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A statistical model is formulated to compute exotic rotational correlations that arise as inertial
frames and causal structure emerge on large scales from entangled Planck scale quantum systems.
Noncommutative quantum dynamics are represented by random transverse displacements that re-
spect causal symmetry. Entanglement is represented by covariance of these displacements in Planck
scale intervals defined by future null cones of events on an observer’s world line. Light that prop-
agates in a nonradial direction inherits a projected component of the exotic rotational correlation
that accumulates as a random walk in phase. A calculation of the projection and accumulation leads
to exact predictions for statistical properties of exotic Planck scale correlations in an interferometer
of any configuration. The cross-covariance for two nearly co-located interferometers is shown to
depart only slightly from the autocovariance. Specific examples are computed for configurations
that approximate realistic experiments, and show that the model can be rigorously tested.

I. INTRODUCTION

Quantum principles are widely accepted to govern all physical systems. However, there is no generally accepted
theory of quantum geometry, the dynamical quantum system whose classical limit is general relativity[1–3]. Moreover,
in spite of many decades of theoretical progress, no experimental technique has emerged to study exotic quantum
properties of geometry itself, as distinguished from the quantum behavior of fields that inhabit classical space-time.

Quantum geometry, like any other quantum system, must produce correlations among observable quantities. The
natural scale for those correlations is the Planck length lP ≡

√
~G/c3 = 1.616×10−35 meters, where the gravitational

self energy of a single quantum approaches its total energy. It is widely thought that they are not detectable,
since the standard theory of quantum fields propagating in a classical background space-time[4–6] (as well as its UV
completions, such as string theory[7–9]) predicts that exotic correlations from Planck length quantum gravity are
negligible on laboratory scales[10]. However, this conclusion could be an artifact of approximations used to quantize
fields on a classical background.

Another school of thought[1–3] holds that there is no fixed background. In such relational or emergent theories,
all relationships in space and time are defined from within the geometrical quantum system. A quantum system
composed of many Planck-scale elements could display much larger exotic correlations on laboratory scales than one
constrained to behave as quantum field states a classical background. The system can approach a classical limit more
gradually on large scales, like a Planck scale random walk, as a statistical behavior with covariances determined by
the symmetries of the system. Indeed, estimates of quantum deviations from a classical system by extrapolation of
standard gravity and quantum mechanics[10–16] show that they may be detectable.

Although there is an extensive literature on such relational theories, there is no generally accepted framework for
how the subunits weave themselves into a whole spacetime. Large scale exotic correlation depends on how Planck
scale subsystems relate to each other on large scales— that is, exactly how they are woven together. The spatial
structure of their quantum entanglement determines the statistical covariance among observable operators.

This paper quantitatively analyzes observable effects in a specific model of the emergence of spatial direction in a flat
space-time from a Planck scale quantum system[16]. The model accounts for the gradual emergence, in large systems,
of a classical inertial nonrotating directional frame, in a system that has a complete indeterminacy of direction at the
Planck scale. It is not itself a quantum theory, but a statistical model for defining rotation based on the propagation
of light in an extended region of space-time. A bottom-up construction integrates the statistical effect of Planck-scale
quantum elements, whose large-scale covariance is determined by classical light cones extending from every event.
Propagating light inherits exotic correlations from the Planck scale that can be interpreted as rotational fluctuations
in the inertial frame. In an interferometer, the layout of light paths through space uniquely determines the response to
exotic correlations. Our technique predicts the full functional form of the auto- and cross- correlation of interferometer
signals with only one free parameter, the fundamental coherence scale of the exotic correlation. The formulation here
shows that simple principles based on causal structure fully determine the functional form for the autocorrelation
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and cross correlation of any layout of interferometers, without assumptions about the specific dynamics of the Planck
scale quantum subsystems. It thus forms a complete and precisely formulated phenomenological framework for a
comprehensive experimental program to explore one form of relational emergent geometry. This analysis will be
useful to design experiments and to interpret experimental results.

