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ABSTRACT
Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including
on small physical scales, where matter clustering is affected by baryonic physics in galaxies
and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While
muddying any cosmological information that is contained in small scale cosmic shear mea-
surements, this does mean that cosmic shear has the potential to constrain baryonic physics
and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science
Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the
Mead et al. (2015) halo model to account for baryonic feedback. While the SV data has limited
statistical power, we demonstrate using a simulated likelihood analysis that the final DES data
will have the statistical power to differentiate among baryonic feedback scenarios. We also
explore some of the difficulties in interpreting the small scales in cosmic shear measurements,
presenting estimates of the size of several other systematic effects that make inference from
small scales difficult, including uncertainty in the modelling of intrinsic alignment on non-
linear scales, ‘lensing bias’, and shape measurement selection effects. For the latter two, we
make use of novel image simulations. While future cosmic shear datasets have the statistical
power to constrain baryonic feedback scenarios, there are several systematic effects that require
improved treatments, in order to make robust conclusions about baryonic feedback.
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1 INTRODUCTION

The high galaxy number densities of typical weak lensing datasets,
and the subsequent large number of galaxy pairs with ∼arcminute
angular separation, makes shear two-point correlations a powerful

? E-mail: niall.maccrann@manchester.ac.uk

probe of the density field on . 1Mpc physical scales, where den-
sity fluctuations are highly nonlinear. The shear two-point signal
depends on the matter power spectrum, Pδ (k, z), which describes
statistically the two-point clustering of matter as a function of scale
(the physical wavevector, k) and redshift, z. We need to be able to
predict Pδ (k, z) accurately, given a set of cosmological parameters,
if we are to infer anything about those cosmological parameters.
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For k & 0.1 hMpc−1, N-body simulations are required to pre-
dict the nonlinear matter clustering . Epic computational demands
come from the requirement that the simulations are large enough
to include the effects of large-scale power and subdue sampling
variance, and have sufficiently high resolution to reach the large k
required to make predictions of e.g. the small scale cosmic shear
signal (see e.g. Heitmann et al. 2010 for discussion of the simula-
tion requirements for matter power spectrum prediction). To make
predictions for a range of different cosmological models, we require
the simulations to be re-run many times i.e. a suite of simulations is
required. The most advanced example of this sort of suite is the Ex-
tended Coyote Universe simulations (Heitmann et al. 2014), which
was used to build a matter power spectrum emulator accurate to 5%
up to k = 10hMpc−1 and z = 4. These types of simulations are
often called ‘dark-matter-only’ simulations, although ‘gravity-only’
would perhaps be more appropriate since they do have Ωb > 0,
but do not include the effects of non-gravitational physics. As we
discuss below, non-gravitational or ‘baryonic’ physics may have a
significant effect on the matter clustering on nonlinear scales.

White (2004), Zhan & Knox (2004) and Huterer & Takada
(2005) first identified the potential of baryonic physics to contam-
inate the cosmic shear signal, using simple theoretical models to
predict several percent changes in the shear power spectrum at mul-
tipoles l & 1000. Jing et al. (2006); Rudd et al. (2008); Hearin &
Zentner (2009); Guillet et al. (2010); Casarini et al. (2012) used
hydrodynamic simulations to account for the many complex bary-
onic processes such as active galactic nuclei (AGN) feedback, gas
cooling and supernovae feedback which affect the matter power
spectrum. Hydrodynamic simulations incorporate gas physics by
including fluid dynamics as well as gravity, and are consequently
more computationally expensive than gravity-only simulations. To
fully simulate the relevant baryonic physical processes would re-
quire far higher resolution than can currently be achieved for the
large volumes required for cosmology, so they are added using
‘sub-grid’ prescriptions. Since we have incomplete understanding
of these physical processes, these sub-grid prescriptions need to be
calibrated against observables. For example in the state-of-the-art
EAGLE simulations (Schaye et al. 2015; Crain et al. 2015), stellar
andAGN feedback efficiency is calibrated to reproduce the observed
z ∼ 0 galaxy stellar mass function (GSMF). While this guarantees
that the feedback implementation is accurate in its effect on the
z ∼ 0 GSMF, it does not guarantee the feedback implementation is
accurate in its effect on e.g. the z ∼ 1 GSMF or the nonlinear matter
power spectrum. One might conclude that although hydrodynamic
simulations can give us indications of the size and scale-dependence
of baryonic effects on the matter power spectrum, they are not yet
sufficiently advanced to make predictions at the level of accuracy
required for precision cosmology.

Various works have made use of the Overwhelmingly Large
Simulations (OWLS, Schaye et al. 2010), a suite of hydrodynamic
simulations incorporating a variety of baryonic physics scenarios,
for assessing the possible impact of baryonic physics on cosmic
shear. van Daalen et al. (2011) measure matter power spectra from
the different OWLS simulations which Semboloni et al. (2011)
propagate to the shear two-point functions, finding deviations from
the dark-matter-only case as large as 10− 20% for shear correlation
functions ξ+(θ = 1′) and ξ−(θ = 10′).

Most previous cosmic shear studies have either ignored bary-
onic effects or discarded small scales from their analysis to reduce
any potential bias from baryonic effects (see e.g. Kitching et al.
2014; MacCrann et al. 2015 for the latter approach). Recently how-
ever, Joudaki et al. (2016) performed a tomographic analysis of the

CFHTLenS (Heymans et al. 2012) data, and marginalised over the
possible baryonic feedback on the matter power spectrum, using a
one-free-parameter version of the Mead et al. (2015) halo model
(see Section 3 for further details). Unlike this work, their aim is
to investigate the much discussed (e.g. Battye & Moss 2014; Mac-
Crann et al. 2015; Planck Collaboration et al. 2013) tension with
the Planck CMB constraints, rather than attempting to differentiate
baryonic feedback scenarios, and they do not report constraints on
baryonic feedback models.

Kitching et al. (2016) also investigate the tension between
CFHTLenS and Planck by fixing the cosmological parameters
to best-fit values from Planck Collaboration et al. (2015a), and
constraining various weak lensing nuisance parameters using the
CFHTLenS data, including those sensitive to baryonic effects and
intrinsic alignments. When allowing a free intrinsic alignment am-
plitude, they demonstrate a weak preference for a decrement in the
matter power spectrum at small scales (compared to the no-baryonic
feedback prediction), but no significant evidence for baryonic feed-
back. Harnois-Déraps et al. (2015) also use the CFHTLenS data to
investigate baryonic feedback by fixing the cosmological parameters
to best-fit WMAP9 (Hinshaw et al. 2013) values, and constraining a
15 free parameter fitting formula describing deviations in the matter
power spectrum due to baryonic feedback.

Most recently, Hildebrandt et al. (2016) use the same prescrip-
tion as Joudaki et al. (2016) to marginalise over uncertainty due to
baryonic feedback in their cosmic shear analysis of KiDS1 survey
data. Viola et al. (2015) also use KiDS weak lensing data, but use
the tangential shear signal around galaxy groups. They compare the
group mass as a function of BCG luminosity to predictions from
the OWLS simulations, and observe a decrement in group mass at
high luminosity that favours the prediction of the OWLS simulation
containing AGN feedback.

The Dark Energy Survey Collaboration et al. (2016) (DES16
henceforth) presented cosmological constraints from 150 deg2 of
Dark Energy Survey Science Verification (DES-SV) data. Using
DECam (Flaugher et al. 2015), the final DES survey will image an
area around thirty times this size. The DES-SV galaxy shear cata-
logues are described in Jarvis et al. (2016), the photometric redshift
estimates in Bonnett et al. (2015), and the shear two-point measure-
ments in Becker et al. (2015). They used the matter power spectra
from van Daalen et al. (2011) to calculate a set of minimum angular
scales on which to use the measured shear correlation functions,
that would reduce any bias due to baryons to below the level of the
statistical errors. The present paper is motivated by the significant
signal-to-noise (S/N) that this procedure wastes. Figure 1 demon-
strates this; it shows the total S/N of the DES-SV non-tomographic
shear correlation functions ξ±(θ), as a function of θmin(ξ±), the
minimum scales used in ξ±(θ). The red star marks the minimum
scales used in DES16, and it’s clear that more S/N (from ∼ 8 up
to ∼ 13) can be gained by reducing these minimum scales. Even
if astrophysical uncertainties are such that we cannot reliably infer
cosmological parameters from the small scale cosmic shear signal,
it may be possible to learn about the astrophysical effects them-
selves. Therefore it is tempting to try and exploit the extra S/N by
including the small scales, and attempting to model the effects of
baryons.

