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We study Higgs pair production with a subsequent decay to a pair of photons and a pair
of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions
which either allow us to separate the di-Higgs signal from backgrounds or to determine the
Higgs self-coupling. We find that both regions are separate enough to ensure that details of
the background modelling will not affect the determination of the self-coupling. Assuming
dominant statistical uncertainties we determine the best precision with which the Higgs self-
coupling can be probed in this channel. We finally comment on the same questions at a
future 100 TeV collider.
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I. INTRODUCTION

Higgs pair production is one of the key benchmarks for any new collider probing the electroweak
scale. This includes the LHC towards large luminosity, but also future electron-positron colliders and
future hadron colliders. At hadron colliders the task is clear: we can test Higgs pair production in gluon
fusion, with continuum contributions as well as contributions induced by the Higgs self-coupling. The
two Feynman diagrams are shown in Fig. 1 [1, 2]. In the Standard Model both diagrams rely on a strong
interaction between the Higgs and the top quark in the loop to give an observable rate for the LHC.
This means that if we want to measure the di-Higgs rate or even the Higgs self coupling [3–5] from the
total rate σgg→HH we need to make an assumption about the top Yukawa coupling [6]. For a combined
Higgs fit we could for example assume that the effective gluon-Higgs coupling is only mediated by the
Standard Model quarks, which to date gives a roughly 10% measurement of the top Yukawa [7]. A
model independent precision measurement of the top Yukawa coupling at the per-cent level will only be
possible at a 100 TeV collider [8]. Firmly connecting a possible modification of the Higgs self-coupling
to a modified top Yukawa in a given model is rather hopeless, as can easily be seen in two-Higgs doublet
models. One way to limit the impact of such an assumption would be to include Higgs pair production
as a probe of the Higgs self-coupling in a global analysis of the Higgs effective Lagrangian at tree level
or at one loop [9, 10]. Another way to at least minimize the assumption about the top Yukawa is to test
kinematic distributions in Higgs pair production. There are three obvious questions concerning such an
analysis of the Higgs pair kinematics which we tackle in this paper,

1. which kinematic features allow us to extract Higgs pair production from backgrounds?

2. which kinematic features include information about the Higgs self-coupling?

3. what is the most optimistic LHC sensitivity in the presence of QCD backgrounds?

There are two kinematic regimes which are well known to carry information on the Higgs self-coupling.
Both of them exploit the (largely) destructive interference between the two graphs shown in Fig. 1. As
we will illustrate later, over most of phase space the continuum contribution dominates. One phase space
region where the triangle diagram become comparable is close to threshold [2, 3]; if we denote the Higgs
effective Higgs–gluon Lagrangian in terms of the gluon field strength Gµν as [11]

LggH =
αs

12π
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we can write the amplitude for Higgs pair production as
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Figure 1. Feynman diagrams contributing to Higgs pair production at the LHC. Figure from Ref. [3].
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The exact cancellation is linked to the Standard Model value of the physical Higgs self-coupling λ =
3m2

H/v. Note that while the heavy top approximation is well known for giving completely wrong kine-
matic distributions for Higgs pair production [3], it correctly predicts the threshold region. If we rely on
this distribution, the strategy behind an LHC analysis will be to rule out large deviations from the Stan-
dard Model Higgs self-coupling based on the fact that any such deviation leads to a strongly enhanced
production cross section.

The second sensitive kinematic regime where the two contributions shown in Fig. 1 become comparable
is boosted Higgs pair production [12]. Top threshold corrections to the triangle diagram are strongly
enhanced around mHH = 2mt. We can translate this into a condition for the transverse momentum of the
SM-like Higgs, where we find that around pT,H ∼ 100 GeV the combined process develops a minimum
for large Higgs self-couplings. The fact that there exist two relatively un-correlated useful kinematic
distributions is of course not surprising for an effectively 2-body final state.