A. Experimental Probes and the Holometer Program

Experimental results already significantly constrain some forms of exotic Planck scale correlations. Observations
of distant astronomical objects (e.g., quasars, AGN, gamma-ray bursts) now constrain some exotic correlations with
longitudinal, or line-of-sight, symmetry to a coherence scale close to or below the Planck length [17–23]. Under such
an effect, light emitted by a distant source accumulates random phase deviations while propagating between source
and observer. The phase decoherence could be detectable as a distance-dependent degradation of the intensity and/or
resolution of the source image, or as a dispersion in frequency space.

Exotic correlations with symmetry transverse to a null separation may have no dispersive effect on cosmic propa-
gation, but still be detectable via laser inteferometry[10–16]. Experimental results are now starting to significantly
constrain models of this kind that are not specifically constrained to obey rotational symmetry. Fluctuations in
strain are constrained to a coherence scale below the Planck length by gravitational wave experiments[10]. Exotic
correlations with shear symmetry— those that can be visualized as a random walk of the interferometer beamsplitter,
or of the position of a beam transverse to its direction of propagation— have not in general been previously tested
to Planck-scale sensitivity, as existing gravitational wave interferometers are optimized for lower-frequency detection,
corresponding to time scales much longer than the light-crossing time of the apparatus; high-fidelity constraints on
time and position correlations in an extended volume of space-time require measurements sampled faster than a light-
crossing time in more than one spatial direction. Tighter general constraints on shear models are now being achieved
by the Fermilab Holometer [24], the first experiment specifically designed to measure exotic positional relationships
in space-time at Planck sensitivity over a broad bandwidth. Prospects are good to rule out conclusively all forms of
exotic shear[10, 15] that agree with the Planck normalization predicted from gravitation.

The exotic Planck scale correlations with rotational symmetry considered here— purely directional twists on an
observer’s light cones— have not yet been tested experimentally at Planck sensitivity. The projections here show
that a reconfiguration of the Holometer to a different light path that includes transverse segments should have the
sensitivity to measure the effect or rule out the basic hypothesis of entanglement that underlies our model.

II. EXOTIC ROTATIONAL CORRELATIONS

A. Motivation

A classical world line is a continuous system, with an infinite amount of information, but time and space in the
real world are quantized at some length `P . Thus, the information content or bandwidth of a physical world line is
limited to that of a discrete 1D time series with steps of some duration `P /c, regardless of detailed dynamics. That
limit applies as well to the rotational relationship of its local inertial frame with rest of the universe.

In quantum gravity, it is not clear how stable directions in space arise[16]. The Planck information limit constrains
the directional relationships of an observer with the rest of the system, that is, any other world lines. A quantum foam
at the Planck scale is associated with virtual Kerr black holes and frame dragging, and hence also with indeterminacy
and fluctuations of spin, in particular, with Planck frequency fluctuations in direction as well as Planck length
translations and displacements in time and space. The system is made of many quantum elements, each of which
resembles an atomic spin, and has only about a single qubit of information about all of its spatiotemporal relationships
with the rest of the universe. Thus, local inertial frames do not exist at the Planck scale, even in a flat space-time.
We wish to show how stable directions in space can emerge statistically from many such elements in a large relational
system, with no built-in, large-scale correlations, where each Planck scale element only passes information to elements
that are adjacent to it in both space and time.

The model here introduces a specific mechanism— entanglement on light cones— that explains how a nearly
classical, stable direction can emerge over a long time interval, by entanglement and averaging over many elements.
The structure of the averaging is determined by the emergent classical causal structure defined by light cones from the
events on an observer’s world line. The directional resolution is still limited because of the limited information, so the
inertial frame fluctuates by a tiny amount on large scales from the absolute classical frame. The scale of these exotic
rotational correlations can be estimated from several different extrapolations of standard quantum mechanics and
gravity[16], such as wave mechanics, spin algebra, field theory, diffusion, or statistical random walks, which describe
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the projection of a 1D time series onto two dimensions of direction. The estimated effect can be expressed as a
variance in transverse position and direction at distance R:

〈X2
⊥〉R = `PR , (1)

〈∆θ2〉R = `P /R , (2)

with a normalization approximately equal to the standard Planck length, `P ≈ lP . The emergent system displays
exotic rotations— fluctuations or “twists” in the inertial frame— that correspond to displacements of this magnitude
on a timescale R/c. These fluctuations could have observable effects on propagating light.