In Section 2 we present new DES-SV cosmic shear measure-
ments, using the galaxy shape catalogues described in Jarvis et al.
(2016). These measurements are extended to smaller scales than

1 http://kids.strw.leidenuniv.nl
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Figure 1. S/Nof the DES-SV non-tomographic correlation functions
ξ± (θ), as a function of the minimum scale use in ξ±, θmin (ξ±). The red
outlined star marks the minimum scales used in DES16; clearly there is
further signal to be exploited by reducing the minimum scales used.

those used in Becker et al. (2015) and DES16. In Section 3 we
review some methods for modelling or parametrising the effect of
baryons on the matter power spectrum, including the extended halo
model of Mead et al. (2015), and apply the Mead et al. (2015)
model to these new cosmic shear measurements. We also forecast
the potential of the final DES 5-year (Y5) data to constrain this
model.

Although baryonic effects may be the largest, there are several
additional systematic effects that arise on small scales, which we
describe in Section 4. We estimate several of these, and test their
impact on the DES Y5 forecasted results. Firstly, the observed (two-
point) cosmic shear signal is usually considered to be sensitive
only to second order correlations in the underlying density field
(and hence can be written as an integral over the matter power
spectrum, see e.g. Bartelmann & Schneider (2001)). In Section 4.1,
we describe the corrections at third order in the density field that
become significant on small scales. Meanwhile, the removal of
blended objects during shapemeasurement can introduce a selection
bias on the cosmic shear signal at small scales (Hartlap et al. 2011);
we call this ‘blend-exclusion bias’, and investigate this effect using
image simulations in Section 4.2. A further possible complication
in interpreting the small-scale signal is intrinsic alignments, for
which the successful large-scale models such as the (nonlinear-
)linear alignment model (Catelan et al. 2001; Hirata & Seljak 2004;
Bridle & King 2007) are likely to break down; we discuss this in
Section 4.3. Finally, we note that constraints from cosmic shear
will of course be cosmology dependent, and one would expect the
constraints on baryonic physics to be most degenerate with other
phenomena that produce a scale-dependent change in the matter
power spectrum, for example massive neutrinos. We investigate this
degeneracy in Section 4.4.

2 SMALL-SCALE EXTENDED DES SV SHEAR
CORRELATION FUNCTIONS

In this section we extend the DES-SV shear correlation function
measurements to smaller scales. Figure 2 shows measurements of
the shear correlation functions ξ± in 15 angular bins between 0.5

and 300 arcminutes, in the same three redshift bins described in
Becker et al. (2015) and DES16. We follow DES16 by excluding
angular scales greater than 60 arcminutes from ξ+, to reduce the
impact of additive systematics. There is a significant signal at scales
down to 0.5 arcminutes, particularly for the highest redshift bin. At
scales less than a few arcminutes shape-noise, which arises from
the uncorrelated intrinsic (unsheared) shapes of galaxies, is the
dominant contribution to the covariance, so the data points are only
weakly correlated. We conservatively choose 0.5 arcminutes as the
smallest separation used.While there still may be some signal below
this, shape measurement systematics due to blending may become
important.

The original DES16 cosmic shear analysis used a covariance
matrix calculated from 126 mock survey simulations, as described
in Becker et al. (2015). Becker et al. (2015) discussed the limitations
on the accuracy of the parameter constraints that can be achieved
when the number of simulation realisations is not much greater
than the number of data points in the data vector (Taylor et al.
2013; Dodelson & Schneider 2013). For the extended tomographic
data vector that we use in this work, this requirement is clearly not
satisfied. We therefore use a covariance inferred from lognormal
realisations of the lensing convergence across the survey area.

On large scales, the weak lensing convergence field (and there-
fore shear fields) is well described byGaussian statistics, so a simple
approximation to the cosmic shear covariance can be obtained by
generating many Gaussian random shear fields with the expected
shear power spectrum, and computing a sample covariance matrix
using the same method as on the mocks. Since generation of the
Gaussian realisations is very fast, the covariance uncertainty due to
having a finite number of realisations can be made negligible. On
smaller scales, the convergence field is sensitive to nonlinearities
in the density field, and the Gaussian approximation is no longer a
good approximation. However, Taruya et al. (2002) and Takahashi
et al. (2011) demonstrate that lognormal statistics provide a good
description of the convergence field, while Hilbert et al. (2011)
demonstrate that a covariance matrix obtained under the lognor-
mal approximation results in very accurate confidence intervals on
cosmological parameters, even when using sub-arcminute scales.
Clerkin et al. (2016) found that the probability distribution func-
tion of both galaxy overdensity and convergence in the DES-SV
data could be well approximated as lognormal, although they only
investigated large (>10 arcminutes) scales.

It is probable that the non-Gaussian terms in the covariancewill
be more accurately accounted for using the halo model Peacock &
Smith (2000); Seljak (2000), as in e.g. Sato et al. (2009); Takada &
Hu (2013); Eifler et al. (2014), which is a more physically motivated
analytic description for the non-Gaussianities. However, accounting
for the survey mask is likely to be more difficult in this approach.

3 MODELLING BARYONIC EFFECTS ON THE
MATTER POWER SPECTRUM

3.1 Modelling approaches

We know from hydrodynamic simulations that baryonic physics
can have a significant effect on the matter power spectrum at small
scales. However, as described in Section 1, given the uncertainty in
what physical processes to add to the simulations at the sub-grid
level (as well as the uncertainties due to different implementations
of the same sub-grid physics), the magnitude, scale-dependence
and redshift dependence of the effect is very uncertain. In order

MNRAS 000, 1–17 (2016)



4 The DES Collaboration

ξ
+
(θ

)

1,1

100 101 102

θ (arcmin)

ξ −
(θ

)

1,2

10-7

10-6

10-5

10-41,3

10-7

10-6

10-5

10-4

2,2

100 101 102

10-7

10-6

10-5

10-42,3

10-7

10-6

10-5

10-4

10-7

10-6

10-5

10-43,3

100 101 102
10-7

10-6

10-5

10-4

Figure 2. Shear correlation functions, ξ± from DES-SV data, now using a data vector extended to smaller scales than in DES16 (open symbols indicate these
smaller scales). The redshift bin pairing is shown in the upper right corner of each ξ+ panel, and the corresponding ξ− measurement in the panel below. The
solid line in each panel is the prediction using the Planck 2015 cosmology described in Section 3.2, and using the Takahashi et al. (2012) version of halofit
(Smith et al. 2003). The dashed line shows the prediction from the OWLS AGN matter power spectrum (see Section 2 for details.)
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to extract any information from the small scales, a model or nui-
sance parameterisation that is sufficiently flexible to describe the
baryonic effects, is required. Judging how flexible is ‘sufficiently’
flexible is always a challenge when assessing the suitability of a
nuisance parametrisation. The fact that a nuisance parameterisation
is required means that we lack knowledge about the physical pro-
cess. However, deciding on a parameterisation and priors on the
nuisance parameters requires assumptions (presumably based on
some knowledge) about the same physical process.

In the case of baryonic effects on the matter power spectrum,
hydrodynamic simulations arguably provide a level of knowledge
sufficient to provide the basis of a nuisance parameterisation, or
usefully test the flexibility of a modelling approach. The proposal
of Eifler et al. (2015) makes this assumption; they propose using
principal component analysis (PCA) to identify modes with the
most variance between multiple simulations with different baryonic
treatments. These modes can then be projected out of the analysis,
providing a way of retaining only the information unaffected by
baryonic effects that is more sophisticated than e.g. simply imposing
a minimum angular scale.

More recently, Foreman et al. (2016) present a method for
using cosmic shear to constrain the matter power spectrum in a
fairlymodel independent way; by allowing deviations from the dark-
matter-only Pδ (k, z) at grid points in k and z. They demonstrate that
using PCA to identify the best-constrained modes allows a decrease
in the number of free parameters used, while retaining most of the
information on any power spectrum deviation.

Another approach is to use a theoretical model for the matter
power spectrum, with some physically motivated free parameters to
account for possible baryonic effects. Zentner et al. (2008); Hearin
& Zentner (2009) showed that the effect of baryons on the matter
power spectrum could be qualitatively reproduced in the halo model
framework. The halo model (Seljak 2000; Peacock & Smith 2000)
is an analytic model for the matter distribution in the Universe,
that, given its simplicity, is extremely successful at reproducing
the matter power spectrum, even on nonlinear scales. The model
assumes that all matter is contained in spherical halos. The halo
radial density profile is assumed to depend only on the mass of the
halo. The statistical properties of the matter field are then set by
three inputs: (i) the relation between the halo density profile and
mass, (ii) the number density of halos of a given mass, and (iii) the
large scale distribution of halos, which just depends on the linear
matter power spectrum. The halo density profile is usually taken
to be the NFW profile (Navarro et al. 1996), which for a given
mass, has one free parameter, the concentration. Input (i) is then the
‘concentration-mass relation’. Input (ii) is the halo mass function,
the fraction of halos in a given mass range. Both the concentration-
mass relation and the halo mass function can be calibrated using
N-body simulations.

