicz [3]. The main point of this paper is that the
SC pushes up the TMCI threshold that is improves the
beam stability. However, a non-monotonic dependence
of the TMCI threshold and rate on the SC tune shift
has been sometimes demonstrated in the paper. It was
following from several examples that the stability and
instability areas can change each other when the tune
shift increases. The results have been confirmed later by
the same author with help of numerical simulation of the
instability at modest magnitude of the SC tune shift [4]

So-termed three-mode model has been developed in
Ref. [7] for analytical description of the TMCI with space
charge, chromaticity, and arbitrary wake. This simple
model confirms that the TMCI threshold of negative
wakes goes up in modulus when the SC tune shift in-
creases. However, only the case of modest SC has been
investigated in [7] though the proposed equations allow
to suggest that a sudden kink of the threshold curve is
possible at the higher shift. Therefore, field of applica-
tion of the three-mode model is still an open question.

The case of very high space charge has been consid-
ered in Ref. [5, 6] It was confirmed in both papers that
the space charge heightens the TMCI threshold until the
ratio of the SC tunes shift to synchrotron tune is less of
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several tens or a hundred. However, the authors have ex-
pressed the different opinions about further behavior of
the threshold. As it follows from [6], the threshold growth
should continue at higher SC as well. On the contrary, it
was suggested in Ref. [5] that the threshold growth can
cease and turn back over the mention boundary.

The last statement has been supported in my recent
preprint [8]. I have used the known eigenfunctions of the
boxcar bunch [9] to get a convenient basis for investiga-
tion of the TMCI problem in depth. However, disclosure
of some errors at numerical solutions of obtained equa-
tions forces me to revise the conclusions. The equations
are recomputed in presented paper at any value of the
SC tune shift and different wakes including the resistive
wall, square, the oscillating ones. The pushing up of the
TMCI threshold by the SC is observed in all the cases.

II. BASIC EQUATIONS AND ASSUMPTIONS

The terms, basic symbols and equations of Ref. [7] are
used in this paper. In particular, linear synchrotron os-
cillations are considered here being characterized by am-
plitude A and phase φ, or by corresponding Cartesian
coordinates:

θ = A cosφ, u = A sinφ. (1)

Thus θ is the azimuthal deviation of a particle from the
bunch center in the rest frame, and variable u is pro-
portional to the momentum deviation about the bunch
central momentum (the proportionality coefficient plays
no part in the paper). Transverse coherent displacement
of the particles in some point of the longitudinal phase
space will be presented as real part of the function

X(A, φ, t) = Y (A, φ) exp
[

− i(Q0 + ζ) θ− i (Q0 + ν)Ω0t
]

(2)
where Ω0 is the revolution frequency, Q0 is the central
betatron tune, and ν is the tune addition produced by
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space charge and wake field. Generally, ζ is the normal-
ized chromaticity, however, only the case ζ = 0 will be
investigated in this paper. Then the function Y satisfies
the equation [6],[7]:

νY + i Qs
∂Y

∂φ
+ ∆Q(θ)

[

Y (θ, u) − Ȳ (θ)
]

= 2

∫ ∞

θ

q(θ′ − θ)Ȳ (θ′)ρ(θ′)dθ′ (3)

where F (θ, u) and ρ(θ) are the normalized distribution
function and corresponding linear density of the bunch,
Qs is the synchrotron tune, ∆Q(θ) ∝ ρ(θ) is the space
charge tune shift, and Ȳ (θ) is the bunch displacement
in usual space which can be found by the formula

ρ(θ)Ȳ (θ) =

∫ ∞

−∞

F (θ, u)Y (θ, u) du. (4)

The function q(θ) is proportional to the usual transverse
wake field W1

q =
r0RNbW1

8πβγQ0
(5)

with r0 = e2/mc2 as classic radius of the particle, R as
the accelerator radius, Nb as the bunch population, β
and γ as the normalized velocity and energy [2].

