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ABSTRACT

We model vertical breathing mode perturbations in the Milky Way’s stellar disc
and study their effects on estimates of the local dark matter density, surface density,
and vertical force. Evidence for these perturbations, which involve compression and
expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE,
RAVE, and LAMOST surveys. We show that their existence may lead to systematic
errors of 10% or greater in the vertical force Kz(z) at |z| = 1.1 kpc. These errors
translate to & 25% errors in estimates of the local dark matter density. Using different
mono-abundant subpopulations as tracers offers a way out: if the inferences from all
tracers in the Gaia era agree, then the dark matter determination will be robust.
Disagreement in the inferences from different tracers will signal the breakdown of the
unperturbed model and perhaps provide the means for determining the nature of the
perturbation.

1 INTRODUCTION

In his seminal work on the vertical structure of the Galaxy,
Oort (1932) introduced a method to determine the gravita-
tional force perpendicular to the Galactic plane (the vertical
force) near the Sun from stellar kinematics. Though Oort’s
main interest was in developing a dynamical model for the
Galaxy, he recognized that a measurement of the vertical
force as a function of distance from the midplane could be
combined with estimates of the density in visible matter to
infer the existence of unseen “dark matter”. To be sure, his
concept of dark matter was not what it is today. Neverthe-
less, the Oort problem, as efforts to determine the vertical
structure of the Milky Way have come to be known, pro-
vides our best astrophysical handle on the local density of
dark matter1.

The Oort problem relies on astrometric observations of
stars that act as tracers of the gravitational potential. A
key assumption is that the tracers are in dynamical equilib-
rium with respect to their vertical motions (Bahcall 1984a,b;
Bienayme et al. 1987; Kuijken & Gilmore 1989a,b,c, 1991;
Holmberg & Flynn 2000, 2004; Bovy & Tremaine 2012; Gar-
bari et al. 2012; Bovy & Rix 2013); for a recent review, see
Read (2014). This assumption is plausible since a typical star

1 Estimates of the local dark matter density are sometimes re-
ferred to as the Oort limit though Oort limit may also refer to the
outer edge of the Oort cloud. On the other hand, Oort problem
can also refer to the discrepancy between the age of star clusters
in the solar neighbourhood and theoretical predictions for their

disruption time.

will have completed many oscillations through the Galactic
midplane over its lifetime. The discoveries of bulk vertical
motions in the stellar disc (Widrow et al. 2012; Williams et
al. 2013; Carlin et al. 2013) and a North-South asymmetry in
the number counts of solar neighbourhood stars (Widrow et
al. 2012; Yanny & Gardner 2013) call into question this as-
sumption. In particular, the bulk motion observations imply
that the disc is undergoing compression and expansion per-
pendicular to the midplane, in essence, a localized breath-
ing mode. Depending on its phase, the breathing mode may
manifest itself as a correlation between the mean vertical ve-
locity of the tracers and distance from the midplane. Indeed,
the observations mentioned above suggest that variations in
the mean velocity with z are of order 4 − 8 km s−1kpc−1.
Perturbations of this type can be caused by the passage of
a globular cluster, dwarf galaxy, or dark matter sub-halo
through the disc plane (Widrow et al. 2012; Gómez et al.
2013; Widrow et al. 2014; Feldmann & Spolyar 2015) or by
gravitational effects of a passing spiral arm (Faure et al.
2014; Debattista 2014).

In this paper, we investigate the impact of a breathing
mode perturbation on efforts to determine the local verti-
cal force and dark matter density. If the entire stellar disc
participates in a breathing mode, then the surface density
of stars within a particular distance from the Galactic mid-
plane, and therefore the vertical force, will change with time.
Furthermore, if a tracer population participates in a breath-
ing mode, then models that treat it as an equilibrium system
will yield erroneous results for the inferred vertical force.

It is common practice to use K1.1, the magnitude of the
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2 Nilanjan Banik, Lawrence M. Widrow, and Scott Dodelson

vertical force 1.1 kpc above and below midplane of the disk
at the Sun’s position, as a dynamical constraint on the struc-
ture of the Galaxy. Much closer to the midplane and baryons
will dominate the vertical gravitational force. Much further
from the midplane and halo stars will contaminate the sam-
ple of tracers. As we will see, a breathing mode perturbation
that is consistent with the observed bulk motions changes
K1.1 by only ∼ 1%. (Widrow et al. 2012; Read 2014). One
the other hand, the errors induced in estimates of K1.1 by
using a similarly perturbed tracer population can be ∼ 10%
or greater.