Mead et al. (2015) use the halo model as a basis for which
to tackle the problem of predicting the nonlinear matter power
spectrum. They first implement various adjustments to the basic
halo model described above which are required to accurately pre-
dict the dark matter-only matter power spectrum. With these ad-
justments, they achieve a 5% matter power spectrum accuracy for
k ≤ 10hMpc−1, z ≤ 2, which they judge by comparison with the
Coyote Universe simulations. In fact, the accuracy exceeds 2% apart
from around scales of k = 0.2 h/Mpc where damping of the BAO
is important, which they do not attempt to model.

They further extend this halo model to account for baryonic
effects. We will refer to this extended halo model as the ‘M+15’
model. Since baryonic physics are likely to change the internal
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Figure 3. The fractional change in the halo density profile (as a function
of radius in units of the virial radius of the η = 0 halo) due to non-zero
η = η0 − 0.3σ8 (z), for a high mass (ν > 1) and low mass halo (ν < 1). η0
is one of the two free parameters in the Mead et al. (2015) halo model (see
Section 3 for more details).

structure of halos, but have a lesser effect on their positions or
total masses, they propose two extra nuisance parameters to allow
for the former. Firstly, they allow to vary A, the amplitude in the
concentration-mass relation i.e. increasing A makes halos of all
masses more concentrated. The second free parameter is η0, which
they call the ‘halo bloating parameter’, since it produces a (mass-
dependent) bloating of the halo profile. To describe the effect of η0,
we first define

ν ≡
δc

σ(R(M))
, (1)

where δc is the linear theory overdensity collapse threshold and
σ(R(M)) is the linear theory density variance in spheres of radius
R that on average containmass M . So ν < 1 halos can be categorized
as low mass, while ν > 1 halos can be categorized as high mass.
The halo profile in Fourier space, W (k, M) is modified as

W (k, M) → W (νη k, M), (2)

where η = η0 − 0.3σ8(z). The result is that low mass (ν < 1) halos
are more concentrated when η > 0 and more bloated when η < 0,
while conversely high mass (ν > 1) halos are more bloated when
η > 0 and more concentrated when η < 0. Figure 3 shows the
fractional change in the density profile of low and high mass halos
for positive and negative η. The figure demonstrates that the change
in a ν = 0.6 (i.e. low mass) halo profile due to setting η = 0.1 is the
same as the change in a ν = 1.67 (i.e. high mass) halo profile due
to setting η = −0.1.

They test this parameterisation by fitting the model to matter
power spectra from three of the OWLS simulations, and in all cases
achieve similar accuracy (∼< 2% up to k = 10 h/Mpc, apart from
the BAO wiggles) in the matter power spectrum as for the dark-
matter-only case (at the cost of these two extra nuisance parameters).
The three OWLS simulations used are the ‘REF’, ‘DBLIM’ and
‘AGN’ simulations. The ‘REF’ simulation contains radiative cooling
and heating, stellar evolution, chemical enrichment, stellar winds
and supernova feedback. The ‘AGN’ simulation is similar to the
‘REF’ simulation but additionally contains feedback from AGN.
The ‘DBLIM’ simulation is again similar to ‘REF’ but has additional

MNRAS 000, 1–17 (2016)
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supernovae energy in wind velocity, and a top heavy initial mass
function at high pressure. See Schaye et al. (2010) for detailed
description of these simulations. We note here that the recent study
of Cui et al. (2016) indicates that the methodology used in the
OWLS simulations suite should be thought of as one of several that
have not yet demonstrated convergence. That study shows that the
even the sign of the effect on halo internal mass structure varies
among simulation methods. Our use of OWLS as a reference in this
work should be considered as illustrative of the potential magnitude
of these complex effects.

To implement the M+15 model, we use HMCode2, code made
publicly available byMead et al. (2015), and included in theCosmo-
SIS (Zuntz et al. 2015) package. We use the CosmoSIS framework
for all parameter inference in this work.

3.2 Constraints from DES-SV

Figure 4 shows the constraints on A and η0 from the DES-SV cos-
mic shear measurements described in Section 2. As well as the two
halo model parameters, the same set of systematics parameters as
used in DES16 are marginalised over: a redshift bin shift param-
eter per redshift bin, δzi ; a multiplicative shear bias per redshift
bin, mi ; and an intrinsic alignment amplitude, AIA. For the purple
contour labelled ‘fiducial’, the intrinsic alignment model used is
the ‘nonlinear-linear alignment’ (NLA) model of Bridle & King
(2007), which was the fiducial model used in DES16. As in DES16,
Gaussian priors of width 0.05 are used for the δzi and mi , and a
uniform prior [-5,5] on AIA is used. Cosmological parameters are
fixed to the Planck Collaboration et al. (2015a) ‘Planck TT + lowP’
values. The allowed ranges of the parameters A and η0 are those
plotted, which Mead et al. (2015) showed to be comfortably wide
enough to span the space of simulations considered there.

Although the constraints from DES SV are fairly weak, the
high A, low η0 region of the parameter space is strongly disfavoured.
Shown as black marks are the best-fit halo model parameters to var-
ious cosmological simulations, as estimated by Mead et al. (2015):
The circle is the (A, η0) which they find to be the best-fit to the
Coyote Universe simulations, which do not contain baryonic feed-
back effects; we call this the ‘baseline’ case. The plus is the best-fit
(A, η0) for the OWLS ‘REF’ simulation, which contains radiative
cooling and heating, stellar evolution, chemical enrichment, stellar
winds and supernova feedback (see Schaye et al. (2010) for detailed
descriptions of the OWLS simulations). The cross is the best-fit
(A, η0) for the OWLS ‘AGN’ simulation, which is similar to the
‘REF’ simulation, but additionally contains feedback from AGN.
The triangle is the best-fit (A, η0) for the OWLS ‘DBLIM’ simula-
tion, which is again similar to ‘REF’, but has additional supernovae
energy in wind velocity, and a top heavy initial mass function at
high pressure.

Note that we do not constrain the likelihood of the OWLS
simulations directly - rather the parameters of theM+15 halomodel,
which we assume is flexible enough to account for a wide range of
baryonic effects. Sowhenwe say e.g. “theAGNmodel is disfavoured
with X% confidence”, we really mean the (A, η0) preferred by the
OWLS AGN simulation is disfavoured with X% confidence. Given
the success of theM+15model in encapsulating the different OWLS
simulations, we believe this is a reasonableway to report constraints,
but it is important to be clear that our constraints are on the halo
model parameters, rather than on the OWLS simulations directly.

2 https://github.com/alexander-mead/HMcode
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For the AGN model, the preferred (A, η0) lies on the contour
of equal-probability containing 22.8% of the posterior probability.
We define the quantity CM, for baryonic model M with (A, η0) =
(AM , ηM0 ), as the percentage of the posterior weight contained
within the contour of equal posterior on which (AM , ηM0 ) lies. So
CAGN = 22.8%. A model M with CM of 95% would be consid-
ered disfavoured with 95% confidence. We find Cbaseline = 82.9%,
CDBLIM = 52.0% and CREF = 86.9%, so none of the models are
strongly disfavoured by the DES-SV cosmic shear data.

4 PREDICTED BARYONIC CONSTRAINTS FROM DES
COSMIC SHEAR AND SMALL-SCALE SYSTEMATICS

While current cosmic shear data such as DES-SV only weakly con-
strains models of baryonic physics and its effects on the Universe’s
matter distribution, upcoming datasets will have far greater statis-
tical power. The final Dark Energy Survey dataset, which we call
‘Y5’, since it will be composed of five years of data, will be around
thirty times larger in area than DES-SV. The purple filled/outlined
contour in Figure 5 shows the expected constraints on the M+15
halo model parameters from Y5 cosmic shear data. To perform this
forecast we use as a ‘simulated’ data vector a theoretical prediction,
and then run an MCMC parameter estimation analysis, as would
be performed on a measured data vector. The simulated data vector
has no baryonic physics added. The covariance and data vector are
the same as that used in Foreman et al. 2016, which assumes a 5
tomographic bin analysis, over the angular range 0.5 < θ < 300′,
with 8 galaxies per square arcminute, and an area of 5000 deg2. The
covariance matrix was computed using CosmoLike (Eifler et al.
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2014; Krause & Eifler 2016). Again (and unless otherwise speci-
fied), we fix cosmological parameters to the Planck Collaboration
et al. (2015a) values described in Section 3.2 (we explore varia-
tions in cosmological parameters, including the neutrino mass, in
Section 4.4).

In the left panel, no weak lensing systematics nuisance pa-
rameters (i.e. the δzi , mi and AIA described in Section 3.2) are
marginalised over. In the right panel these systematics parameters
are included, although we now use Gaussian priors of width 0.02
for the δzi and mi , which we hope will be justified by higher quality
data and improved data reduction tools. Even without such improve-
ments, it is likely that future DES analyses will combine shear two-
point measurements with galaxy-galaxy lensing and galaxy clus-
tering measurements which will tighten constraints on systematic
parameters (see e.g. Joachimi & Bridle 2010; Zhang et al. 2010). In
order to make robust conclusions about baryonic physics, we must
ensure that any other uncertainties or systematic biases in the small-
scale cosmic shear signal are accounted for. The green filled contour
in Figure 4 shows an example of this. For these contours an alter-
native model of galaxy intrinsic alignments is assumed, the linear
alignment model (Catelan et al. (2001); Hirata & Seljak (2004), see
Section 4.3 for more details). When this intrinsic alignment model
is assumed, the REF and baseline M+15 halo model parameters
(the ‘+’ in Figure 4), are now disfavoured, with Cbaseline = 97.0%
and CREF = 97.2%. This is a simple demonstration that even with
DES-SV data, including uncertainties in the intrinsic alignment
modelling is important.