A solution of Eq. (3) can be found by its expansion
in terms of the eigenfunctions of corresponding homoge-
neous equation which is

νjYj + i Qs
∂Yj

∂φ
+ ∆Q(θ)

[

Yj(θ, u) − Ȳj(θ)
]

= 0. (6)

It is easy to check that the functions form an orthogonal
basis with the weighting function F (θ, u) . Besides, we
will impose the normalization condition:

∫ ∫

F (θ, u)Y ∗

j (θ, u)Yk(θ, u) dθdu = δjk (7)

where the star means complex conjugation. Then, look-
ing for the solution of Eq. (3) in the form

Y =
∑

j

CjYj , (8)

one can get the expression for the unknown coefficients
Cj :

∑

j

(ν − νj)CjYj = 2
∑

j

Cj

∫ ∞

θ

Ȳj(θ
′) ρ(θ′) q(θ′ − θ) dθ′

(9)
where Ȳj and Yj are also connected by Eq. (4). Mul-
tiplying Eq. (9) by factor F (θ, u)Y ∗

J (θ, u) , integrating
over θ and u, and using normalization condition (7) one
can get the series of equations for the coefficients Cj :

(ν − νJ)CJ = 2
∑

j

Cj

∫ ∞

−∞

ρ(θ) Ȳ ∗

J (θ) dθ

×
∫ ∞

θ

ρ(θ′) Ȳj(θ
′) q(θ′ − θ) dθ′. (10)

III. BOXCAR MODEL

The boxcar model is characterized by following expres-
sions for the bunch distribution function and its linear
density:

F =
1

2π
√

1 − A2
=

1

2π
√

1 − θ2 − u2
, (11a)

ρ(θ) =
1

2
at |θ| < 1. (11b)

Because the eigenfunctions depend on two variables (θ-u)
(or A-φ), it is more convenient to represent j as a pair
of the indexes:

j ≡ {n, m}, Yj ≡ Yn,m. (12)

An analytical solutions of Eq. (6) for the boxcar bunch
have been found by Sacherer [9]. The most important
point is that the averaged eigenfunctions Ȳn,m do not
depend on second index being proportional to the Leg-
endre polynomials: Ȳn,m(θ) ∝ 2Ȳn(θ) ∝ Pn(θ), n =
0, 1, 2, . . . . At any n,, there are n + 1 different eigen-
modes Yn,m(θ, u) satisfying the equation

(νn,m + ∆Q)Yn,m + i Qs
∂Yn,m

∂φ
= ∆Q Sn,mPn(θ) (13)

where m = n, n−2, . . . , −n. The space charge tune shift
∆Q is constant in this model, and the coefficients Sn,m

are added to the right-hand part of the equation to meet
the normalization condition given by Eq. (7). Details of
these calculations are placed in the Appendix, and sev-
eral important examples are represented in Figs. 1 and
2. Dependence of the eigentunes on the SC tune shift
is shown in Fig. 1. It is seen that all of them take start
at ∆Q = 0 from the points νn,m(0) = mQs. It is the
commonly accepted convention to use the term “multi-
pole” for the collective synchrotron oscillations of such
frequency, that is the index m should be treated here
as the multipole number. Another index n character-
izes the eigenfunction power. This feature is normally
associated with a radial mode number, the lower power
corresponding to the lower number. Because n ≥ |m|
in this case, the mode {m, m} should be treated as the
lowest radial mode of m-th multipole.

At ∆Q 6= 0, the multipoles mix together, and the
eigentunes split on 2 groups. In the first of them, all tunes
have positive value which tends to 0 at ∆Q/Qs → ∞. By
the origin, all of them are the lowest radial modes {n, n}.
Corresponding normalizing coefficients S2

m,m → 2n + 1
at ∆Q/Qs → ∞ (Fig. 2). In second group, the tunes are
about νn,m ≃ mQs−∆Q being weakly dependent on the
radial index n. The normalizing coefficients tend to 0 in
this group.

Note that the transient conjugations of some eigen-
tunes (the line crossing in Fig. 1) is not an evidence of
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FIG. 1: Eigentunes of the boxcar bunch without wake. At
any n, there are n + 1 eigentunes starting at ∆Q = 0 from
the points νn,m = mQs, m = n, n − 2, . . . ,−n.
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FIG. 2: Normalizing coefficients of the boxcar bunch. The
rising lines refer to the case m = n .

instability in the case, because corresponding eigenfunc-
tions are orthogonal and uncoupled.