The usual strategy in the Oort problem is to find a solu-
tion to the time-independent collisionless Boltzmann equa-
tion (CBE) that is consistent with kinematic data for the
tracers. The analysis is particularly simple when one as-
sumes not only that the tracers are in equilibrium, but that
variations across the disc plane in the gravitation potential
and tracer distribution function (DF) can be ignored and
that the tracers are isothermal with respect to their verti-
cal velocities. The first of these assumptions implies that
the gravitational potential ψ(z) depends only on the total
surface density within a distance z of the midplane. That is

Kz(z) ≡
∣∣∣∣∂ψ∂z

∣∣∣∣ = 2πGΣ(z) (1)

where Kz(z) is the magnitude of the vertical acceleration
and Σ is the total surface density between −z and z. The
second assumption implies that the vertical velocity disper-
sion σ of the tracers is independent of z. With these two
assumptions, the CBE, or alternatively, the Jeans equation
perpendicular to the disc, together with the Poisson equa-
tion, imply that

Kz = − σ2 ∂ lnn

∂z
(2)

where n = n(z) is the number density of tracers.
The effects of variations across the disc plane in both

the gravitational potential and tracer DF are often viewed
as corrections to the plane-symmetric CBE, Jeans, and Pois-
son equations. Bovy & Rix (2013) proposed a more rigorous
method to model the full gravitational potential. The start-
ing point in their analysis is to sort stars into subpopulations
selected for their helium and iron abundance ratios. These
mono-abundant subpopulations (MAPs) are treated as in-
dependent tracers of the gravitational potential and mod-
eled by the three-integral, quasi-isothermal DF of Binney
(2010); Binney & McMillan (2011) and Ting et al. (2013).
The analysis provides an estimate for the surface density and
gravitational potential as a function of z and Galactocentric
cylindrical radius R.

The expectation in Bovy & Rix (2013) is that all MAPs
lead to the same inferred gravitational potential within the
model uncertainties. In this paper, we explore the converse,
namely that variations in the inferred force with σ may re-
veal the presence of a breathing mode perturbation. We take
the basic idea of using MAPs from Bovy & Rix (2013), but
restrict our analysis to the local neighborhood, where the
only variation is in the vertical direction. So, our MAPs are
distinguished solely by their different velocity dispersions,
σ.

We begin in §2 with some preliminaries and two one-
dimensional models for a local patch of the Galaxy. The

more realistic of these contains a stellar disc, a dark halo,
and a set isothermal tracer subpopulations, which are per-
turbed by a breathing mode. In §3, we analyze mock cat-
alogs generated from this model and infer the parameters
of the underlying potential and vertical force. This analysis
allows us to quantify the systematic errors that arise when
the tracers are not in equilibrium. In Section §4, we argue
that breathing mode perturbations may lead to variations of
the inferred Kz with σ, which may be detectable with data
from the Gaia mission (Perryman et al. 2001; Lindegren et
al. 2008).

2 PERTURBATIONS IN A LOCALIZED
PATCH OF THE GALACTIC DISC

In this section, we describe one-dimensional, plane-
symmetric models for a local patch of the Galaxy. We as-
sume that vertical motions decouple from motions in the disc
plane and that gradients in the plane of all physical quanti-
ties can be ignored. The models assume a collisionless tracer
population that responds to the gravitational potential.

2.1 Mathematical Preliminaries

The tracer population is described by a DF f (z, v, t) that
satisfies the one-dimensional CBE

∂f

∂t
+ v

∂f

∂z
− ∂ψ

∂z

∂f

∂v
= 0 (3)

where ψ is determined by the dominant local constituents
through the Poisson equation

∂2ψ

∂z2
= 4πGρ . (4)

For an equilibrium system, all quantities are time-
independent and symmetric under z → −z. In addition, f
is a function solely of the vertical energy E = v2/2 + ψ(z).
Tracers follow closed orbits in the (z, v)-plane with period
T (E) and angular velocity ω(E) = 2π/T (E). We can then
replace z and v by the canonical coordinates E and θ where
dθ = ω(E)dt. In general, it is simpler to introduce and an-
alyze perturbations in terms of these coordinates (Mathur
1990; Weinberg 1991).