At the LHC, we can go through all Higgs decay channels and test their combinations as possible
di-Higgs signatures. The most promising channel for a SM-like pair of Higgs bosons is most likely the
bb̄γγ final state [5, 13–15]. Its great advantage is that we can easily reconstruct one of the two Higgs
bosons and that the QCD continuum background can be measured in control regions. In addition, it
should be possible to use the bb̄ττ final state [4, 12], if tau-tagging will show a sufficient performance.
The combination bb̄WW [16] will only work if we can suppress the tt̄ background, while the 4b [4, 17]
and the original 4W [3, 18] signatures are unlikely to contribute significantly for a pair of SM-like Higgs
bosons. Finally, the bb̄µµ shares many beneficial features with the bb̄γγ channel [5], but will be further
suppressed by the muon branching ratio. The picture changes if we consider either resonant Higgs pair
production [5, 19] or strongly interacting Higgs pair production [20]. For a pair of SM-like Higgs bosons
there exists a large number of theoretical precision calculations [6], including NLO [21] and NNLO [22]
predictions for the differential rates. Those will be crucial if we want to study this production process
in spite of the top-Yukawa-infected total rate prediction.

In this paper we first generalize MadMax from computing maximum signal significances, globally or
distributed over phase space, to comparing two general hypotheses in Sec. I A and I B. In Sec. II we then
ask the question which kinematic information should allow us to extract Higgs pair production from the
QCD backgrounds. We also recapitulate how some of the key features arise from the combination of
the triangle and box diagrams shown in Fig. 1. Next, we test which kinematic distributions allow us to
measure the Higgs self-coupling at the LHC in Sec. III. In Appendix A we provide the corresponding
information for a future 100 TeV collider.

A. MadMax

The MadMax [23, 24] approach of calculating significance distributions for kinematic observables
is based on the Neyman–Pearson lemma: the likelihood ratio is the most powerful test statistic for a
hypothesis test between a simple null hypothesis — for example background only — and an alternate
hypothesis — for example signal plus background [25]. Maximum power is formally defined as the
minimum probability for false negative error for a given probability of false positive.

We have established that we can define and compute the maximum significance of a signal-plus-
background process as compared to the background-only hypothesis using the standard Monte Carlo
tools. As an example we studied Higgs decays to muons in weak boson fusion [23]. Our results can be
taken as a benchmark for the performance of multi-variate analysis techniques at the LHC, including
the matrix element method. In a second step we used the same method to determine which phase space
regions contribute to this maximum significance, for example in boosted Higgs production in the ZH or
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tt̄H channels [24]. Such a study allows us to determine how much of the distinguishing power of a multi-
variate analysis comes from phase space regions which are systematically and theoretically under control.
In this paper we extend this approach to test two signal hypotheses, with the technical complication that
over phase space the expected ratio of events can lie on either side of unity.

In general, the likelihood of observing n events assuming a hypothesis H0 is given by the Poisson
distribution Pois(n|n0) = e−n0 nn0/n!. We can generalize this counting experiment by introducing a
observable x, where we assume that H0 is described by the normalized distribution f0(x). Similarly,
the alternative hypothesis H1 is described by f1(x). Each likelihood can be factorized into the Poisson
likelihood to observe an event and the normalized event likelihood f0,1(x). In combination they give the
single-event log-likelihood ratio (LLR)

qn=1(x) = log
L(x|H1)

L(x|H0)
= log

Pois(1|n1) f1(x)

Pois(1|n0) f0(x)

= (n0 − n1) + log
n1

n0
+ log

f1(x)

f0(x)
. (3)

If we know f0(x) and f1(x) from Monte Carlo simulations, we can compute the above LLR. A very
simple structure containing only the last term appears, when we only rely on kinematic distributions
and not on the total rate. We can generalize Eq.(3) to the likelihood of observing n events in a phase
space configuration ~x = {xj}. The normalized event likelihood is now a product of n likelihoods at the
corresponding configurations, so we find

qn(~x) = log
L(~x|H1)

L(~x|H0)
= log

Pois(n|n1)
∏n
j=1 f1(xj)

Pois(n|n0)
∏n
j=1 f0(xj)

= (n0 − n1) +
n∑
j=1

log
n1f1(xj)

n0f0(xj)
. (4)

The combined LLR is additive when we include more than one event. If the argument of the logarithm
is allowed to be greater as well as smaller as unity, depending on the position in phase space, their
contribution to the over-all LLR may cancel.