In this section we discuss various theoretical/systematic un-
certainties that can potentially bias conclusions from small scale
cosmic shear measurements, including intrinsic alignments (Sec-
tion 4.3). We use the Y5 forecast to quantify the importance of the
various systematic effects. In particular, we calculate the credible
interval, Ctruth in the A − η0 plane, on which the true (A, η0) (i.e.
those used to generate the simulated data vector) lie, when we in-
clude a particular systematic in the simulated data vector, but do
not include it in the modelling. A Ctruth value of 90% would indi-
cate that ignoring that systematic would result in the true values of
(A, η0) being ruled out with 90% confidence. So Ctruth quantifies
the severity of the bias caused by a particular systematic effect.

4.1 Reduced-shear and lensing bias

In this section we consider two contributions to the observed cosmic
shear signal that arise from third-order correlations of the conver-
gence or equivalently third order in the gravitational potential, Ψ
(usually only the second-order correlations are considered, in which
case the cosmic shear signal can be written as a projection of the
matter power spectrum, see e.g. Bartelmann & Schneider (2001)).
Krause & Hirata (2010) investigate corrections up to O(Ψ4), and
although the O(Ψ4) terms will be non-negligible for future surveys,
theO(Ψ3) terms are around an order of magnitude larger, and so we
only consider the latter here. The observable in cosmic shear is the
two-point correlation of the observed ellipticity, < εobsεobs >. It is
usually assumed that this is an unbiased estimate of the two-point
correlation of the shear < γγ >. Ignoring intrinsic alignments, we
describe below two O(Ψ3) reasons why this is not quite correct.

Firstly, the ellipticity that we measure is actually an estimate
of the reduced shear, g, which is related to the shear via

g =
γ

1 − κ
≈ γ(1 + κ). (3)

This requires a ‘reduced shear’ correction to the predicted signal,
which is derived in Appendix A, following Shapiro (2009).

Secondly, we only observe the shear at the position of galaxies,
so when we compute a ‘shear’ two-point correlation function, we
are effectively computing the correlation function of the galaxy
density-weighted reduced shear, gobs, given by

gobs = (1 + δobs)g (4)

where δobs is the observed galaxy overdensity at a particular point
in space. We consider two ways in which an observed galaxy over-
density at angular coordinate θ and radial coordinate χ can arise
(apart from random fluctuations). Firstly there could be an overden-
sity in the galaxy number at (θ, χ) e.g. if there is a cluster there.
Secondly, there could be a change in the number density of galaxies
that we can observe, due to lensing magnification e.g. if there is a
cluster at (θ, χ′ < χ). The first leads to the ‘source-lens clustering’
(Bernardeau 1998; Hamana et al. 2002), which is zero in the Limber
limit (see Appendix A). The second effect produces what is known
as lensing bias (or sometimes ‘magnification bias’), and we derive
an expression for it in Appendix A, following Schmidt et al. (2009).

4.1.1 The reduced-shear correction

From Shapiro (2009), the reduced-shear correction to the projected
shear power spectrum for tomographic bin pairs i and j is given by

δredCκi j (l) = 2
∫

d2l ′

(2π)2
cos(2φl′ − 2φl ) Bi j (~l ′,~l − ~l ′, ~−l), (5)

where

Bi j (~l1, ~l2, ~l3) =
1
2

∫
dχ
χ4

Wi ( χ)W j ( χ)[Wi ( χ) +W j ( χ)]

Bδ ( ~k1, ~k2, ~k3; χ), (6)

Bδ ( ~k1, ~k2, ~k3; χ) is the matter bispectrum, and Wi ( χ) is the radial
lensing kernel for redshift bin i. We use the fitting formula for the
matter bispectrum from Scoccimarro &Couchman (2001). Figure 6
shows the effect of reduced shear on the shear power spectrum, for
the same redshift bins as used in theDES-SV analysis in Section 3.2.
The fractional bias is ∼ 1% at l of a few hundred, and ∼ 10% at l
of 104.

Figure 7 shows the effect of the reduced shear on the shear
correlation functions ξ±, which at 1 arcminute is ∼ 2% for ξ+
and ∼ 8% for ξ−. Hence the reduced shear correction, although
not as large as the effect of baryons in the OWLS AGN model, is
non-negligible for small-scale cosmic shear measurements.

4.1.2 The lensing-bias

In Appendix A we derive (drawing heavily on Schmidt et al. 2009)
the lensing-bias correction to the shear power spectrum, which for
a pair of redshift bins i and j is

δlensingCκi j (l) =
∫

d2l ′

(2π)2
cos(2φl′ − 2φl )Bq

i j
(~l ′,~l − ~l ′,−~l) (7)

where

Bq
i j

(~l1, ~l2, ~l3) =
1
2

∫
dχ
χ4

Wi ( χ)W j ( χ)[qiWi ( χ) + qjW j ( χ)]

Bδ (~l1/χ, ~l2/χ, ~l3/χ; χ). (8)
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Figure 5. Expected constraints (assuming the baseline model) on the Mead+15 model parameters from DES Year 5 cosmic shear. We assume a tomographic
data vector with 5 redshift bins, using an angular range 0.5 < θ < 300 arcminutes. Left panel: The weak lensing nuisance parameters described in Section 3.2
are not marginalised over. The purple (outlined and filled) contours show the constraints with no systematics added to the simulated data vector, hence the input
halo model parameters are correctly recovered. For the green filled (orange outlined) contours, we include a correction to the simulated data vector for reduced
shear (lensing bias). When fitting the simulated data vector, we do not include either correction, hence the contours are shifted, and the inferred halo model
parameters are somewhat biased. Right panel: The purple and orange contours are the same as in the left panel, except now marginalising over the 11 weak
lensing nuisance parameters (a δzi and mi per redshift bin and an intrinsic alignment amplitude AIA), hence the constraints on the halo model parameters
become weaker, and the bias due to ignoring the reduced shear correction becomes less significant. For comparison, the black dotted line shows the constraints
without marginalising over the WL nuisance parameters (i.e. the purple contour in the left panel). In both panels, the black markers are the same as in Figure 4.
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Figure 6. The fractional difference in the shear power spectrum due to
reduced-shear (solid lines) and lensing-bias (dashed lines) are compared
to that from the OWLS AGN model (dotted lines). We used the DES-SV
tomographic redshift distributions, and for clarity only show the correlations
with the highest redshift bin.

The quantity qi is given by

qi = 2β f + βr − 2 (9)

where

β f ≡

∫
dr
∫

d f
∂ε ( f , r)
∂(ln( f ))

Φ( f , r) (10)

βr ≡

∫
dr
∫

d f
∂ε ( f , r)
∂(ln(r))

Φ( f , r). (11)

ε ( f , r) is the survey selection function in galaxy flux, f , and size, r;
Φ( f , r) is the true galaxy distribution in flux and size. We make use
of the Balrog simulations (Suchyta et al. 2016) to estimate ε ( f , r)
and Φ( f , r). Balrog is a method for simulating observed galaxy
catalogues, by injecting simulated objects with known properties

into real survey images. The resulting ‘simulated’ images therefore
contain many of the important properties of the real data, includ-
ing observational systematics that would be otherwise difficult to
simulate, as well as a small3 number of extra injected objects. The
properties (both morphology and multi-band fluxes) of the inserted
objects are based on COSMOS observations, which also have accu-
rate redshifts. By running the same catalogue creation software (in
this caseSExtractor, Bertin&Arnouts (1996)) on these simulated
images as is run on the real data, and then repeating the injection
and catalog creation process many times over, we can estimate the
mapping from the true properties of a galaxy to the properties esti-
mated by SExtractor in our galaxy catalogues. For example, we
can estimate the probability of detecting a galaxy with a particular
true flux and size, or more generally, the survey selection function as
defined above, ε ( f , r). We estimate Φ( f , r) and ε ( f , r) as follows.

(i) We start with the SV ngmix (Sheldon 2014) shape catalogue
(that was used in DES16), and the Balrog catalogue used in Suchyta
et al. (2016), the latter of which contains both ‘observed’ fluxes
and sizes i.e. those estimated by SExtractor, as well as true fluxes
and sizes (those used when drawing the simulated objects into the
DES images) and redshifts. Note that the observed sizes are PSF-
convolved.