For a system close to equilibrium, we can write f =
f0 (E) + f1 (t, E, θ). Likewise, the gravitational potential is
perturbed to ψ(z, t) = ψ0(z) + ψ1 (z, t). In terms of E and
θ, the CBE becomes

∂f1

∂t
+ ω(E)

∂f1

∂θ
− ω(E)

∂ψ1

∂θ

df0

dE
= 0 . (5)

The functions f1 and ψ1 can be written as Fourier series in
θ (Mathur 1990; Weinberg 1991):

f̃ (E, θ) =
∑
m

f̃m (E) eimθ (6)

and

ψ̃1 (z (E, θ)) =
∑
m

ψ̃m (E) eimθ . (7)

Doing so leads to a simple physical interpretation for the per-
turbed system. For example, the m = 1 terms correspond
to a local bending of the disc and oscillations in 〈z〉 and 〈v〉.

c© 2002 RAS, MNRAS 000, 1–9



Galactoseismology and the Local Density of Dark Matter 3

Likewise, the m = 2 terms correspond to localized compres-
sion and expansion and oscillations in 〈z2〉, 〈v2〉, and 〈zv〉.
The latter are the breathing modes considered in this paper.

Mathur (1990), Weinberg (1991), Widrow & Bonner
(2015) considered self-gravitating systems in which the den-
sity that appears on the right-hand side of the Poisson equa-
tion was given by the integral of the distribution function
over velocities. They found that the system could support
true linear modes as well as Landau-damped perturbations.
In the next subsection, we consider the mathematically sim-
pler problem of a system of massless tracers responding to
an external, time-dependent perturbation. In §2.3, we allow
for a system of stars that both respond to and generate the
time-dependent potential.

2.2 Two-Component Model

For our first example we consider a two-component model
where spatially homogeneous matter (here the dark matter)
generates the potential and a single tracer responds to it.
This model is simple enough that it can be analyzed ana-
lytically and many of the lessons learned carry over to the
more complex model in the next subsection.

The matter distribution is assumed to depend on time
leading to a potential

ψ (z, t) = 2πGρDM (1 + ∆(t)) z2 (8)

where ρDM is a constant. The z2 dependence is fairly robust
since it arises as the leading term in the Taylor expansion of
a general axisymmetric potential ψ(R, z) under the assump-
tions that ψ and its first derivatives are continuous and that
variations in R are small compared to those in z. As we will
see, the z2-dependence induces a breathing mode perturba-
tion in the stellar DF.

For illustrative purposes, we assume ∆(t) = λ cos Ωt.
In the unperturbed case (λ = 0) all particles have the same

period T = 2π/ω = π1/2/ (GρDM)1/2. (For reference, the
total density in the solar neighbourhood is ∼ 0.1M� pc−3,
which implies a vertical oscillation period for stars near the
midplane of ∼ 85 Myr.) The transformation between (z, v)
and (E, θ) is then given by

z =

(
2E

ω2

)1/2

cos θ v = − (2E)1/2 sin θ (9)

and we can write the potential perturbation in Eq. 8 as ψ1 =
2πGλρDMz

2 cos Ωt = λE cos2 θ cos Ωt. Thus

∂ψ1

∂θ
=
iλE

2

(
ei(2θ+Ωt) + ei(2θ−Ωt)

)
, (10)

which suggests the ansatz

f1 (E, θ, t) = f+e
i(2θ+Ωt) + f−e

i(2θ−Ωt) , (11)

where it is understood that we take the real part in these
expressions. From Eq. 5 we find

f1 (E, θ, t) =
λω

2

df0

d lnE

(
ei(2θ+Ωt)

2ω + Ω
+
ei(2θ−Ωt)

2ω − Ω

)
(12)

Finally, after some algebra, we have

f1 (E, θ, t) = ε (t)
df0

d lnE
cos (2θ − γ (t)) (13)

where α ≡ Ω/2ω, γ = arctan (α tan Ωt), and

ε(t) =
λ

2

(
cos2 Ωt+ α2 sin2 Ωt

)1/2
1− α2

. (14)

Consider a sample of N tracer stars with measured
phase space coordinates {zi, vi}. For definiteness, we as-
sume that the equilibrium tracer population is isothermal
with DF

f0(E) =
ω

2πσ2
e−E/σ

2

. (15)

A hypothetical observer who models these stars as an equi-
librium distribution with fmodel = f0 will calculate the log-
likelihood function to be

lnL =
∑
i

ln f0(zi, vi)