With Ȳn,m = Sn,mPn(θ), series (10) for the boxcar
bunch obtains the form

(ν−νN,M)CN,M = q0S
∗

N,M

∞
∑

n=0

RN,n

∑

m

Sn,mCn,m (14)

with the matrix

RN,n =
1

2

∫ 1

−1

PN (θ) dθ

∫ 1

θ

Pn(θ′)w(θ′ − θ) dθ′. (15)

The notation

q(θ) = q0w(θ) (16)

is used here and later to separate the wake strength from
its form, and to get the relation

R0,0 =
1

2

∫ 2

0

(2 − θ)w(θ) dθ = 1. (17)

Besides we will use the designations

Zn =
∑

m

Sn,mCn,m, (18a)

Wn(ν) =
∑

m

|Sn,m|2
ν − νn,m

. (18b)

Then series (14) obtains the most compact form

ZN = q0WN

∞
∑

n=0

RN,nZn. (19)

IV. CONSTANT WAKE

Several realistic examples of the wake will be consid-
ered in Sec. V. However, the simplest model of constant
wake w = 1, q = q0 is preliminary investigated in
this section to discover the main features of the effect.
Though the wakes are negative in the most cases [2], the
positive wake is possible as well and et was observed in
practice [10, 11]. Therefore both signs of the parameter
q0 are analyzed in the section.

It is easy to verify that, at w = 1 and N 6= 0, the
matrix RN,n is

RN,n = − δN−1,n

(2N − 1)(2N + 1)
+

δN+1,n

(2N + 1)(2N + 3)
. (20)

(its small fragment is shown in Table I).
One can check as well that ν0,0 = 0, S0,0 = 1, that is

W0 = 1/ν. Using these features, one can represent the
solvability condition of series (19), that is the dispersion
equation for the bunch eigentunes, in terms of an infinite
continued fraction

ν − q0 +
(q0/3)2W1

1 + (q0/15)2W1W2

1+
(q0/35)2W2W3

1+.........

= 0. (21)

TABLE I: Fragment of the matrix RN,n. Its general form is
given by Eq. (13) and (16).

n → 0 1 2 3 4 5
N = 0 1 1/3 0 0 0 0
N = 1 −1/3 0 1/15 0 0 0
N = 2 0 −1/15 0 1/35 0 0
N = 3 0 0 −1/35 0 1/63 0
N = 4 0 0 0 −1/63 0 1/99
N = 5 0 0 0 0 −1/99 0
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This expression has to be truncated in reality by applying
of the assumption Wn = 0 at n ≥ nmax. Assigning the
truncated left-hand part of Eq. (21) as Tnmax(ν), one can
write the approximate dispersion equation as

Tnmax(ν) = 0 (22)

with the following recurrent relations:

Tn = Tn−1 + Tn−2
q2
0 Wn−1Wn

(4n2 − 1)2
, (n ≥ 2) (23)

and the boundary conditions:

T0 = ν − q0, (24a)

T1 = ν − q0 +
(q0

3

)2 3(ν + ∆Q)

ν(ν + ∆Q) − Q2
s

. (24b)

A. Three-mode approximation

Equation (22) is trivial at nmax = 0: T0)ν) = 0 that
is ν = q0, as it follows from Eq. (24a), It describes the
wake contribution to the tune of the lowest (rigid) head-
tail mode of the bunch. Of course, the TMCI cannot
appear in this approximation, and the simplest equation
to disclose it is T1(ν) = 0 that is, in accordance with
Eq. (24b)

(ν − q)

(

ν − Q2
s

ν + ∆Q

)

= −q2
0

3
. (25)

This third order equation exactly coincides with Eq. (7.3)
of Ref. [7] (without chromaticity) despite the fact that the
very different concepts have been used to derive them.
However, the examples presented in [7] have been re-
stricted by the modest SC tune shift: ∆Q/Qs < 3. The
situation beyond this region will be explored here for the
best understanding of the phenomenon, and for further
development of the techniques.