The quantitative model here analyzes the mathematical elements of this picture much more sharply than the physical
scenario for emergence of inertial frames sketched in ref.[16]. We present an operational definition of rotation— in
effect, a concrete covariant, operational model of quantum measurement for an emergent geometry. This model
captures details of the unique constraints imposed by preserving exact causal structure at Planck resolution, and
allows us to make exact predictions for exotic statistical correlations in experiments with only one parameter, the
Planck correlation scale `P .

B. Assumptions

We start from the idea that an entire physical system, including space and time, obeys quantum mechanics. Space
and time are relational, that is, all spatial relationships are derived within a quantum system made of elements or
subsystems at the Planck scale. The relative positions of what emerge as classical events are associated with how
the Planck scale elements entangle to produce a whole system. Quantum decoherence leads to random Planck length
displacements between elements, modeled as classical random variables. Entanglement of the elements produces
correlations, expressed in our model as a covariance among the random variables. The covariance is confined to
within a Planck length of future light cones defined by each event on the world line of an observer. This structure is
used to derive the exotic large scale correlations of observables. As light propagates through this system it entangles
with the geometrical state and inherits a projection of the exotic Planck scale phase correlation. The difference from
classical behavior manifests as an exotic “spooky” correlation of the phase of the light, not present in standard theory.
It can affect the signal in an instrument that measures a difference in phase from two different paths, such as an
interferometer. The statistical result depends only on the shape of the light path, although the actual noise signal
depends on the world line where the phases are converted into a signal— the “collapse” of the wave function of the
space-time in a particular situation.

The model has no dynamics, but is based only on statistics and classical geometry. This generic model of correlations
shows how Planck scale quantum elements can entangle to create emergent classical inertial frames, in a way that is
highly constrained by known symmetries of causal structure. The correlations quantitatively describe the relationship
between local and global inertial frames— the quantum deviations from the classical Machian agreement between
local and global measures of rotation. They account for how chaotic and indeterminate directions at the Planck scale
can emerge to approximate a determinate classical space-time on large scales.

C. Covariance of Random Displacement on Future Light Cones of an Observer

Light cones (or null cones) are the covariant objects that define causal structure; they define the sharp classical
boudaries between past, present and future, and between timelike and spacelike separation of events. We base our
model on the principle that classical causal structure is respected on all scales larger than the Planck length. In the
frame of an observer O, we define a “light cone time” coordinate variable,

TO = tO −
|xO|
c
. (3)

A surface of constant T in 3+1D represents a 2+1D light cone emanating from an event on an observer’s world line,
a 3-surface defined in conventional coordinates by t = |x|/c. Although we will choose to calculate in the rest frame of
an observer, the causal relationships defined by the actual light cones are independent of the choice of frame and have
a Lorentz invariant physical meaning. In the following, we drop subscripts until they are needed later for comparing
measurements from more than one observer.
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To connect with physical observables we develop a model of the geometrical character of random variables, which
will allow us to compute how the random displacements a↵ect physical quantities. The exotic departure from the
classical system is described as a random variable with variance `2P :

�X?(T) ⇠ N
�
0, `2P

�
. (4)

The transverse displacement variable �X? represents an exotic displacement relative to the classical inertial frame,
normal to the direction to the observer. It has zero mean so the large scale average is classical. In our model it
is interpreted physically as a displacement of phase for transversely propagating light, but should be regarded as a
modification of classical position of space itself, and everything in it, relative to the observer. The coherence scale
and randomness model the e↵ect of the finite information content of the indeterminate quantum elements that make
up the relational space-time. Since the physical e↵ects are purely transverse, the model exactly preserves causal
structure.