If we want to use the LLR to distinguish two hypotheses we need to evaluate our events as a function
of the LLR, given either H0 or H1. Assuming for example the hypothesis H0 we can integrate over the
entire phase space ~x with the normalized event weight dσ0(~x)/σ0,tot and generate a LLR distribution
based on the relation qn(~x) given in Eq.(3),

ρ0,n=1(q) =

∫
dx f0(x) δ(qn=1(x)− q) . (5)

The corresponding likelihood distributions for n events and combined for all possible outcomes n are
given by a convolution in q-space

ρ0,n(q) = ρ0,n=1 ⊗ ρ0,n=1 ⊗ · · · ⊗ ρ0,n=1

ρ0(q) =
∑
n

Pois(n|n0) ρ0,n(q) . (6)

The numerical evaluation of such a convolution is best done in Fourier space and will be the topic of the
next section.

To compute significance distributions as a function of any phase space variable we use the same
procedure as for the maximum significance. However, we restrict the events we use for the construction
of ρ0,n=1(q) to be those which populate the phase space of a given bin of an observable of interest. We
then iterate for each bin of that observable to fill the differential significance histogram.



5

B. Computing likelihood distributions

To compute the likelihood distribution we rely on a set of simulated events covering the entire phase
space for each of the hypotheses H0 and H1. Following Eq.(5) we first construct ρ0,n=1(q) and ρ1,n=1(q).
The convolution in LLR space can best be evaluated through a Fourier transform with q → q̄ and
ρ0,n → ρ̄0,n. The original convolution in Eq.(6) turns into a product, namely

ρ̄0 =
∑
n

Pois(n|n0) ρ̄0,n = e−n0
∑
n

nn0
n!

ρ̄n0,n=1 = en0(ρ̄0,n=1−1) , (7)

where we have chosen, here and in the following, the H0 hypothesis as a representative. The logic for
H1 follows in analogy. We then need to transform these distributions back into q space and numerically
compute confidence levels by integrating over the relevant q range.

Following the structure of Eq.(6) we know that fast Fourier transforms based on the discrete Fourier
transform (DFT) should be a convenient tool to numerically generate the full event likelihood distribution
ρ0(q). DFTs work on an array of numbers aj where j ∈ [0, N − 1] for fixed N . For a discretized function
the Fourier transformation turns into

āk =

N−1∑
j=0

aj exp

[
−2π

i j k

N

]
, (8)

where āk denotes the discrete Fourier transform on the same size of array k ∈ [0, N − 1] [26]. There are
some points which we need to take care of if we are to use this formalism. To use a DFT we need to
project our function ρ0,n=1 into a binned histogram ρ0,n=1,binned, where in practice we use up to 400 bins
for the projection. An issue with the full event likelihood distribution is that it will not have the same
support in LLR space as the single event likelihood. We need to pre-define an interval in LLR space to
perform the complete computation on the same array. Using simple Poisson counting we can estimate
the length of this interval to be [27].

qlength =
∑

(q,f0)∈ρ0,n=1,binned

|q|
(
n0f0 + σmax

√
n0f0

)
. (9)

The additional factor in parentheses encodes the feature that a Poisson distribution is most likely localized
around the expectation value n0 with a standard deviation of