Imaginary part of a solution of Eq. (25) is plotted in
Fig. 3 against the wake strength at different SC. Accord-
ing to the plot, the instability threshold is |qth/Qs| =
0.567 at ∆Q = 0 (the black lines). Its dependence on
∆Q/Qs is shown in Fig. 4. The plot is very simple at
q0 > 0: the threshold goes down monotonically tend-
ing to 0 when the space charge increases. The case of
negative wake is more complicated and requires a special
comment. Absolute value of its threshold increases with
∆Q reach[nd qth/Qs ≃ −4 at ∆Q/Qs = 3.46 (blue
parabola in Fig. 3). The picture crucially changes after
that because a new region of instability arises whose ini-
tial position is shown as the blue point in Fig. 3. Then it
quickly expands stepping through the green oval to the
brown one and joining with the primary region of insta-
bility (brown parabola) at ∆Q/Qs = 3.69. The barrier
between the parts tears at higher ∆Q resulting in a sin-
gle region of instability (red). Its right-hand boundary
goes to the right, that is the TMCI threshold goes down,
if the SC tune shift continues to grow up.
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Im
(ν

/Q
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100

FIG. 3: Imaginary part of the boxcar eigentunes against the
wake strength at different value of space charge tune shift.
There are 2 regions of instability if the wake is negative and
3.46 < ∆Q/Qs < 3.69 .
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FIG. 4: Instability threshold of the boxcar bunch against SC
tune shift (positive and negative wakes). Indexes of the coa-
lesced modes are shown for each part of the threshold line.

B. Higher approximations

Higher approximations should be involved to validate
the three-mode model, to establish its applicability limit,
and to go beyond it.

The first step in this way is an investigation of the
equation T2(ν) = 0. According to Eqs. (23) and (24), its
expanded form is

ν − q0 +
q2
0 W1(ν)

9
+

q2
0 (ν − q0)W1(ν)W2(ν)

225
= 0 (26)
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where

W1(ν) =
3(ν + ∆Q)

ν(ν + ∆Q) − Q2
s

, (27a)

W2(ν) =
|S2,−2|2
ν − ν2,−2

+
|S2,0|2
ν − ν2,0

+
|S2,2|2
ν − ν2,2

. (27b)

Required parameters have to be obtained by solution of
Eq. (13) with n = 2 as it is described in the Appendix.
With the notations νn,m = ν̂n,mQs−∆Q, the eigentunes
appear as all roots of the dispersion equation

ν̂2,m(ν̂2
2,m − 4) =

∆Q

Qs
(ν̂2

2,m − 1), (28)

and formula for corresponding normalizing coefficients is

|S2,m|2 =
5(ν̂2

2,m − 1)2

ν̂4
2,m + ν̂2

2,m + 4
. (29)

The substitution of the functions W1−2(θ) into Eq. (26)
results in the equation of 6th power

(ν − q0)

(

ν − Q2
s

ν + ∆Q

)

+
q2
0

3
= −q2

0(ν − q)

75

×
( |S2,−2|2

ν − ν2,−2
+

|S2,0|2
ν − ν2,0

+
|S2,+2|2
ν − ν2,+2

)

. (30)

This equation has 6 roots which are different real num-
bers inside the stability area. However, at least 2 of
them should be coinciding at the boundary of this area,
which feature can be used for the search of the instability
threshold. Corresponding threshold of negative wake is
presented in Fig. 5 by the magenta line. The case q0 > 0
is not considered in this subsection because the result al-
most does not depend on nmax and can be reasonably
described by the three-mode approximation, Eq. (25).

Similar method can be used for analysis of higher ap-
proximations though corresponding formulae are essen-
tially more cumbersome. Generally, the case involves
(nmax + 1)(nmax + 2)/2 basis vectors and leads to al-
gebraic equation of the same power, where nmax is order
of the highest used Legendre polynomial.

Results of the calculations are collected in Fig. 5 at
nmax = 1 − 12 (dispersion equation of 3 − 91 power). It
is seen that, at rather small SC, absolute value of the
threshold rises with ∆Q, different approximations pro-
vide actually coinciding results in their region of appli-
cability, and each additional step simply expands this
region. For example, the three-mode approximation
(nmax = 1) provides correct magnitude of the thresh-
old at ∆Q/Qs ≤ 3.46 but at least nmax = 12 (91-mode
approximation) is needed to get proper results within the
range ∆Q/Qs = 0 − 12.