In a discrete description of this system, this quantity corresponds to the exotic incremental displacement at each
discrete step— a random step of length `P each timestep tP . All of the predictions below have only one parameter,
`P , which describes both the coherence length of the quantum elements and the magnitude of random displacements.
A non-zero value of `P results in a finite, countable information content, and introduces deviations from classical
continuous space-time. Based on extrapolation of gravity and quantum mechanics, its value should be approximately
the Planck length lP .

We now introduce the new, central hypothesis of this paper, the part of the model that encapsulates the relationship
of Planck scale quantum elements to each other and to an observer on large scales. That hypothesis can be written
as a covariance of an exotic displacement on future light cones:

cov
⇣
�X?(T0), �X?(T00)

⌘
=

(
`2P , |T0 � T00| < 1

2 tP
0 , otherwise

(5)

For calculational convenience and clarity, in place of a discrete model of time steps, or a continuous Gaussian roll-o↵
(say), the model uses sharply delineated bins of constant covariance in T; none of the results depend on this choice.

Physically, this hypothesis is motivated by the emergent scenario summarized above. The physical e↵ects of each
quantum element are entirely local, confined to adjacent quantum elements— those within one Planck length or time.
Thus, they are consistent with a theory of quantum gravity in which the space-time system as a whole emerges entirely
from the relationships among these parts, without any fixed background reference space. Furthermore, events that are
separated by light cone times smaller than the coherence length have correlated transverse displacements. The choice
of an observer’s world line determines its entanglement with Planck scale elements everywhere, in a Lorentz invariant
way. The time sequence of Planck scale quantum states on an observer’s world line broadcast to the future in every
direction at a finite information density, the Planck bandwidth. These local correlations then lead statistically to a
stable, organized global structure.

Although we call the displacements “quantum twists”, note that the variable represents a constant transverse
displacement, and not a constant angle, everywhere on the light cone. The correlations which result from entanglement
appear spooky, since they appear nonlocally across spacelike hypersurfaces, but they are still local in the sense that
they are determined by sub-Planck light cone time separation between events. Causal relationships determine the
collapse of the quantum state into classical random variables.

Heuristically, although directions at the Planck length are highly uncertain (and fluctuate by a radian per Planck
time), from the macroscopic perspective, nearly classical directions emerge in a large scale average. The direction
to an event at distance R can be encoded by ⇡ (R/`P ) qubits. Every Planck step along an observer’s world line
represents a new binary random choice of “which direction to look”. Information from each event on the world line
prepares the state and entangles the projection of the displacement operators at all events on the future light cone.
The random variable is a classical shorthand for quantum decoherence, and the covariance is a classical shortcut to
describe quantum entanglement among the individual Planck scale elements: events on a light cone must “agree on”
the projection of the corresponding spin state onto any given axis. In the plane of an interferometer, every point on
a light cone steps clockwise or counterclockwise by one Planck length from the previous one. Apparently non-local
spatial correlations arise from causal entanglement of the Planck scale degrees of freedom.

It will prove further convenient to define a rate of transverse position fluctuation, or an e↵ective transverse “velocity”
or jitter,

dX?(T)

dT
⌘ �X?(T)

tP
(6)

This quantity is not a physical velocity or momentum, but represents a discrete “motion” of the Planck scale quan-
tum elements whose symmetry that gives rise to emergent causality. It is explicitly dependent only on T (and not

FIG. 1. A macroscopic space-time can be built out of local relationships among quantum elements, shown here schematically at
the Planck scale. Unlike a classical Einstein clock with light bouncing between two mirrors, positions in a relational geometry
do not commute with each other. A projection in one direction creates a superposition of position in the transverse directions,
giving rise to a random Planck scale displacement from quantum noise when measurements in those directions collapse the
wave function. Translation along a null direction in time creates an eigenstate in the radial spatial direction from any observer,
which leads to classical causal structure. The transverse displacement collapses into the same state in all directions from an
observer, for light cone time separations smaller than a Planck length. Those displacements also affect the phase of transversely-
propagating light, as shown schematically here by red arrows for two ticks of a Planck scale light clock.