√
n0. For each step or convolution a given

q-value will typically move by a factor n0 + σmax√n0, where σmax counts the number of maximally
expected standard deviations. By summing over all bins of ρ0,n=1,binned and using the absolute value of
q, we ensure that the full likelihood distribution will fit into the fixed size array. To be on the conservative
side we use σmax = 8 and multiply the final result by a factor of two. Because both, ρ0 and ρ1 have to
be mapped to the same array to allow for a meaningful computation of confidence levels we also need
to replace n0f0 in Eq.(9) by its maximum values for the two hypotheses. This length we divide into 219

bins aj , see also Ref. [27] for more details.
The main difference between this analysis and the original signal-background study of Ref. [23, 24]

is that the LLR q can switch signs. As we do not restrict the allowed values of q when we compute the
single event likelihood distribution from MC, we also need to know how to map ρ0,n=1,binned onto the
array aj . By construction, the first bin in the DFT array corresponds to zero on the q-axis [26]. The
DFT represents a Fourier transform on a finite interval, which means periodic boundary conditions. If
we are to use an arbitrary single event likelihood distribution where negative values of q are allowed, we
need to respect these boundary conditions by moving all negative values to the very right of the aj array,
while the space in between will be filled with zeros. This way we can make sure to compute the correct
full event likelihood distribution. To do so we use the standard fast Fourier transforms as implemented,
for example, in the Python package Scipy.
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C. Analysis setup

While our analysis closely follows the original proposal in Ref. [5], we ensure that in particular our
detector simulation corresponds to the current state of the art. For the signal we use the NLO production
cross section σ(pp → HH) = 34.8 fb at 14 TeV center of mass energy [30]. For the particular bb̄γγ final
state the SM rate prediction is 0.092 fb. Unlike in the CMS study of Ref. [15] we only consider the
high-purity category where both b-jets are tagged and which should dominate the significance at the
high-luminosity LHC. Following Ref. [5] and the CMS study [15] main backgrounds are the non-resonant
γγ + 2 jets process — including γγcc̄ — and γj + 2 jets production. Throughout our analysis we will
see that these QCD continuum backgrounds have essentially the same shape, while their relative size
depends on the photon and bottom identification. This also means that adding mis-tagged backgrounds
can easily be taken into account by scaling the total QCD background rate.

Of the different Higgs processes we include the irreducible, resonant ZH → bbγγ background, because
it can be hard to separate from the background. Assuming σ(ZH) = 0.9861 pb, BR(Z → bb) = 0.1512
and BR(H → γγ) = 0.00227, its cross section is σ(ZH → bbγγ) = 3.38 fb. The Z-peak is modeled by a
double gaussian fit to the CMS study [32]. All remaining non-resonant backgrounds as well as resonant
backgrounds containing H → γγ we assume to be negligible or comparably easy to control. This also
applies to the reducible tt̄γγ background, for which we would need to update the MadMax analysis to
model the crucial QCD jet activity in the signal and background events.

For the two b-quarks and two photons in the final state we need to simulate the detector performance.
We use a pT -dependent and η-dependent b-tagging rate with εb ≈ 0.7 at high pT > 100 GeV in the barrel,
respectively. Towards larger pT the b-tagging efficiency will be reduced. For our choice of efficiencies
the jjγγ background (j = u, d, s, g) is negligible. If instead we choose a constant b-tagging efficiency
and a pT -dependent misidentification rate the light-flavor backgrounds in the low-pT regime increase
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γγσσ

σσπ
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σσ

σσ

γ

γ
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γ

γ
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Figure 2. First two panels: normalized invariant mass distributions of the di-jet and di-photon systems as used in
MadMax and from CMS [28, 29]. Next four panels: di-Higgs invariant mass, transverse momentum spectra used
in MadMax, including NLO corrections [30], and including the fast detector simulation Delphes [31].
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significantly. Similarly, the photon identification efficiency and fake rate due to jets depends on the
barrel versus end-cap position, the transverse momentum, and the parton forming the jet. All tagging
efficiencies used in this analysis are described in Appendix B.

To simulate the detector effects in MadMax we modify MadGraph5 [35] to smear the Higgs propa-
gator like the square root of a Gaussian distribution. This allows us to reproduce the measured smearing
of the CMS detector for bb̄ [28] and γγ pairs [29]. In the upper panels of Fig. 2 we show that our prescrip-
tion is adequate for the peak region, but faces limitations for the tails of the invariant mass distributions.
However, these tails will hardly contribute to the signal significance. All we need to do is account for
the loss of signal rate through these tails, 84.8% for the bb̄ peak and 86.4% for the γγ peak.