(ii) For a given redshift bin of the SV ngmix data, we re-weight
the Balrog data to have the same redshift distribution. Then we
compute Φ( f , r) using weighted kernel-density-estimation (KDE)
in the true flux and size of these weighted Balrog objects.

(iii) We then re-weight the Balrog data to have the same observed
flux and size distribution as the ngmix shape catalog, for that partic-
ular redshift bin. For the observed flux and size we use the i−band
SExtractor quantities MAG_AUTO and FLUX_RADIUS to do
this and make use of the hep_ml package 4 to perform Gradient

3 Sufficiently small that we need not consider any interaction between the
injected objects.
4 https://github.com/arogozhnikov/hep_ml
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Figure 7. The fractional difference in the projected shear correlation functions ξ± due to reduced-shear (solid lines) and lensing-bias (dashed lines) are
compared to that from the OWLS AGNmodel (dotted lines). We used the DES-SV tomographic redshift distributions, and for clarity only show the correlations
with the highest redshift bin.

Boosting5 re-weighting. With this new set of weights, we again use
weighted KDE to estimate Φobs( f , r), given by

Φ
obs( f , r) = ε ( f , r)Φ( f , r). (12)

(iv) We then estimate ε ( f , r) as Φobs( f , r)/Φ( f , r).

4.1.3 Impact on signal and baryonic constraints

Having estimatedΦ( f , r) and ε ( f , r), the expressions in equation 11
can be calculated and substituted into 9. We find q1 = −1.02±0.02,
q2 = −0.79 ± 0.01, q3 = −0.64 ± 0.01 (the errors are derived by
jackknifing the galaxies used for the KDEs). We use these q values
to estimate the lensing-bias contribution to the shear power spectra
(Figure 6, dashed lines), and the shear correlation functions (Figure
7, dashed lines), for the redshift binning used in the DES-SV analy-
sis. The lensing-bias correction has the same scale dependence and
similar magnitude to the reduced-shear correction, but the negative
values of qi make it negative, partially cancelling out the reduced-
shear correction.

We now turn to the DES Y5 forecast to demonstrate the im-
portance of accounting for the reduced shear and lensing bias. We
perform simulated likelihood analyses where either the reduced
shear correction or lensing-bias correction is used to generate the
‘simulated’ data vector from theory, but not included in the mod-
elling during parameter estimation. For the lensing bias, we assume
qi = −1 for all redshift bins for simplicity (but the procedure out-
line in Section 4.1.2 could be used with the DES Y5 data in order
to estimate the qi ). Figure 5 shows the shift in the contours in the
(A, η0) plane, due to ignoring either the reduced shear or lensing-
bias. In the left panel, the case where no lensing systematics (i.e. the

5 https://en.wikipedia.org/wiki/Gradient_boosting

nuisance parameters used in the analysis of Section 3.2 accounting
for multiplicative shear bias, photometric redshift bias, or intrinsic
alignments) are marginalized over, the shifts in the halo model pa-
rameters from ignoring these effects are significant. For the reduced
shear case (green filled contour), we find Ctruth = 97.4%, implying
that the true values of (A, η0) would be excluded with 97.4% con-
fidence if the reduced shear correction were ignored. As expected,
the shift due to ignoring lensing-bias is almost identical, but in the
opposite direction. However, the shifts in the contours are still small
compared to the differences between the different OWLS simula-
tions in the (A, η0) plane, so we concluded that marginalising over
any uncertainty (due to e.g. imperfect knowledge of the bispectrum,
or the survey selection function) in the reduced shear or lensing bias
corrections will not significantly reduce the power of DES Y5 to
differentiate between the OWLS models used here.

For the right panel of Figure 5, the weak lensing nuisance
parameters are now marginalised over, increasing the size of the
contours, and reducing the significance of the M+15 parameter
shifts. In this case, when ignoring the reduced shear, we findCtruth =
43.6%, so the recovered parameters are within ‘1σ’ of the truth.

4.2 Blend exclusion bias: Estimates using BCC-UFig

Estimating the shear of a noisy, PSF-convolved galaxy is a noto-
riously difficult problem (see e.g. Mandelbaum et al. (2014)). The
difficulty is further increased if the galaxy has a closely neighbour-
ing object, since the shear estimation is likely to be disrupted by the
contaminating light from the neighbour. We can categorise objects
as blended if they overlap at a particular isophotal level, for example
SExtractor identifies objects by first finding groups of contiguous
pixels above some detection threshold, and then deciding howmany
objects to split these pixels into (this decision is part of the deblend-
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ing process). If that number of objects is more than one, then these
objects will be flagged as blended objects. Shape or photometry esti-
mates (required for photo-z estimation) from these objects should be
used with caution. Indeed in the DES-SV shape catalogues (Jarvis
et al. 2016), we excluded any objects that SExtractor judged to
be blended.

Hartlap et al. (2011) realised that this exclusion of blended ob-
jects produces a selection bias by the followingmechanism:Blended
objects are more likely to be in crowded regions of the sky (e.g.
along the same line-of-sight as a cluster), and these crowded re-
gions will have higher convergence than average (e.g. because of
the aforementioned cluster). Therefore by excluding blended ob-
jects, we are under-sampling the higher convergence regions of
the sky, compared to the less-crowded, lower convergence regions.
Thus we’ll underestimate the shear two-point signal, especially on
small scales, where sensitivity to those crowded, high convergence
regions is highest. We call this effect blend-exclusion bias. Hart-
lap et al. (2011) estimated the magnitude of this effect by starting
with a mock weak lensing catalogue (produced from ray-traced
N-body simulations), and cutting out galaxies based on various cri-
teria; for example, they apply what they call the “FIX” criterion,
where if a pair of galaxies is separated by less than some angle
θFIX, they exclude one of those galaxies. For θFIX = 2′′(5′′), they
find a −1(−2)% bias in ξ+(θ = 1 arcmin), and a −2(−7)% bias in
ξ−(θ = 1 arcmin).

These sorts of criteria give a useful indication of the ex-
pected bias; however, on real data, the criteria we use for deciding
whether to use a galaxy are often not so well defined. As explained
above, in the DES-SV analyses (e.g. Jarvis et al. 2016, Becker
et al. 2015, DES16) SExtractor was used to decide whether a
galaxy is blended, and the behaviour of SExtractor is dependent
on the details of the images, for example the PSF, the noise lev-
els, and the distribution of galaxy fluxes and sizes. These details
are not captured in the approach taken by Hartlap et al. (2011),
since they do not simulate survey images. The approach we take
uses the BCC-UFig image simulations (Chang et al. 2015), which
allows investigation of the behaviour of the same selections we use
on the real data. The BCC-UFig image simulations start with a
cosmological mock galaxy simulation (the Blind Cosmology Chal-
lenge (BCC), Busha et al. 2013), with lensing information from
ray-tracing (Becker 2013). This is used as input to an image gen-
erator (the Ultra Fast Image Generator (UFig), Bergé et al. 2013;
Bruderer et al. 2016) that produces images with properties like noise
levels and PSF well-matched to DES data (see Chang et al. (2015)
and Leistedt et al. (2015)). The BCC-UFig catalogues are then pro-
duced by running SExtractor on these simulated images, with a
configuration designed to match that run on the DES SV data by the
DES data management pipeline.

We estimate the size of the blend-exclusion bias as follows.

(i) We start with the DES-SV shape catalogue split into the 3
redshift bins presented in Becker et al. (2015) and reweight the
BCC-UFig catalogue to have the same observed magnitude, size
and redshift distribution.We use the i−band SExtractor quantities
MAG_AUTOandFLUX_RADIUS tomatch themagnitude and size
distributions since we have these for both the SV data, and the BCC-
UFig catalogues. We call this re-weighted catalogue the ‘full’ UFig
catalogue.
(ii) We measure the shear correlation functions ξ±(θ) from the

full UFig catalogue, using the true input shears to the simulation.We
use the true input shears, since the aim here is to isolate the selection

bias, rather than study any other shape measurement biases. We call
this signal ξfull± (θ).

(iii) We then impose a cut on the SExtractor flag value in
the full UFig catalogue that removes blended objects or those with
bright, close neighbours (around 15% of the objects). This is the
same cut that was applied to the DES-SV shape catalogues for weak
lensing analyses. We re-weight the resulting catalogue to have the
same redshift distribution as the full UFig catalogue, and call this
the ‘cleaned’ UFig catalogue. We measure the shear correlation
functions from the cleaned UFig catalogue, and call this signal
ξcleaned± (θ). Then the fractional bias is ξcleaned± (θ)/ξfull± (θ) − 1.

The ratio ξcleaned± (θ)/ξfull± (θ) is plotted in Figure 8. We show only
correlations with the highest redshift bin for clarity, but there is
no clear redshift dependence of the bias. For ξ+, the bias reaches
∼ 3% at 1 arcmin, while for ξ−, the bias reaches this level at 10-20
arcminutes. Thus the effect is of the same order as found in Hartlap
et al. (2011) and is similar in magnitude and scale-dependence to
the reduced shear and lensing-bias effects. Thus we conclude that
the blend-exclusion bias will produce a similar level of bias in the
inferred M+15 halo model parameters as the reduced shear and
lensing bias.