To connect with physical observables we develop a model of the geometrical character of random variables, which
will allow us to compute how the random displacements affect physical quantities. The exotic departure from the
classical system is described as a random variable with variance `2P :

δX⊥(T) ∼ N
(
0, `2P

)
. (4)

The transverse displacement variable δX⊥ represents an exotic displacement relative to the classical inertial frame,
normal to the direction to the observer. It has zero mean so the large scale average is classical. In our model it
is interpreted physically as a displacement of phase for transversely propagating light, but should be regarded as
a modification of classical position of space itself, and everything in it, relative to the observer (see Fig. 1). The
coherence scale and randomness model the effect of the finite information content of the indeterminate quantum
elements that make up the relational space-time. Since the physical effects are purely transverse, the model exactly
preserves causal structure, an assumed exact symmetry of quantum gravity.

In a discrete description with the same information content, this quantity corresponds to an exotic incremental
displacement at each discrete step— a random step of length `P each timestep tP , due the noncommutativity of
discrete quantum geometrical operators. All of the predictions below have only one parameter, `P , which, to be
consistent with a discrete description and exact causal symmetry, denotes both the coherence length of the quantum
elements and the magnitude of random displacements. A non-zero value of `P results in a finite, countable information
content, and introduces deviations from classical continuous space-time. Based on extrapolation of gravity and
quantum mechanics[10–16], its value should be approximately the Planck length lP .

We now introduce the new, central hypothesis of this paper, the part of the model that encapsulates the relationship
of Planck scale quantum elements to each other and to an observer on large scales (see Fig. 2). That hypothesis can
be written as a covariance of an exotic displacement on future light cones:

cov
(
δX⊥(T′), δX⊥(T′′)

)
=

{
`2P , |T′ − T′′| < 1

2 tP
0 , otherwise

(5)

For calculational convenience and clarity, in place of a discrete model of time steps, or a continuous Gaussian roll-off
(say), the model uses sharply delineated bins of constant covariance in T; none of the results depend on this choice.

Physically, this hypothesis is motivated by the emergent scenario summarized above. The physical effects of each
quantum element are entirely local, confined to adjacent quantum elements— those within one Planck length or time.
Thus, they are consistent with a theory of quantum gravity in which the space-time system as a whole emerges entirely
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that can be combined into a quantity that scales like ✏ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i (⌧) and x�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x+
i (⌧) and x�

i (⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i (⌧)
and x�

i (⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j /@⌧ .

It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = ✏ijk[x+

k (⌧)dx+
j /d⌧ ] (27)

dA�
i /d⌧ = ✏ijk[x�

k (⌧)dx�
j /d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i /d⌧ = ✏ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

world line of 
observer

Constant transverse  
displacement on 
each light cone 

element of light path: 
transverse 

component inherits 
exotic displacement

Random 
displacement on 
each light cone  
~1 Planck time 
apart

Environmental 
Information
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theory, di↵usion, or statistical random walks, which describe the projection of a 1D time series onto two dimensions
of direction. The estimated e↵ect can be expressed as a variance in transverse position and direction at distance R:

hX2
?iR = `P R , (1)

h�✓2iR = `P /R , (2)

with a normalization approximately equal to the standard Planck length, `P ⇡ lP . The emergent system displays
exotic rotations— fluctuations or “twists” in the inertial frame— that correspond to displacements of this magnitude
on a timescale R/c. These fluctuations could have observable e↵ects on propagating light.

The quantitative model here defines the physical elements of this picture much more sharply than the scenario
for emergence of inertial frames sketched in ref.[17]. We present an operational definition of rotation— in e↵ect, a
concrete operational model of quantum measurement for an emergent geometry. This model captures details of the
unique constraints imposed by preserving exact causal structure at Planck resolution, and allows us to make exact
predictions for exotic statistical correlations in experiments with only one parameter, the Planck correlation scale `P .