Our choice of trigger cuts is motivated by CMS [15]: pT,γ1 > mγγ/3 ≈ 41 GeV, pT,γ2 > mγγ/4 ≈
31 GeV, |ηγ | < 2.5, ∆Rγγ,γj,jj > 0.4, mγγ = 100 ... 180 GeV, pT,j > 25 GeV, |ηj | < 2.4, and mjj =
60 ... 180 GeV. Our invariant mass windows mbb = 80 ... 160 GeV and mγγ = 120 ... 130 GeV are
designed to fully contain the peaks, as illustrated in the first two panels of Fig. 2. We apply these
mass windows for the continuum background simulation throughout or analysis, which means that our
background kinematics will not fully reproduce the QCD features.

Also in Fig. 2 we show the mHH distribution and the different transverse momentum spectra entering
our analysis. The MadMax model is based on a a loop-improved approach [30] which includes the NLO
form factors presented in Ref. [2]. This model is also used by the ATLAS collaboration [14]. One reference
curve shows the full loop calculation using MG5-aMC@NLO [36], another a fast detector simulation
with Delphes [31]. Even though our simulation might not correspond to a precision prediction at the
per-cent level, we see that it reproduces the next-to-leading order results well.

II. STANDARD MODEL SIGNAL VS. BACKGROUND

The first question we want to address in this study is: which kinematic features allow us to extract
Higgs pair production from backgrounds? In this section we identify the Higgs self-coupling with its
Standard Model value λSM = 3m2

H/v, ensuring the perfect threshold cancellation in the heavy top limit
shown in Eq.(2). In our statistics language the null-hypothesis H0 is continuum backgrounds only, while
the hypothesis H1 is defined by Standard Model signal plus backgrounds.

In Fig. 3 we show a set of kinematic distributions for the Higgs decay products and for the recon-
structed Higgs. At the 2 → 2 level we know that two distributions we want to study are the invariant
mass distribution mHH and the transverse momentum of each of the two reconstructed Higgses. The
dashed red line simply scales the signal histogram so we can actually see its kinematic distribution. For
both Higgs distributions the continuum backgrounds are considerably softer than the Higgs pair signal.
The same is true for the transverse momenta of the Higgs decay products. From these distributions it is
also clear that an upper bound on ∆Rγγ will help us extract the Higgs pair signal [5].

For the maximum significance with which we can extract the Standard Model signal from the contin-
uum background we find a Gaussian equivalent of

4.02 σ for an integrated luminosity of 3 ab−1 . (10)

The black lines in Fig. 3 show how this significance is distributed over phase space. First, we observe that
the threshold region mHH < 350 GeV hardly contributes to the SM signal extraction. Instead, it seems
crucial to include reconstructed Higgses with pT,H > 150 GeV, i.e. well in the boosted regime [12, 24].
The separation of the significance distribution from the signal distributions occurs because of the rapidly
falling background distributions. Due to the Higgs boost, widely separated photons with ∆Rγγ > 1.8
will not help with the signal extraction, while in particular for the harder of the two photons or bottoms
we can completely ignore the soft part of the spectrum.
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Figure 3. Kinematic distributions after trigger cuts for the SM signal (red) vs the bbγγ, bbjγ, ccγγ, and ZH
backgrounds. The solid black line shows the differential distribution of the significance.
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Figure 4. Kinematic distributions for the SM triangle diagram only (upper) and the SM box diagram only (lower).
We require trigger cuts for the signal (red) vs the bbγγ, bbjγ, ccγγ, and ZH backgrounds. The solid black line
shows the differential distribution of the significance.
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One key question for any multi-variate analysis is if the phase space regions which dominate the signal
vs background separation will be safe with respect to systematic and theoretical uncertainties. From the
transverse momentum spectra in Fig. 3 we see that soft photons with pT,γ < 50 GeV play hardly any role
in separating the Higgs pair signal from the continuum background. Similarly, for the tagged bottom jets
the relevant range is pT,b = 100 .... 250 GeV. In this range we do not expect jet radiation and the related
combinatorics to have a large effect on our results; the size of the usual perturbative rate corrections for
the signal and background process should be theoretically under control. Finally, the relevant di-photon
phase space is ∆Rγγ = 0.5 ... 2, clearly not a challenge for example to photon separation. A multi-variate
analysis of Higgs pair production in the Standard Model should be straightforward.