The sequential decrease of the threshold cannot be
treated as a physical effect because of absence of the
convergence. The opposite assumption which has been
admitted in my preprint [8] was coming from an insuffi-
cient accuracy of numerical calculations which has led to
an incomplete separation of numerous and very tightly
spaced radial modes.
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FIG. 5: Threshold curve of the boxcar bunch in different ap-
proximations. Index nmax means maximal power of the Leg-
endre polynomial in the expansion.

C. The bunch spectrum

The inadequate convergence of the curves in Fig. 5
remains the open question: which is the TMCI thresh-
old of negative wake at very large magnitude of ∆Q/Qs,
such as several tens or more? There is a related infor-
mation in Ref. [6]: at such conditions, the TMCI cannot
be caused by a coalescence of positive eigentunes of the
bunch. The last reservation is important because only a
part of the boxcar modes has been used for the analysis
in [6]. Tunes of these modes are located in the the upper
part of Fig. 1. Therefore, more detailed examination of
the bunch spectrum is needed with the wake to check the
results, including all bunch tunes νth(∆Q) at the frontier
of the TMCI area.

Very first example of this has been given in Fig. 4 where
indexes of the coalesced modes are specified for the three-
mode approximation. The more detailed view is repre-
sented in Fig. 6 where full spectrum of the bunch is plot-
ted at nmax = 5 (21-mode approximation). The most
important spectral lines are displayed by special colors:
blue for the modes {0, 0} and {1,−1}, and red for the
modes {5, 5} and {4, 4}. According to the picture, the
coalescence of these modes is responsible for the TMCI
at ∆Q/Qs < 6 or > 6, correspondingly. Just the switch-
ing from the lower pair to the upper one causes the sharp
kink of the threshold curve which is shown in the plot by
dashed line. An incidental interference of other modes
slightly affects the curve but does not change its general
contour.

Another examples are given in Fig. 7 where the most
important spectral lines are plotted at three different ap-
proximations with nmax = 6, 9, 12. The lower curves
represent tunes of the modes {0, 0}+ {1,−1} which are
coalesced in the beginning and are closely located later.
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FIG. 6: The bunch spectrum in the TMCI frontier at nmax =
5 (21-mode approximation). The most important modes are
shown by blue and red lines. The TMCI threshold is repre-
sented by the dashed black line.
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FIG. 7: The most important spectral lines in different ap-
proximations. The lower lines: modes {0, 0} and {1,−1};
the upper ones: the highest observed tunes in given approxi-
mation.

The convergence manifests itself in the fact that the coa-
lesced part of the curves expands when nmax increases.

The upper curves in Fig. 7 represent the tunes

{nmax, nmax} + {nmax − 1, nmax − 1}

It is seen that the lines of the same color merge at rather
large ∆Q/Qs . However, it is a divergent process because
the junction point does not tend to a certain limit when
nmax increases. It inevitably leads to the conclusion that
the junction of the positive tunes in Figs. 6 and 7, as well
as the associated leap of the threshold, are not a physical

effects. The engaging of Ref. [6] allow to assert that this
statement should be true in any approximation

Therefore a monotonous rising of the TMCI threshold
looks as the most credible assumption. It also compliance
with behavior of the low crucial modes which are

ν0,0 ∼ q0, ν1,−1 ≃ −Qs − ∆Q.

According this, the instability condition ν0,0 = ν1,−1

should result in the threshold relation qth ∼ −∆Q.

V. TMCI WITH REALISTIC WAKE

Series of equations (19) with matrix RN,n given by
Eq. (15) is applicable at any wake function q(θ) =
q0w(θ). However, dispersion equation (21) and its ap-
proximate forms provided by Eqs. (22)-(24) are valid only
with constant wake. Therefore, more standard proce-
dures should be generally used for solution of Eq. (19).
It results in some deterioration of the accuracy and com-
pels to restrict number of used basis vectors. Performed
calculations with constant wake attest that the “old” and
the “new” results coincide at nmax ≤ 9 (55-modes ap-
proximation), otherwise some real roots can be lost. This
restriction is accepted below at the calculations with re-
alistic wakes.