B. Assumptions

We start from the idea that an entire physical system, including space and time, obeys quantum mechanics. Space
and time are relational, that is, all spatial relationships are derived within a quantum system made of elements or
subsystems at the Planck scale. The relative positions of what emerge as classical events are associated with how
the Planck scale elements entangle to produce a whole system. Quantum decoherence leads to random Planck length
displacements between elements, modeled as classical random variables. Entanglement of the elements produces
correlations, expressed in our model as a covariance among the random variables. The covariance is confined to
within a Planck length of future light cones defined by each event on the world line of an observer. This structure is
used to derive the exotic large scale correlations of observables. As light propagates through this system it entangles
with the geometrical state and inherits a projection of the exotic Planck scale phase correlation. The di↵erence from
classical behavior manifests as an exotic “spooky” correlation of the phase of the light, not present in standard theory.
It can a↵ect the signal in an instrument that measures a di↵erence in phase from two di↵erent paths, such as an
interferometer. The statistical result depends only on the shape of the light path, although the actual noise signal
depends on the world line where the phases are converted into a signal— the “collapse” of the wave function of the
space-time in a particular situation.

The model has no dynamics, but is based only on classical statistics and geometry. This generic model of correlations
shows how Planck scale quantum elements can entangle to create emergent classical inertial frames, in a way that is
highly constrained by known symmetries of causal structure. The correlations quantitatively describe the relationship
between local and global inertial frames in quantum gravity— the quantum deviations from the classical Machian
agreement between local and global measures of rotation. They account for how chaotic and indeterminate directions
at the Planck scale can emerge to approximate a determinate classical space-time on large scales.

C. Covariance of Random Displacement on Future Light Cones of an Observer

Light cones (or null cones) are the covariant objects that define causal structure; they define the sharp classical
boudaries between past, present and future, and between timelike and spacelike separation of events. We base our
model on the principle that classical causal structure is respected on all scales larger than the Planck length. In the
frame of an observer O, we define a “light cone time” coordinate variable,

TO = tO � |xO|
c

. (3)

A surface of constant T in 3+1D represents a 2+1D light cone emanating from an event on an observer’s world line,
a 3-surface defined in conventional coordinates by t = |x|/c. Although we will choose to calculate in the rest frame of
an observer, the causal relationships defined by the actual light cones are independent of the choice of frame and have
a Lorentz invariant physical meaning. In the following, we drop subscripts until they are needed later for comparing
measurements from more than one observer.

To connect with physical observables we develop a model of the geometrical character of random variables, which
will allow us to compute how the random displacements a↵ect physical quantities. The exotic departure from the
classical system is described as a random variable with variance `2P :

�X?(T) ⇠ N
�
0, `2P

�
. (4)
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that can be combined into a quantity that scales like �ijkxk`P , in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i (⌧) and x�
i (⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,

although below we will assume a planar apparatus for simplicity. The functions x+
i (⌧) and x�

i (⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation �(⌧) depends only on the classical path, defined by x+

i (⌧)
and x�

i (⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is �x±

j /�⌧ .

It will be convenient to express a general form for the functional dependence of �(⌧) on the classical path in terms
of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define Ai(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i /d⌧ = �ijk[x+

k (⌧)dx+
j /d⌧ ] (27)

dA�
i /d⌧ = �ijk[x�

k (⌧)dx�
j /d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA�
i /d⌧ = �ijk

1

2
[dx+

j /d⌧ + dx�
j /d⌧ ][x+

k (⌧) � x�
k (⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i (⌧)/d⌧ , x±
k (⌧) and dx±

j /d⌧ combine
into a function of ⌧ that depends on the exotic correlation �ijkxk`P on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for Ai. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |xi(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(�(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `P R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(�(⌧) + constant) = `P dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