From Eq.(2) we know that the two Feynman diagrams contributing to Higgs pair production have
distinct kinematic features, and their combination should allow us to understand the signal and signifi-
cance distributions. In the upper panels of Fig. 4 we illustrate some of the kinematic distributions shown
in Fig. 3, but for continuum Higgs pair production only. As expected, the two cases are similar, because
the continuum diagram is responsible for almost the entire signal rate in the Standard Model. In the
second set of plots we show the kinematic distributions of the triangle diagram only, i.e. the term of the
cross section which carries the information on the Higgs self-coupling. As a first piece of information, we
see that the significance with which we can extract the triangle diagrams in the absence of an interfer-
ence with the continuum is extremely small. Kinematically, both in mHH and pT,H this diagram has a
considerably softer behavior. The two photons arising from a softer Higgs decay can now be more widely
separated. These are the phase space regions where we can expect our signal vs background analysis
to gain sensitivity to the value of the Higgs self-coupling, typically through an enhanced cancellation
between the two Feynman diagrams shown in Fig. 1.

III. HIGGS SELF-COUPLING

In the second part of the paper we investigate the question: what are the prospects of measuring the
Higgs self-coupling λ in the presence of backgrounds? In Fig. 5 we show some kinematic distributions
comparing two signal hypotheses, assuming a variable self-coupling

λ

λSM
=

λ

3m2
H

v

= 0, 2, 5 . (11)

In the absence of a Higgs self-coupling we see that the Higgs pair production rate is significantly enhanced.
While it is not immediately obvious from the two signal curves, the significance distribution over mHH

confirms that we can observe the effect of a zero self-coupling mostly close to threshold and for mHH <
450 GeV. Similarly, the absence of a self-coupling will modify the transverse Higgs momentum around
pT,H < 200 GeV. In the photon separation Rγγ the sensitive range requires widely separated photons.
We skip a detailed analysis of a slightly enhanced self-coupling λ = 2 λSM, because it will be most visible
through a significant reduction of the production rate. The dramatic case of λ = 5 λSM is shown in the
lower panels of Fig. 5. The kinematic distributions are now modified close to threshold and for small
transverse momenta of each Higgs, as expected from an s-channel-mediated process gg → H∗ → HH.

In the next step we add the QCD continuum and ZH backgrounds and test how well we can extract
the Higgs self-coupling from the kinematic information. In Fig. 6 we show the maximum significance of a
multi-variate analysis as well as the significance from a counting experiment based on the total Higgs pair
cross section after applying some basic cuts [37]. As mentioned above, the Higgs pair production rate
increases towards vanishing self-coupling, has a minimum of roughly a quarter of the Standard Model
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Figure 5. Differential distributions assuming a modified Higgs self-coupling of λ/λSM = 0 (upper panels) and
λ/λSM = 5 (lower panels). We compare only the two Higgs pair signals and neglect backgrounds for illustration.

rate around λ = 2.3 λSM, and increases again for larger self-couplings. The arguably most interesting
case of zero self-coupling, related to a Higgs potential without the usual minimum, should be most easily
distinguishable from the Standard Model [2, 3]. The LHC will at best constrain the Higgs self-coupling
range to be

λ

λSM
= 0.4 ... 1.7 at 68% CL and for 3 ab−1 (12)

λλ
−

γγ→σ

γγ→σ

Figure 6. Signal cross section (red-dashed) and maximum significance (black-solid) for observing an anomalous
Higgs self-coupling at the LHC with an integrated luminosity of 3 ab−1. We also show the significance from a
cut-based rate measurement using the cuts suggested in Ref. [37] (black-dashed).
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and rule out

λ

λSM
= −0.2 ... 2.6 at 95% CL and for 3 ab−1 . (13)

Obviously, we can try to combine this result with additional signatures to enhance the final reach of the
LHC [3–5, 12].