This similarity is perhaps not surprising, since this blend-
exclusion bias can be thought of as a form of source-lens clustering
whereby the exclusion of blended objects produces changes in the
source galaxy density that are correlated with the density field;
this is also the result of the lensing bias described in Section 4.1.2.
Motivated by this similarity, we formulate a toymodel for the blend-
exclusion bias. In this toy model, we assume the probability of a
galaxy at θ being blended depends only on the amount of light
from neighbours in that area of sky. This can be quantified as the
excess flux density (above the mean flux density), which we will
call κflux(θ). Consider the contribution to κflux(θ) from a comoving
volume element dV at comoving distance χ. The contribution to
the excess flux in area element dΩ is

∆κflux(θ, χ)dχ dΩ =
δL (θ, χ)
4πdL ( χ)2

dV (13)

where dL ( χ) is the luminosity distance. δL (θ, χ) is the comoving
volume luminosity overdensity at (θ, χ), given by

δL (θ, χ) =
L(θ, χ) − L̄( χ)

L̄( χ)
(14)

where L(θ, χ) is the luminosity density at (θ, χ) and L̄( χ) is the
mean luminosity density at comoving distance χ. The comoving
volume element can be replaced using dV = χ2dχ dΩ , yielding

∆κflux(θ, χ)dχ =
δL (θ, χ)
4πdL ( χ)2

χ2dχ . (15)

We make the assumption that the luminosity overdensity δL (θ, χ)
is proportional to the matter overdensity δ(θ, χ). This would be the
case if galaxies did not evolve with redshift, and had luminosity-
independent bias (hence we call this a toy model!). Then

∆κflux(θ, χ)dχ ∝
χ2δ(θ, χ)
dL ( χ)2

dχ (16)

and

κflux(θ) ∝
∫

dχ
χ2δ(θ, χ)
dL ( χ)2

. (17)

We assume that the observed galaxy overdensity (i.e. the fractional
excess in galaxy number density) due to blending is proportional to
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Figure 8. Ameasurement of blend-exclusion bias using BCC-UFig. The ratio of the shear correlation functions estimated from the BCC-UFig simulations after
removing SExtractor blends, to the correlation functions using the full galaxy sample. The two samples were weighted to have the same redshift distributions,
and the true input shears to the simulations were used to calculate ξ±, in order to isolate the selection effect. For clarity only correlations with the highest
redshift bin (bin 3) are shown. The dashed lines show the prediction of the toy model described in Section 4.2

the excess flux density κflux(θ), so using equation 17,

δblendobs (θ) = ακflux(θ) = α
∫

dχ
χ2δ(θ, χ)
dL ( χ)2

(18)

where α is a constant of proportionality, which we expect to be neg-
ative, since an excess in flux density should lead to more blending,
and so a negative δblendobs .

Like the convergence, δblendobs (θ) is a projection in χ of the
matter overdensity, δ, but with a kernel

W ′( χ) =
α χ2

d2
L

( χ)
=

α χ2

(1 + z( χ))2D2
A

( χ)
(19)

instead of the lensing kernel. So the effect on the shear power
spectrum can be calculated in exactly the same way as the reduced
shear correction, but replacing the lensing kernels [Wi ( χ)+W j ( χ)]
in equations 5 and 6, with 2W ′( χ). The dashed lines in Figure 8
show the prediction of this toy model, with α = −0.1 showing
qualitative agreement with the measurement from BCC-UFIG.

It worth noting finally that the magnitude of this selection
bias (and indeed the lensing bias described in Section 4.1.2) will
depend on the estimator used for the two-point cosmic shear signal.
For example a pixel-based estimator (i.e. where the mean shear is
calculated in pixels on the sky, and then these mean values are used
in the two-point statistic) may be less susceptible to biases that arise
from variations in the source density. However, if the pixels are
weighted by the number of galaxies in each pixel, to approximate
inverse-variance weighting, then in the small pixel limit, the pixel
estimator estimator will be equivalent to the estimators used here.

4.3 Intrinsic Alignments

The observed intrinsic alignments of bright red galaxies (see e.g.
Singh et al. 2015) on linear and mildy nonlinear scales are well de-
scribed by theoretical models that assume tidal alignment, in which
the galaxy ellipticity is assumed to align with the local tidal field.
The simplest of these is the linear alignment (LA) model (Cate-
lan et al. 2001; Hirata & Seljak 2004), in which the alignment is
assumed to be linear in the linear tidal field, which leads to an
alignment power spectrum that depends on the linear matter power
spectrum. The LAmodel has only one free parameter, an amplitude
AIA that is of order unity (this is just called ‘A’ in DES16). A popu-
lar variation is the nonlinear linear alignment (NLA) model, which
was introduced by Bridle & King (2007), who replaced the linear
matter power spectrum with the nonlinear matter power spectrum;
this model has been more successful than the LA model in fitting
observations on mildly nonlinear scales (e.g. Joachimi & Schneider
(2010)), despite the fact that it does not include all nonlinear correc-
tions in a consistent way. Blazek et al. (2015) systematically include
nonlinear corrections (at one-loop order in perturbation theory) to
the linear alignment model, producing a model that provides a fur-
ther improved fit in the mildly nonlinear regime. Meanwhile, it is
commonly assumed that the intrinsic alignments of spiral galaxies,
which are primarily angular-momentum supported, are better de-
scribed by theories based on tidal torquing White (1984); these are
also known as quadratic alignment models (Crittenden et al. 2001;
Mackey et al. 2002; Hirata & Seljak 2004). Blazek et al. (in prep.)
propose a perturbative model for populations of mixed galaxy-type
that consistently includes both tidal alignment and tidal torque-type
contributions. Halo model-based intrinsic alignment models (see
e.g. Schneider & Bridle 2010) are likely to be more successful
in the fully nonlinear 1-halo regime. A detailed study of intrinsic

MNRAS 000, 1–17 (2016)



12 The DES Collaboration

alignments on nonlinear scales is beyond the scope of this work; we
perform a simple test to gauge the order of the uncertainty in this
section.

We use the difference between the LA model and the NLA
model as a proxy for the uncertainty in the behaviour of intrinsic
alignments on nonlinear scales. The green contours in Figure 4
shows the DES-SV constraints on the halo model parameters when
the LAmodel is assumed rather than the fiducialNLAmodel (purple
filled/outlined contours). The is a∼ 1σ shift in the contours, towards
the low A favoured by the ‘AGN’ model. This can be understood as
follows: the wide redshift binning means that the dominant affect
of intrinsic alignments is the negative ‘GI’ term. The NLA model
therefore produces a larger negative contribution at small scales than
the LA term. When the LA model is assumed, a lower A (leading to
reduced halo concentration, and thus a reduced small-scale cosmic
shear signal), is required to fit the observed signal.

A similar shift in contours is observed for the Y5 forecast,
shown as the green contours in Figure 9. In this case the ‘simulated’
data vector uses the NLA model, with AIA = 0.5, with the green
contours resulting from fitting this data vector using the LA model.
In this case Ctruth = 82.8% so the shift is significant. One could
imaginemarginalising over extra nuisance parameters to account for
the uncertainty in the intrinsic alignment modelling on nonlinear
scales. As a simple example, we implement an intrinsic alignment
model that is a mixture of the linear alignment and NLA models,
with the amount of nonlinearity determined by a free parameter αnl,
such that the intrinsic ellipticity power spectrum, PII(k, z) becomes

PII(k, z) = αnlPNLA
II (k, z) + (1 − αnl)PLA

II , (20)

and similarly for the intrinsic ellipticity-density cross spectrum PGI.
Despite this extra flexibility, the degradation of theM+15 parameter
constraints is negligible.While this particularmodelmay not be very
realistic, this result suggests that the future cosmic shear data will
have the power to constrain additional nuisance parameters which
account for the uncertainty of intrinsic alignments on nonlinear
scales, without significantly degrading the constraints on the M+15
model parameters, and therefore models of baryonic physics.