= N ln
(
ω/2πσ2)− 1

2σ2

∑
i

(
ω2z2

i + v2
i

) (16)

The observer therefore calculates the best-fit values of σ2

and ω by maximizing the likelihood. Carrying out the deriva-
tives with respect to σ2 and ω, setting both equal to zero,
and solving the two coupled equations leads to the estima-
tors for the velocity dispersion

σ̂2 = 〈v2〉 ≡ 1

N

∑
i

v2
i (17)

and the frequency

ω̂2 =
σ̂2

〈z2〉 . (18)

Therefore, the estimator for the density would be

ρ̂DM =
〈v2〉

4πG〈z2〉 . (19)

Eqs. 17, 18, and 19 are of course incorrect since the data is
not described by the model. The true relationships between
the model parameters and ensemble averages are

〈v2〉 = σ2 (1− ε cos γ) (20)

and

〈z2〉 =
σ2

ω2
(1 + ε cos γ) . (21)

Meanwhile, 〈zv〉 = εσ2ω−1 sin γ.
The inferred value of the dark matter density will differ

from the true one by a factor

∆ρDM

ρDM
= − 2ε cos γ +O

(
ε2
)

(22)

As expected, the error is of order the amplitude of the per-
turbation. Note that this is actually an under-estimate for
how poorly the dark matter density can be recovered. In
more realistic models, the dark matter is one of several com-
ponents that contributes to the potential and the inference
about dark matter density is even less secure.

2.3 Three-Component Model

We now introduce a more realistic model that will serve as
a testing bed for the analyses in subsequent sections. Here,
the components are:

c© 2002 RAS, MNRAS 000, 1–9



4 Nilanjan Banik, Lawrence M. Widrow, and Scott Dodelson

Figure 1. Phase space DFs and vertical oscillation period T (E)

for the equilibrium models described in Section 2.3. The upper
panel shows the DFs for the disc stars (solid black), and tracer

populations with σ = 20 km s−1 (dotted blue), 35 km s−1 (dashed

magenta) and 50 km s−1 (long-dashed red). The normalization of
the tracer DFs is arbitrary and for comparison purposes, we’ve

set it to match that of the disc stars at E = 0. The lower panel

shows the vertical oscillation period as a function of energy.

• Dark Matter: This maintains a fixed profile contribut-
ing a factor proportional to z2 in the potential.
• Stellar Disc: The unperturbed density is taken to be

ρb(z) =
h2Σb

2 (z2 + h2)3/2
(23)

where Σb is the surface density. This component also con-
tributes to the potential and is perturbed when the potential
is perturbed.
• Tracers: This component comprises a series of isother-

mal stellar subpopulations distinguished by their velocity
dispersion σ. They participate in the perturbation but do
not contribute to the potential.

The total equilibrium gravitational potential is therefore

ψ(z) = 2πGΣb
((
z2 + h2)1/2 − h)+ 2πGρDMz

2. (24)

This form for the potential was introduced by Kui-
jken & Gilmore (1989a,b,c) in their series of papers on
the Oort problem. We choose parameters to roughly match
the stellar density in the solar neighborhood. In particu-
lar, we set ρDM = 0.0114 M� pc−3, Σb = 48.4M� pc−2

and h = 0.435 kpc, which yields a vertical density pro-
file in good agreement with the vertical density profile
from Jurić et al. (2008). Note that ratio of the contribu-
tion to the vertical force from the dark matter to that
of the baryons from the stellar disc is KDM (z)/Kb(z) =

(2ρDMh/Σb)
(
1 + z2/h2

)1/2
, which implies that at z =

1.1 kpc, the dark matter accounts for roughly 36 % of the
total vertical force. Thus, a 10 % systematic error in K1.1

Figure 2. Density and vertical velocity dispersion as a func-

tion of z for the equilibrium model described in Section 2.3. The
upper panel shows the vertical density profile for the stars and

the tracer subpopulations with σ = 20, 35, 50 km s−1. The lower

panel shows the velocity dispersion. Line types and colours are
the same as in Figure 1.

would imply a 25 % error in the inferred dark matter den-
sity.