A. Resistive wall wake

Resistive wall impedance is the most general and im-
portant source of transverse instabilities in circular ac-
celerators. At z ≫ /

¯
γ ,Its wake function is [2]:

W1(z) = −4R

b3

√

c

σz
(31)

where b is the beam pipe radius, σ is the pipe wall
conductivity, and z is distance from the field source to
the observation point. Taking into account Eqs. 5 and
(17), one can write the normalized wake function as q =
q0w(θ) with

q0 = − 4r0R
2Nb

3πγβb3Q0

√

c

σzb
, w(θ) =

3

4
√

2θ
(32)

TABLE II: Fragment of the matrix RN,n for resistive wake.

n → 0 1 2 3 4 5
N = 0 1 .20000 -.02857 .00952 -.00433 .00233
N = 1 -.20000 .14286 .06667 -.01299 .00513 -.00260
N = 2 -.02857 -.06667 .06494 .03590 .00779 .00332
N = 3 -.00952 -.01299 -.03590 .03896 .02323 -.00533
N = 4 -.00433 -.00513 -.00779 -.02323 .02666 .01659
N = 5 -.00233 -.00260 -.00332 -.00533 -.01659 .01970
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FIG. 8: Stability region of the boxcar bunch with resistive
wall wake. Normalized magnitude of the wake is given by
Eq. (32), index nmax means maximal power of Legendre poly-
nomial in the expansion.

where zb is the bunch length in usual units. Generally
speaking, this wake can cause multiturn collective effects
as well. However, their influence on the TMCI threshold
is negligible for a single bunch with zb ≪ 2πR [7] which
assumption is used further. Then series (19) is applicable
with the matrix RN,n whose part is represented in Ta-
ble II. Threshold of this instability is plotted in different
approximations in Fig. 8. which is very similar to Fig. 5
(constant wake) both in the form and in the magnitude.

B. Short square wake

A square wake can be created by a strip-line BPM
or by a traveling-wave kicker [2]. The long (constant)
square wake is considered above in detail. However, the
wake can be shorter than the bunch, in practice. In ac-
cordance with Eq. (17), its normalized strength should
be represented in the form

q(θ) = q0w(θ) =
4q0

θw(4 − θw)
at 0 < θ < θw (33)

where θw < 2 is the wake length (recall that the bunch
length is 2 in these units). Several examples are repre-
sented in Fig. 9 at nmax = 9. Note that the horizontal
lines have no physical sense and are added to mark end of
the curve applicability (the calculations were not carried
out after that). Due to the normalization, the threshold
dependence on the SC tune shift is not very significant,
especially at ∆Q/Qs < 5.

0 2 4 6 8 10
∆Q/Qs

−14

−12

−10

−8

−6

−4

−2

0

q th
/Q

s

θw=1.75
θw=1.25
θw=0.75
θw=0.25

FIG. 9: TMCI threshold of short square wake against SC
tune shift. Length of the wake is θw, the bunch length=2.
The approximation with nmax = 9 (55 modes) is used, the
horizontal lines mark end of the applicability area.

C. Oscillating wake

There are several models considering the wake field
source as a resonator of frequency f = c/λ [2]. It cre-
ates an oscillating wake ∝ cos(2πz/λ) having the phase
advance φ = 2πzb/λ within the bunch. We consider
the case φ < 2π , and represent the wake in the form
satisfying the normalization condition (17):

q(θ) = q0w(θ), w(θ) =
φ2 cos(φθ/2)

2(1 − cosφ)
(34)
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0

q th
/Q
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φ=0
φ=π/4
φ=π/2
φ=3π/4
φ=π

FIG. 10: TMCI threshold of oscillating wake with phase ad-
vance φ within the bunch of length ∆θ = 2. nmax = 7
(36-mode approximation).
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Several examples are represented in Fig. 10 at nmax = 7
to demonstrate that SC produces a stabilizing effect in
these cases as well.