4.4 Degeneracy with cosmology

Thus far, we have fixed all cosmological parameters, however, there
will be some degeneracy between the halo model parameters and
the cosmological parameters. In particular, neutrino mass also pro-
duces scale dependent change in the matter power spectrum, so we
expect it to have some degeneracy with baryonic feedback. Natara-
jan et al. (2014) investigate this degeneracy, concluding that one can
infer biased values of the neutrino mass from cosmic shear if bary-
onic feedback is not accounted for. We now repeat the Y5 forecast,
but allowing cosmological parameters (Ωm,Ωb, H0, ns, As ) to vary,
while combining with Planck CMB constraints (specifically we use
the low-l TEB and high-l TT likelihoods presented in Planck Col-
laboration et al. (2015b)). Note that we do not include CMB lensing
information. There is only a small increase in the errorbars on the
halo model parameters A and η0 (7% increase in √σAση0 ). When
the neutrino density Ωνh2 is additionally marginalised over, there
is a further 23% increase in √σAση0 . This degradation is due to
the presence of degeneracy between the neutrino mass and the halo
model parameters, as demonstrated in Figure 10. Hence we con-
clude that marginalising over cosmological parameters, including
the neutrino mass, will not greatly reduce the ability of DES Y5
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REF
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Figure 9. Expected constraints from DES Y5 on M+15 halo model pa-
rameters given different assumptions about intrinsic alignments. The purple
(filled and lined) contour is the same as in the right panel of Figure 5. For the
green filled contour, the linear alignment model is used to fit the simulated
data vector, instead of the the NLA model which was used to generate the
simulated data vector (with AIA = 0.5). This results in biased recovery of
the M+15 halo model parameters.

data to constrain baryonic effects on the matter power spectrum,
when combining with Planck CMB data.

5 DISCUSSION

The small scales of cosmic shear measurements are rich in both
signal-to-noise, and difficult-to-model systematic uncertainties.
Baryonic effects present the largest systematic uncertainty, with
10 − 20% deviations from the dark matter-only case on arcminute
scales predicted by some hydrodynamic simulations. The prospects
for gaining useful cosmological information from the small scales
of cosmic shear do not look bright given these uncertainties. How-
ever, small scale cosmic shear measurements do still provide unique
observational constraints on the small-scale matter clustering, since
cosmic shear is the observational probe that can most directly probe
the total matter distribution on small scales. These can be straight-
forwardly compared to e.g. the predictions from hydrodynamic sim-
ulations, or analytic models.

We note that cosmic shear is not the only way to exploit weak
lensing datasets, which (either alone or in combination with galaxy
redshift surveys) can also be used for galaxy clustering measure-
ments or probing the cross-correlation between galaxy number den-
sity and shear. Viola et al. (2015) have already shown the sensitivity
of the latter to baryonic feedback. Furthermore, the addition of
galaxy clustering and number density-shear cross-correlation infor-
mation will constrain some of the systematic effects that reduce
the effectiveness of cosmic shear-alone analyses, such as intrin-
sic alignments (Joachimi & Bridle 2010) and photometric redshift
uncertainties (Zhang et al. 2010; Samuroff et al. 2016).

While current cosmic shear data has limited constraining power
(such as the DES Science Verification constraints presented in Sec-
tion 3.2), we have shown that information fromDES 5-year data has
the potential to distinguish possible baryonic scenarios, producing
information that could be fed back into future hydrodynamic sim-
ulations, which in turn will hopefully improve our ability to model
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Figure 10. Forecasted degeneracy between the neutrino energy densityΩνh2 and theM+15 halo model parameters, for DESYear 5 combined withPlanckCMB
constraints. For the simulated data vector, we assumed Ωνh2 = 6 × 10−4, approximately the minimal value allowed by solar neutrino oscillation observations
(Fukuda et al. 1998), and the halo model parameters corresponding to the baseline case (A = 3.13, η0 = 0.60).

the small scale clustering. In order tomake robust conclusions about
baryonic physics from small scale cosmic shear however, other non-
negligible systematics should be accounted for, such as the reduced
shear correction, lensing bias, blend-exclusion bias, and uncertain-
ties due to intrinsic alignment modelling. We have demonstrated
that all of these effects, if not accounted for, can significantly bias
the inferred small scale matter power spectrum. In particular, we
have shown that these effects will bias the parameters of the Mead
et al. (2015) halo model; however this conclusion will be true for
whatever model or prescription is used to account for the uncertain-
ties in the small-scale matter power spectrum.

While the theoretical framework for modelling the reduced
shear is well established, a prediction for the matter bispectrum is
required, which on nonlinear scalesmay also depend on the baryonic
feedback. We have demonstrated how novel image simulations can
be used to estimate the effect of lensing-bias (which also requires a
prediction of the matter bispectrum), and the blend-exclusion bias.
Intrinsic alignment modelling on nonlinear scales is still extremely
uncertain; however, we have shown the potential of future cosmic
shear data to constrain uncertainty in the nonlinear intrinsic align-
ment modelling at the same time as the baryonic effects. Finally,
although the baryonic effects on the matter power spectrum are to
some extent degenerate with the effect of massive neutrinos, we
have shown that marginalising over neutrino mass does not greatly
reduce the potential constraining power of DESYear 5 cosmic shear
data, when it is combined with Planck CMB data.
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APPENDIX A: THIRD ORDER CORRECTIONS TO
SHEAR-SHEAR CORRELATIONS

In cosmic shear, we attempt to measure the two-point correlation of
the shear, possibly between two different redshift bins i and j

ξi, j = 〈γi (~x)γ j ( ~x′)〉. (A1)

Contributions to shear two-point correlation at third order in the
density field arise from two effects

(i) We observe the reduced shear,

g(~x) =
γ(~x)

1 − κ(~x)
≈ (1 + κ(~x))γ(~x). (A2)

(ii) We can only estimate the shear at positions of galaxies. So
any statistic (e.g. themean shear or ξ±) estimated from themeasured
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shears will effectively be using the galaxy number density-weighted
reduced shear:

gobs (~x) = (1 + δobs(~x))g(~x)) (A3)
= (1 + δobs(~x))(1 + κ(~x))γ(~x) (A4)

where δobs(~x) is the observed overdensity in galaxy number at
position ~x. This observed overdensity can be due to a true change in
the number density of galaxies at ~x (for example due to the presence
of a cluster), or due to a change in the observable number density
due to lensing magnification (for example due to the presence of
a cluster at lower redshift). The first effect leads to source-lens
clustering (Bernardeau 1998; Hamana et al. 2002) and the second
leads to lensing-bias (Schmidt et al. 2009).

We start with the expression from Schmidt et al. (2009) for the
expectation of the standard ξ± estimator.

〈ξobsi j 〉 =

〈 gobs
i

(~x)gobs
j

( ~x′)

1 + 2δobs + ̂δobsδobs

〉
(A5)

where δobs is the mean observed galaxy overdensity across the
survey (negligible for a wide survey), ̂δobsδobs is a mean product
of overdensities smoothed over the bin width (ξgg (θ) in the limit
of an infinite survey and narrow bin). Substituting for gobs

i
from

equation A4, the terms up to third order in γ, κ or δ are

〈ξobsi j 〉 =〈γi (~x)γ j ( ~x′)〉

+〈κ(~x)γi (~x)γ j ( ~x′)〉 + 〈γi (~x)κ( ~x′)γ j ( ~x′)〉 (A6)

+〈δobs(~x)γi (~x)γ j ( ~x′)〉 + 〈γi (~x)δobs( ~x′)γ j ( ~x′)〉.

The first line is the ‘true’ shear-shear signal. The second line is the
reduced shear contribution, which is only zero if the convergence κ
is not correlated with the shear at a given point on the sky, which
is unlikely, since they are sourced by the same structure. The third
line is the source-lens clustering (including ‘lensing bias’, since
magnification contributes to δobs). This would be zero if there was
no correlation between the source galaxy overdensity and the shear
at a given point on the sky e.g. if source galaxies were randomly
distributed.

It’s more convenient to compute these term in Fourier space,
as

〈γobsi (~l, χ)γobs,∗
j

( ~l ′′, χ′)〉 = 〈γi (~l, χ)γ∗j ( ~l ′′, χ′)〉

+ Ri j + Rj i + Si j + Sj i
(A7)

where

Ri j = 〈(κiγi )(~l, χ)γ∗j ( ~l ′′, χ′))〉 (A8)

Rj i = 〈γi (~l, χ)(κ jγ j )∗( ~l ′′, χ′)〉 (A9)

Si j = 〈(δobs, iγi )(~l, χ)γ∗j ( ~l ′′, χ′))〉 (A10)

Sj i = 〈γi (~l, χ)(δobs, jγ j )
∗( ~l ′′, χ′)〉 (A11)

and subscripts i and j denote shears/overdensities/convergences
taken from redshift bins i and j. In Fourier space, the multiplicative
adjustments to the shear become convolutions i.e.