In Appendix A, we derive an analytic expression for
the distribution function of isothermal tracers embedded in
this zero order potential. Figure 1 shows the equilibrium
DFs for the stellar component and for three of the tracer
subpopulations. Note that while the tracer DFs decrease
exponentially with E, the DF for the stellar disc decreases
as a power-law with E as E → ∞, a result of the power-
law decrease in the density profile at large z (See Appendix
A). Also shown is the vertical oscillation period, which in-
creases from ∼ 100 Myr near to the midplane, to 200 Myr at
|z| ' 2 kpc. Figure 2 shows the vertical density and velocity
dispersion profiles for the three stellar systems. In princi-
ple, the disc stars could be represented as a superposition of
isothermal populations.

We then assume that the DFs of the tracers and the
stellar disc are perturbed as in Eq. 13, with ε = 0.2 and
γ = π/2. With these choices 〈z2〉 and 〈v2〉 are initially equal
to their equilibrium values while 〈zv〉 ' 2 − 5 km s−1. The
latter is consistent with measurements of the bulk vertical
velocities in the solar neighbourhood (Widrow et al. 2012;
Williams et al. 2013; Carlin et al. 2013). This perturbation
then feeds back into the potential of the stellar disc The sys-
tem is evolved using an N-body code in which the disc stars
and tracers are modeled as plane symmetric sheets (one-
dimensional “particles”) that interact via gravity (see, for
example, Weinberg (1991)). Gravity in a plane-symmetric
system is particularly simple since the force on a given par-
ticle at position z′ is proportional to the difference between
the number of particles with z > z′ and the number with

c© 2002 RAS, MNRAS 000, 1–9
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z < z′. Thus, forces at each timestep can be obtained by
sorting the particles in z.

The stellar disc is modeled with 4 × 105 particles. For
the tracers, we note that the stellar surface density at the
position of the Sun is ∼ 50 M� pc−2, which implies that a lo-
cal patch of the disc 1 kpc across will contain some 107−108

stars. The Gaia mission (Perryman et al. 2001; Lindegren et
al. 2008) aims to provide kinematic data for a large frac-
tion of these stars. One might then imagine dividing these
stars into O(100) subpopulations that are defined by chemi-
cal abundances as in Bovy & Rix (2013). Each of these sub-
populations can then be used as an independent, isothermal
tracer of the gravitational potential. With these numbers in
mind, we model each of the tracer subpopulations with 105

particles.
In Figure 3 we show the evolution of 〈z2〉, 〈v2〉, and

〈zv〉 in the presence of the perturbation. The general fea-
tures of the oscillations are easy to understand. First, the
vertical oscillations for the coldest tracers (σ = 20 km s−1)
have a period ∼ 70 Myr. As expected for an m = 2 breath-
ing mode, this is half the vertical oscillation period for a
typical star in this subpopulation (see Figure 1). The oscil-
lation periods for the σ = 35 km s−1 and 50 km s−1 subpop-
ulations are somewhat longer, consistent with the fact that
these populations are comprised of stars with higher ver-
tical energies and therefore longer oscillation periods. The
oscillations damp due to phase mixing and the damping is
strongest for the coldest population where the dynamical
time is shortest. We conclude that the amplitude and phase
of vertical oscillations in different subpopulations need not
be the same.

In Figure 4 we show the time evolution of the surface
density within 1.1 kpc as well as an estimator for the vertical
force 〈v2〉/

√
〈z2〉. We see that the amplitude of the oscilla-

tions in the former are an order of magnitude smaller than
those of the latter. Thus errors in estimates of the local ver-
tical force that arise when the tracers are out of equilibrium
are likely to be far more significant than oscillations in the
force itself.

3 PARAMETER BIASES INDUCED BY
NON-EQUILIBRIUM EFFECTS

In this section, we treat kinematic snapshots of the simula-
tion described in §2.3 as mock data that can be analysed to
infer the gravitational potential and force. The results are
then compared with the equilibrium potential and force and
the true (that is, perturbed) potential and force.

For a sample of N tracers from a particular subpopula-
tion, the assumed likelihood function is

L (ρDM, h,Σb, σ) =

N∏
i=1

[
N (ρDM, h,Σb, σ) e−Ei/σ

2
]

(25)

where Ei = v2
i /2 + ψ(zi) is the energy of the ith star from

the sample,ψ is given by Eq. 24, and

N =

(∫
dz dv exp

(
−E/σ2))−1

(26)

is a normalization constant. We assume uniform priors in the
model parameters ρDM, h, Σb and σ and sample the poste-
rior probability distribution function (PDF) using EMCEE

0.9

0.95

1

1.05

1.1

0.9

0.95

1

1.05

1.1

0 100 200 300 400

-5

0

5

Figure 3. Time evolution of the variance in z and v as well as

〈zv〉 for three subpopulations. The top panel shows the variance in
z normalized to the equilibrium value for σ = 20, 35, 50 km s−1.