From all we have discussed to here, the obvious question is how much of the pure signal interference
structure and its sensitivity to the self-coupling survives in the presence of backgrounds, and to what
degree background uncertainties can mimic an anomalous self-coupling. In Fig. 7 we compare pairs of
hypotheses for signal plus background, i.e. we test how well we can measure the Higgs self-coupling in
the presence of the backgrounds. The Standard Model signal is shown in red and the alternative model
with its shifted self-coupling λ/λSM = 0, 2, 5 is shown in orange. In our simulation we always apply mass
windows for the bb̄ and γγ pairs, which already biases our background simulations towards signal-like,
hard configurations. Nevertheless, in Fig. 7 we see that even then the QCD backgrounds still populate
low-mHH and low-pT,H regions. As already shown in Fig. 5, these are exactly the phase space regions
where the sensitivity to an anomalous self-coupling is the largest.

For the measurement of λ in the presence of backgrounds, the sensitive regions of phase space are
defined by a combination of background rejection and sensitivity to λ. While for background rejection
described in Fig. 3 the region with high mHH > 400 GeV and pT,H > 150 GeV are most useful, the
self-coupling measurement requires lower-mHH and lower-pT,H bins, as seen in Fig. 5. As a result, the
significance peak in the SM background rejection around mHH = 450 GeV moves to slightly below
400 GeV when we are interested in λ. Similarly, the background-driven significance at pT,H > 180 GeV
and the self-coupling-sensitive region pT,H < 150 GeV together give a distinct peak at 150 GeV for
λ/λSM = 0 or λ/λSM = 2. In contrast, for a very large self-coupling λ/λSM = 5 the significance
receives contributions from two distinct regions of phase space, pT,H ≈ 50 GeV and pT,H ≈ 220 GeV.
The geometric separation of the two photons and the transverse momentum of the harder b-jet follow
the same pattern. This means that the most significant phase space regions for a measurement of the
self-coupling are driven by the background rejection, shifted by the well-known regions of phase space
carrying sensitivity to the self-coupling. Large deviations from the phase space regions for background
rejection only occur when we test very large self-couplings.
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Figure 7. Differential distributions assuming a modified Higgs self-coupling of λ/λSM = 0, 2, 5 (left to right). Unlike
for the illustration in Fig. 5 we compare the two proper hypotheses including signal and backgrounds.
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IV. OUTLOOK

Multi-variate analyses often challenge our understanding of what limiting factors of important mea-
surements are. To gauge the sensitivity for example of a Higgs self-coupling measurement to different
sources of uncertainties we need to understand where the relevant phase space regions for a given mea-
surement are [23, 24].

In this paper we have studied the phase space regions which contribute to the extraction of the
Higgs pair production signal from the continuum backgrounds, as well as those regions allowing for a
measurement of the Higgs self-coupling. We focus on the HH → bb̄γγ signature [5], but expect our
results to also hold for other channels with large continuum backgrounds. The two relevant phase space
regions for the signal extraction and the coupling measurement are separate and in particular for the
signal extraction well understood in terms of systematic and theoretical errors.