VI. CONCLUSION

Being stable in themselves, the eigenmodes of the box-
car bunch with space charge form a convenient and effec-
tive basis for investigation of the bunch instability with
the space charge and a wake field. The dispersion equa-
tion derived by this method at the constant wake is rep-
resented in the form of an infinite continued fraction as
well as in the form of a recursive relation with arbitrary
number of the basis functions involved.

It is shown that the TMCI threshold of the nega-
tive constant wake grows up in absolute value when
the SC tune shift increases. An enlargement of num-
ber of the used basis vectors expands area of applica-
bility of this statement but does not change the results
obtained before. The statement is confirmed in the pa-
per by the straightforward calculation of the threshold at
∆Q/Qs ≤ 12 using the basis set including up to 91 eigen-
functions. Convergence of the solutions is not achieved
at higher SC because very large number of the eigenfunc-
tions is required for separation of different radial modes.
However, an additional analysis of the bunch spectrum
allows to extend the statement to any tune shift.

Similar results are obtained with realistic wake func-
tions including the resistive wall, the short square, and
the oscillating forms.

Threshold of the positive wake goes down when the
SC tune shift increases, and the effect can be satisfactory
described by the three-mode approximation.
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VIII. APPENDIX

Using the notation

ν̂n,m =
νn,m + ∆Q

Qs
, ∆̂Q =

∆Q

Qs
, Pn(θ) =

n
∑

l=0

pnlθ
l

(A1)
one can rewrite Eq. (13) in the form

ν̂n,mYn,m + i
∂Yn,m

∂φ
= Sn,m∆Q̂

n
∑

l=0

pn,l(A cos φ)l (A2)

Its solution is

Yn,m = Sn,m∆Q̂
n

∑

k=−n

exp ikφ

ν̂n,m − k

n
∑

j=0

Un,k,jA
k+2j (A3)

where

Un,k,j =
pn,k+2j

2k+2j

(

k + 2j

j

)

×
{

1 at k + j ≥ 0
0 at k + j < 0

(A4)

This function should satisfy normalization condition rep-
resented by Eq. (7) with j ≡ {n, m} and distribution
function (11a). The substitution results in the relation:

1

S2
n,m∆Q̂2

=

n
∑

k=−n

1

(ν̂n,m − k)2

×
n

∑

j1=0

n
∑

j2=0

Un,k,j1Un,k,j2A
2(k+j1+j2) (A5)

where A2j is the amplitude power averaged over the dis-
tribution:

A2j =

∫ 1

0

A2j+1 dA√
1 − A2

=

j
∑

l=0

(

j

l

)

(−1)l

2l + 1
(A6)

In principle, involved eigentunes νn,m could be obtained
by substitution of Eq. (A3) into Eq. (4) with the
functions Y and Ȳ being taken from this Appendix.
Because similar calculation has been actually accom-
plished in Ref. [9], we represent here only the resulting
equation for the eigentunes:

Lower powers

ν̂0,0 = ∆Q̂, ν̂2
1,±1 − 1 = ∆Q̂ν̂1,±1 (A7)

Higher even powers

ν̂n,m[ν̂2
n,m − 4] . . . [ν̂2

n,m − n2]

= ∆Q̂[ν̂2
n,m − 1] . . . [ν̂2

n,m − (n − 1)2] (A8)

Higher odd powers

[ν̂2
n,m − 1] . . . [ν̂2

n,m − n2]

= ∆Q̂ν̂n,m[ν̂2
n,m − 4] . . . [ν̂2

n,m − (n − 1)2] (A9)

Some of the values νn,m/Qs = ν̂n,m − ∆Q̂ are plotted
in Fig. 1. Factors S2

n,m can be found from Eq. (A5)
with the known eigentunes substituted. Some results are
represented below:

S2
0,0 = 1, S2

1,±1 =
3ν̂2

1,±1

ν̂2
1,±1 + 1

, (A10)

S2
2,m =

5(ν̂2,m − 1)2

ν̂4
2,m + ν̂2

2,m + 4
, m = 2, 0,−2, (A11)

S2
3,m =

7ν̂2
3,m(ν̂2

3,m − 4)2

ν̂6
3,m − 2ν̂4

3,m + 13ν̂2
3,m + 36

, (A12)

etc.
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