Line types and colours are the same as in Figure 1. The middle

panel shows the same for v. Bottom panel shows the time evo-
lution of 〈zv〉 in units of km s−1 kpc. The vertical line here and

in Figure 4 indicates the epoch at which we generate the mock

catalogs that are analyzed in §3.

Figure 4. In the presence of a perturbation, the time evolution

of the surface density (top) and an estimator for it, 〈v2〉/
√
〈z2〉.

The latter is an estimator for the vertical force. Both quantities

have been normalized to their equilibrium values. Line types and

colours are the same as in Figure 3.

c© 2002 RAS, MNRAS 000, 1–9



6 Nilanjan Banik, Lawrence M. Widrow, and Scott Dodelson

Foreman-Mackey et al. (2013), which implements the ensem-
ble sampler of Goodman & Weare (2010).

Here we investigate the extent to which the equilibrium
assumption will bias the parameters of the potentials, that
is, the amount by which the parameters are mis-estimated
when the true distribution has a non-equilibrium signature
as described in §2.

Figure 5 shows the model PDFs that are inferred from
two mock data sets for the σ = 35 km s−1 tracer subpop-
ulation. The first data set is drawn from an equilibrium
distribution while the second is drawn from the 150 Myr
snapshot of the simulation. As expected, when the data is
drawn from an equilibrium distribution, that is, when the
model correctly describes the data, the analysis recovers the
model parameters to within the calculated uncertainties. We
note that there is a strong negative correlation between Σb
and ρDM, which indicates a degeneracy in the disc and halo
contributions to the potential. That is, the data are most
sensitive to the total force and this can be kept close to
fixed by increasing the dark matter density while decreasing
Σb. There is also a strong positive correlation between Σb
and h, which we might have anticipated by considering the
leading term in the Taylor expansion of the disc contribution
to the potential: 2πGΣbz

2/2h.
The striking result in Figure 5 is that inferred value

of the local dark matter density differs by a factor of two
from the true value in the presence of this (quite realistic)
breathing mode. Not surprisingly, when viewed in the Σb −
ρDM and Σb − h planes, these departures tend to lie along
the degeneracies mentioned above. Thus, we expect that the
inferrences in the vertical force or, alternatively, the total
surface density will be more robust. This point was discussed
in Kuijken & Gilmore (1991) and Figure 6 shows that it is
indeed the case. In particular, when the 35 km s−1 tracers
are perturbed, K1.1 is over-estimated by only about 10%.
With a sample size of 105 stars and “perfect” data (we have
made no attempt to model observational uncertainties) this
systematic error still represents a 5-sigma departure from
the true value.

4 FROM THE VERTICAL FORCE TO DISK
PERTURBATIONS

It is an implicit assumption in the Oort problem that differ-
ent tracer subpopulations will infer the same vertical force
Kz(z) to within the calculated uncertainties. This assump-
tion is greatly exploited in the analysis of Bovy & Rix (2013)
where dozens of MAPs are used as independent tracers of
the gravitational potential. In this section we argue the con-
verse: differences in the force inferred from different tracer
subpopulations may provide evidence that the disc is in a
perturbed state.

We begin by re-examining the results from Bovy & Rix
(2013). Their analysis was based on a sample of 16K G
dwarfs from SEGUE (Yanny et al. 2009) separated into 43
MAPs. For our purposes, each MAP can be distinguished by
its vertical velocity dispersion σ and a characteristic Galac-
tocentric radius R. Our contention is that breathing mode
perturbations may induce a dependence of Kz on σ for sub-
populations at the same R though as we’ll see, the precise
nature of this dependence cannot be known a priori.
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Figure 5. PDF in the model parameter space given two mock
data sets that sample the σ = 35 km s−1 subpopulation. Each

panel shows a different two-dimensional projection of the PDF in

the parameter space defined by (Σb, h, ρDM, σ). Orange contours
are for a sample drawn from the equilibrium distribution; blue

contours are for a sample drawn from a distribution that has been

perturbed by a breathing mode, namely the 150 Myr snapshot of
the N-body simulation described in §2.3.