The most sensitive phase space region for extracting the self-coupling is close to threshold, where
we expect the QCD background to overwhelm the Higgs pair signal. The main question will be how
well we understand those backgrounds and how much of this region can still be used for the self-coupling
measurement. Assuming SM-like self-coupling, the bulk of the coupling-sensitive region in the presence of
QCD backgrounds is only slightly softer than the relevant phase space for the extraction of the Standard
Model signal. For large self-couplings this region shifts significantly, forcing us to consider a proper
hypothesis test for a variable Higgs self-coupling.
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Figure 8. Signal cross section (red) and maximum significance (black) for observing an anomalous Higgs self-
coupling at a 100 TeV hadron collider with an integrated luminosity of 3 ab−1 and 20 ab−1. The setup corresponds
to Fig. 6 for the high-luminosity LHC.

Appendix A: Future 100 TeV Collider

We can use exactly the same setup as in the main body of the paper to estimate the impact of the
signal kinematics at a future 100 TeV collider with an integrated luminosity of 20 ab−1. Several studies,
largely based on a rate measurement with some background rejection cuts, have shown that Higgs pair
production can be probed at such a machine with high precision [38, 39].

In Fig. 8 we show the maximum significance for distinguishing a modified Higgs self-coupling from
the Standard Model at a future 100 TeV collider. The setup is exactly the same as for our LHC analysis
leading to the results shown in Fig. 9. This includes our detector smearing as well as the trigger cuts.
The signal cross section is now taken from MadMax without an external normalization. Relying on a
multi-variate analysis we can at best constrain the Higgs self-coupling range to be

λ

λSM
= 0.92 ... 1.07 at 68% CL and for 20 ab−1 (A1)

and rule out

λ

λSM
= 0.89 ... 1.11 at 95% CL and for 20 ab−1 . (A2)

In Fig. 9 we also show the significance distribution over phase space. It is essentially identical to the
14 TeV case, because the relevant energy scale is given by the Standard Model Higgs mass in the two
propagators. As for the LHC this implies that systematic and theoretical uncertainties should not pose
a major issue for this precision measurement, which is driven by a very large number of signal events.

These 100 TeV results quoted above appear, at first, to disagree with some results shown in the
literature. The main reason for this are diverging assumptions about tagging efficiencies. Since the
Higgs decay products are mostly concentrated in the central detector, we do not expect the forward
coverage of 100 TeV collider to significantly affect our results. However, we find that assumptions about
b-tagging are crucial. The signal’s pT,b-distribution peaks around mH/2 and therefore in a regime with
suppressed tagging efficiency, about 45% according to the parameterization in App. B. An improved
b-tagging efficiency at low transverse momentum will significantly enhance the signal rate and therefore
improve the sensitivity for the triple-Higgs coupling. This explains the better reach quoted in in Ref. [39],
which assumes a constant 75% tagging efficiency.
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Figure 9. Differential distributions assuming a modified Higgs self-coupling of λ/λSM = 0.8, 1.2 in the presence of
backgrounds. The setup corresponds to Fig. 7 for the high-luminosity LHC.

Appendix B: Tagging efficiencies

Because the tagging and identification efficiencies have a crucial effect on our results, we give the
necessary details in this Appendix. The b-tagging efficiency and the corresponding mistag rate depends
on the parton forming the tagged jet, the barrel respectively end-cap position in the detector, and the
transverse momentum. The b-related tagging efficiencies we use in our analysis are

b-jets εb =

{
0.7 tanh (0.01317 pT /GeV− 0.062) |η| < 1.2
0.6 tanh (0.01050 pT /GeV− 0.101) 1.2 < |η| < 2.5

c-jets εc =

{
0.1873 tanh (0.01830 pT /GeV− 0.2196) |η| < 1.2
0.1898 tanh (0.00997 pT /GeV− 0.1430) 1.2 < |η| < 2.5

light-flavor jets εj = 0.001 . (B1)

For the photons we follow Ref. [34] (Fig. 9.22), which suggests a photon identification efficiency ε′γ = 0.85
and a pT -dependent mistag rate between ε′j = 0.002 and 0.0001 for jets between 50 GeV and 100 GeV:

photon ε′γ = 0.85

light-flavor jets ε′j =

{
0.01133 exp (−0.038 pT /GeV) pT < 100 GeV
0.00025 pT > 100 GeV.

(B2)
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