(κγ)(~l) =
∫

d2l ′

(2π)2
γ(~l ′)κ(~l − ~l ′) (A12)

(δobsγ)(~l) =
∫

d2l ′

(2π)2
γ(~l ′)δobs(~l − ~l ′). (A13)

So

Ri j =

∫
d2l ′

(2π)2
〈γi (~l ′, χ)κi (~l − ~l ′, χ)γ∗j ( ~l ′′, χ′)〉 (A14)

Rj i =

∫
d2l ′

(2π)2
〈γi (~l, χ)γ∗j (~l ′, χ′)κ j ( ~l ′′ − ~l ′, χ′)〉 (A15)

Si j =
∫

d2l ′

(2π)2
〈δobs, i (~l ′, χ)γi (~l − ~l ′, χ)γ∗j ( ~l ′′, χ′)〉 (A16)

Sj i =
∫

d2l ′

(2π)2
〈γi (~l, χ)γ∗j (~l ′, χ′)δ∗obs, j ( ~l ′′ − ~l ′, χ′)〉. (A17)

We use the following:

γi (~l) = e2iφl κi (~l) (A18)

κ∗i (~l) = κi (−~l) (A19)

δ∗obs, i (~l) = δobs, i (−~l) (A20)

where φl is the angle made by ~l with the x-axis, to obtain

Ri j =

∫
d2l ′

(2π)2
e2i (φl′−φl′′ )〈κi (~l ′, χ)κi (~l − ~l ′, χ)κ j ( ~−l ′′, χ′)〉

(A21)

Rj i =

∫
d2l ′

(2π)2
e2i (φl−φl′ )〈κi (~l, χ)κ j ( ~−l ′, χ′)κ j ( ~l ′ − l ′′, χ′)〉

(A22)

Si j =
∫

d2l ′

(2π)2
e2i (φl′−φl′′ )〈κi (~l ′, χ)δobs, i (~l − ~l ′, χ)κ j ( ~−l ′′, χ′)〉

(A23)

Sj i =
∫

d2l ′

(2π)2
e2i (φl−φl′ )〈κi (~l, χ)κ j (−~l ′, χ′)δobs, j (~l ′ − ~l ′′, χ′)〉.

(A24)
We can write the reduced shear terms Ri j and Rj i in terms of the
convergence bispectrum, B(κ1,κ2,κ3) (~l1, ~l2, ~l3) defined as

〈κi (~l1)κ j (~l2)κk, (~l3)〉 = (2π)2δD (~l1+~l2+~l3)B(κ1,κ2,κ3) (~l1, ~l2, ~l3).

(A25)

This can be related to the matter bispectrum using the Limber
approximation

B(κ1,κ2,κ3) (~l1, ~l2, ~l3) =
∫

dχ
χ4

W1( χ)W2( χ)W3( χ)Bδ ( ~k1, ~k2, ~k3; χ)

(A26)

where Wi ( χ) is the lensing kernel for redshift bin i and ~k1 = ~l1/χ
etc. Note the δD (~l1 + ~l2 + ~l3) enforces a triangle configuration of
the three vectors. So Ri j and Rj i become

Ri j =

∫
d2l ′

(2π)2
e2i (φl′−φl′′ ) (2π)2B(κi,κi,κ j ) (~l ′,~l − ~l ′, ~−l) (A27)

Rj i =

∫
d2l ′

(2π)2
e2i (φl−φl′ ) (2π)2B(κi,κ j ,κ j ) (~l, ~−l ′, ~l ′ − l). (A28)

We can write the LHS of A7 as

〈γi (~l)γ∗j ( ~l ′′)〉 = (2π)2δD (~l − ~l ′′)Cκi j (l), (A29)

so the change in Cκ
i j

(l) due to reduced shear is

δredCκi j (l) = [Ri j + Rj i ]/(2π)2

=

∫
d2l ′

(2π)2
e2i (φl′−φl ) B(κi,κi,κ j ) (~l ′,~l − ~l ′, ~−l)

+ e2i (φl−φl′ ) B(κi,κ j ,κ j ) (~l,−~l ′, ~l ′ − ~l). (A30)
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We can arrive at equation 13 of Shapiro (2009) by taking the
real part, assuming some symmetry properties of the convergence
bispectrum (B(~l1, ~l2, ~l3) = B(−~l1,−~l2,−~l3) and B(~l1, ~l2, ~l3) =
B(~l3, ~l1, ~l2)) and defining the ‘2-redshift convergence bispectrum’

Bi j (~l1, ~l2, ~l3) =
1
2

∫
dχ
χ4

Wi ( χ)W j ( χ)[Wi ( χ) +W j ( χ)]

Bδ ( ~k1, ~k2, ~k3; χ),
(A31)

which in our notation is equal to

1
2
[B(κi,κi,κ j ) (~l1, ~l2, ~l3) + B(κi,κ j ,κ j ) (~l1, ~l2, ~l3)]. (A32)

Substituting into equation A30

δredCκi j (l) = 2
∫

d2l ′

(2π)2
cos(2φl′ − 2φl ) Bi j (~l ′,~l − ~l ′, ~−l). (A33)

We now move on to the Si j and Sj i terms. Various things can cause
a galaxy overdensity δobs , but we’re concerned with ones that are
correlated with the density field. These arise from two sources. The
first and most obvious one is if the source galaxies trace the density
field e.g. with some linear bias bg

δobs, i (~l, χ) = Ni ( χ)bg ( χ)δ(~l, χ). (A34)

Then we have

Si j =
∫

d2l ′

(2π)2
e2i (φl′−φl′′ )〈κi (~l ′, χ)bg ( χ)Ni ( χ)

δ(~l − ~l ′, χ)κ j ( ~−l ′′, χ′)〉.

(A35)

In the Limber approximation (in which we assume density fluctua-
tions at different radial distances are uncorrelated), this term goes
to zero, by the following argument: κi (~l ′, χ) only depends on the
density field for radial distances less than χ, and so is uncorrelated
with δ(~l − ~l ′, χ). κ j ( ~−l ′′, χ′) gets contributions from density fluc-
tuations all along the line of sight. Those produced by fluctuations
at χ′! = χ will be uncorrelated with δ(~l − ~l ′, χ), so for χ′! = χ,
δ(~l − ~l ′, χ) is correlated with neither κi (~l ′, χ) or κ j (~l ′, χ′). The
contribution to κ j ( ~−l ′′, χ′) produced by fluctuations at χ′ = χ

will be correlated with δ(~l − ~l ′, χ), but uncorrelated with κi (~l ′, χ).
In both these cases, one of the variables in the 3-point correlator is
uncorrelated with the other two, and since all variables have zero
mean, the 3-point correlation is zero. Hence for δobs( χ) satisfying
〈δobs( χ)δ( χ′)〉 = δD ( χ− χ′)〈δobs( χ)δ( χ′)〉, Si j = Sj i = 0. This
is the source-lens clustering term which is zero in the Limber ap-
proximation (see Valageas 2014 for a treatment beyond the Limber
approximation).

From Schmidt et al. (2009), the lensing-bias produces an ob-
served galaxy overdensity δobs, i (~θ, χ) = qi κi (~θ, χ) (to first order
in κ), where q is a constant that depends on the survey selection
function. In this case, Si j = qiRi j , and we get the same result as in
the reduced-shear case, but for the qi prefactors

δlensingCκi j (l) = [qiRi j + qj Rj i ]/(2π)2

=

∫
d2l ′

(2π)2
cos(2φl′ − 2φl )Bq

i j
(~l ′,~l − ~l ′,−~l)

(A36)

where

Bq
i j

(~l1, ~l2, ~l3) =
1
2

∫
dχ
χ4

Wi ( χ)W j ( χ)[qiWi ( χ) + qjW j ( χ)]

Bδ (~l1/χ, ~l2/χ, ~l3/χ; χ).

(A37)

This is a generalisation for tomography of the result of Schmidt
et al. (2009), who did not consider multiple redshift bins. Schmidt
et al. (2009) show that the factor q has contributions from three
effects. Let f , r and ~θ denote the observed flux, size and position of
a galaxy, and fg , rg and ~θg the corresponding intrinsic (unlensed)
quantities. To first order in κ, the observed and intrinsic properties
are related via

~θ = ~θg + δ~θ, f = A fg, r =
√

Arg, d2~θ = Ad2 ~θg (A38)

where A = 1 + 2κ. The first contribution to the observed galaxy
overdensity comes from the change in the observed area element
- a small patch of unlensed sky of area δθ2 has area Aδθ2 due
to lensing, and so δobs is reduced by a factor A. The second and
third contributions come from the effect of magnification on the
observed galaxies fluxes and sizes. In positive convergence regions,
the magnification produces larger brighter galaxies, which are more
likely to be detected and have well-measured shapes. Schmidt et al.
(2009) show that the observed galaxy overdensity can be written as

δobs(~θ, χ) = qκ(~θ, χ) = (2β f + βr − 2)κ(~θ, χ) (A39)

where

β f ≡

∫
dr
∫

df
∂ε ( f , r)
∂(ln( f ))

Φ( f , r) (A40)

βr ≡

∫
dr
∫

df
∂ε ( f , r)
∂(ln(r))

Φ( f , r). (A41)

ε ( f , r) is the selection function (i.e. accounts for the exclusion
of faint, small galaxies) and Φ( f , r) is the true galaxy distribu-
tion in flux and size. These functions are normalised such that∫

df
∫

drε ( f , r)Φ( f , r) = 1. Hence if ε ( f , r) is an increasing func-
tion of flux and size, β f and βr will be positive, since we’ll observe
a higher galaxy number density due to the magnification when κ is
positive.
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