Bovy & Rix (2013) find that the MAPs with higher
σ tend to be closer to the Galactic centre. Furthermore,
the vertical force at fixed |z| decreases with increasing R.
In particular Bovy & Rix (2013) find that vertical force at
|z| = 1.1 kpc is well-fit by the exponential

K1.1(R)

2πG
= 67M�pc−2 exp (− (R−R0) /2.7 kpc) (27)

where R0 = 8 kpc is the distance of the Sun from the Galac-
tic centre. Together, these results imply that there is an
“accidental” correlation between σ and K1.1. To remove this
correlation we correct K1.1 using Eq. 27 so that each MAP
provides an estimate of the vertical force at R = R0. In ad-
dition, we separately consider estimates for K1.1 from sub-
populations that probe the potential within 1 kpc bands in
R. The results for 6 kpc < R < 7 kpc and 7 kpc < R < 8 kpc
are shown in Figure 7. These results are consistent with the
null hypothesis that K1.1 is independent of σ though there
are hints of a trend toward systematically higher values of
K1.1 among the low-σ subpopulations with R between 6 and
7 kpc.

With only 100-800 stars in each MAP, the fractional
uncertainties in K1.1 found by Bovy & Rix (2013) are
10 − 20% and therefore comparable to the anticipated ef-
fects of a breathing mode perturbation. Fortunately Gaia
will increase the sample size by two or more orders of mag-
nitude and therefore reduce the uncertainties by a factor of
10 or greater. With this in mind, we investigate whether
the variations in Kz with σ that are induced by a breathing
mode perturbation might be detected when the subpopula-
tion sample size is 105.

c© 2002 RAS, MNRAS 000, 1–9
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Figure 6. Magnitude of the vertical force Kz(z) as inferred from

the mock data sets described in §3.2 and used in Figure 5. Bands
show the 68% confidence intervals for Kz as a function of z. The

blue band is for the equilibrium sample while the orange band is

for the sample perturbed by a breathing mode. Also shown is the
equilibrium vertical force (solid line) and true perturbed vertical

force (dashed line).

Figure 7. K1.1 vs. σ for different MAPs from the analysis of
Bovy & Rix (2013). Left panel shows MAPs with characteristic
radius in the range 6kpc < R < 7 kpc while the right panel is for

the range 7 kpc < R < 8 kpc. Values of K1.1 have been corrected
to the position of the Sun using Eq. 27.

In Figure 8 we show PDFs for the model parameters
that are inferred from the σ = 20 km s−1, σ = 35 km s−1 and
σ = 50 km s−1 subpopulations. The mock data samples for
these subpopulations are taken from the 150 Myr snapshot
of the simulation. We see that the parameter determinations
from the different tracers can disagree with one another at
the multiple-sigma level (e.g., the (h, ρDM) plane). This dis-
agreement will provide a signal that the underlying model is
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Figure 8. PDF for the model parameters as inferred from three
different perturbed subpopulations. The mock data sets are from

the 150 Myr snapshot of the simulation described in §2.3. Blue

contours are from the σ = 20 km s−1 sample, red contours are
from the σ = 35 km s−1 sample and therefore the same as the

contours found in Figure 5 and green contours are from the σ =

50 km s−1 sample.

incorrect. As in Figure 5, the confidence intervals from the
different mock data sets tend to line up along the correlation
ridges mentioned above. Nevertheless, there are departures
off these ridges indicating that the different data sets will
lead to slightly different estimates for Kz. Figure 9 shows
the force inferred from each tracer. Although all the three
inferences differ from the truth by 20%, they disagree with
one another at only about the 5% level.

In Figure 10, we present a scatter plot of Σb and ρDM

as inferred from an analysis of mock data for eight subpop-
ulations with σ = 20, 25, 30, 35, 40, 45, 50 and 55 km s−1 at
five different snapshots of our simulation. This figure can
be compared with the lower left panels of Figure 5 and 8.
Recall that the initial conditions were chosen so that 〈z2〉
and 〈v2〉 were equal to their equilibrium values. Therefore,
it is not surprising that with the initial snapshot (solid black
circles), the true model parameters are recovered quite ac-
curately. For the later snapshots, when 〈z2〉 and 〈v2〉 depart
from their equilibrium values, the different tracers can yield
significantly different values for the model parameters. The
results also vary significantly from snapshot to snapshot, a
reflection of the stochastic nature of disc perturbations. The
models do tend to lie along a narrow ridge in K1.1 and this
once again illustrates that it is the vertical force or total
surface density that is most robustly determined from the
stellar dynamics.

To further illustrate how Kz might depend on σ we
show, in Figure 11, K1.1 for the subpopulations and simu-
lation snapshots used in Figure 10. Once again, for the ini-
tial conditions the model recovers the true value of K1.1 to
within the calculated uncertainties. Each of the other snap-

c© 2002 RAS, MNRAS 000, 1–9
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shown in Figure 8. In the lower panel, we show the confidence
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potential.

shots show a different example of what a K1.1-σ curve might
look like. The model might systematically overestimateK1.1,
as with the 50 and 150 Myr snapshots or underestimateK1.1,
as with the 100 Myr snapshot. Typical variations in K1.1

across the range in σ are ∼ 5% though in one example, the
200 Myr snapshot the variation is greater than 10%.

5 CONCLUSIONS

The traditional Oort analysis assumes an underlying equi-
librium distribution for stars in the solar neighbourhood.
Perturbations in the potential, and indeed there is evidence
already for a perturbation in the form of a breathing mode,
can upset the inferences from these analyses. In the presence
of this perturbation, a mismatch between the true and in-
ferred values of the vertical force has important implications,
especially as we enter the Gaia era, where observations of
many different tracers, each with of order 105 velocities and
positions, are feasible. Here we have run mock observations
to quantify the following three effects of a perturbed disc:

• The vertical force as inferred from a single tracer may
differ from the true value by 10% or greater, depending on
the phase and amplitude of the perturbation. This error is
distinct from other sources of statistical and systematic un-
certainties inherent in the Oort problem. The corresponding
error in an estimate of the local dark matter density would
be at the 25% level.
• An analysis of multiple tracers, each with different ve-

locity dispersions, will lead to inconsistent conclusions about
the total surface density profile thereby providing evidence
that the underlying model – assumed to be equilibrium –

Figure 10. Estimates for Σb and ρDM from eight subpopulations

at five snapshots from the simulation described in §2.3. Initial
conditions are shown as black circles. Other snapshots are shown

as red stars, blue triangles, magenta squares, green pentagons for

snapshots spaced at 50 Myr intervals.

Figure 11. Estimates for K1.1 as a function of σ for eight sub-

populations and five snapshots. Point types and colours are the
same as in Figure 10.

was wrong. With enough tracers, one could imagine discov-
ering something about the cause of the perturbation, be it
a passing dark matter sub-halo or nearby dwarf galaxy or
some other transient phenomena in the disc.
• Agreement among the conclusions from multiple tracers

would improve the robustness of the dark matter determi-

c© 2002 RAS, MNRAS 000, 1–9
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nation: if all the tracers give the same answer, we can be
confident that the underlying model and the conclusions in-
ferred from it are correct.
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6 APPENDIX

In this section, we derive the analytic DF for the baryon
component introduced in Section 2.3. In general, the density
for a plane-symmetric system is derived from the DF by the
integral ρ(z) =

∫
dvf(z, v). For an equilibrium system

ρ (ψ) =
1√
2

∫ ∞
ψ

dEf(E)√
E − ψ

(28)

By an Abel transform, we have

f(E) = − 1√
2π

∫ ∞
E

dρ

dψ

dψ√
ψ − E

(29)

It is convenient to write the potential and density in terms

of u ≡
(
1 + z2/h2

)1/2
:

ψ = 2πG
(
ρdmh

2u2 + Σbhu− Σbh− ρdmh2) (30)

and

ρb =
Σb

2hu3
. (31)

We then have

f(E) =
3Σb√
8πh

∫ ∞
u(E)

du

u4
√
ψ(u)− E

(32)

=
3

4π

Σb
h

1√
πGΣbh

∫ ∞
u(E)

du

u4 (αu2 + u− E)1/2
(33)

where α ≡ ρdmh/Σb, E ≡ E/ (2πGΣbh) + 1 +α and u(E) =(
(1 + 4αE)1/2 − 1

)
/2α. The integral can be expressed in

terms of elementary functions are we have

f(E) =
3

4

(
Σb

π3Gh3

)1/2
1

E7/2
F
(

(αE)1/2
)

(34)

where

F(x) =
1

96

((
72x2 + 30

)
ctn−1(2x) + 15π + 60x+ 36πx2 + 64x3) .

(35)
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