world line of 
observer

Constant transverse  
displacement on 
each light cone 

element of light path: 
transverse 

component inherits 
exotic displacement

Random 
displacement on 
each light cone  
~1 Planck time 
apart

Environmental 
Information

FIG. 2. Classical picture of the causal structure that fixes covariances in exotic space-time relationships. Space and time are
shown in the observer’s frame, with one spatial dimension suppressed. A series of light cones, surfaces of constant light cone
time T, is shown emerging from an observer’s world line. These determine the space-time structure of correlations produced
by Planck scale entanglement. Within a Planck length of each surface of constant T, a transverse spatial displacement or
“quantum twist” �X? is causally inherited by entanglement with a quantum state prepared on the observer’s world line.
Propagating light inherits the projection of the local transverse displacement onto its path x(⌧). The total e↵ect on the light
phase is an accumulation of projected components of random displacements from crossing a series of light cones. A large
transverse propagation in the observer’s accumulates like a random walk, to a total displacement on spacelike hypersurfaces
much larger than the Planck length, although the variance in angle becomes smaller so that directions resemble those of a
classical nonrotating inertial frame.

Although we call the displacements “quantum twists”, note that the variable represents a constant transverse
displacement, and not a constant angle, everywhere on the light cone. The correlations which result from entanglement
appear spooky, since they appear nonlocally across spacelike hypersurfaces, but they are still local in the sense that
they are determined by sub-Planck light cone time separation between events. Causal relationships determine the
collapse of the quantum state into classical random variables.

Heuristically, although directions at the Planck length are highly uncertain (and fluctuate by a radian per Planck
time), from the macroscopic perspective, nearly classical directions emerge in a large scale average. The direction
to an event at distance R can be encoded by ⇡ (R/`P ) qubits. Every Planck step along an observer’s world line
represents a new binary random choice of “which direction to look”. Information from each event on the world line
prepares the state and entangles the projection of the displacement operators at all events on the future light cone.
The random variable is a classical shorthand for quantum decoherence, and the covariance is a classical shortcut to
describe quantum entanglement among the individual Planck scale elements: events on a light cone must “agree on”
the projection of the corresponding spin state onto any given axis. In the plane of an interferometer, every point on
a light cone steps clockwise or counterclockwise by one Planck length from the previous one. Apparently non-local
spatial correlations arise from causal entanglement of the Planck scale degrees of freedom.

It will prove further convenient to define a rate of transverse position fluctuation, or an e↵ective transverse “velocity”
or jitter (which is certainly not a physical velocity), as

dX?(T)

dT
⌘ �X?(T)

tP
(6)

FIG. 2. Classical picture of the causal structure of large scale covariances in exotic space-time positional relationships. Space
and time are shown in the observer’s frame, with one spatial dimension suppressed. A series of light cones, surfaces of constant
light cone time T, is shown emerging from an observer’s world line. These determine the space-time structure of correlations
produced by Planck scale entanglement. Within a Planck length of each surface of constant T, the same random transverse
spatial displacement or “quantum twist” δX⊥(T) of about a Planck length— a consequence of noncommutative geometry at
the Planck scale— is causally inherited by entanglement with a quantum state prepared on the observer’s world line. Thus,
entanglement is causally local: each event on the observer’s world line determines the projection of all future events that lie
within a Planck length of null separation. Propagating light inherits the projection of the local transverse displacement onto
its path x(τ). The total effect on the light phase is an accumulation of projected components of random displacements from
crossing a series of light cones. Transverse displacements accumulate like a random walk and lead to a mean square displacement
much larger than the Planck length.

from the relationships among these parts, without any fixed background reference space. Furthermore, events that are
separated by light cone times smaller than the coherence length have correlated transverse displacements. The choice
of an observer’s world line determines its entanglement with Planck scale elements everywhere, in a Lorentz invariant
way. The time sequence of Planck scale quantum states on an observer’s world line broadcast to the future in every
direction at a finite information density, the Planck bandwidth. These local correlations then lead statistically to a
stable, organized global structure.

Although we call the displacements “quantum twists,” note that the variable represents a constant transverse
displacement, and not a constant angle, everywhere on the light cone. The correlations which result from entanglement
appear spooky, since they appear nonlocally across spacelike hypersurfaces, but they are still local in the sense that
they are determined by sub-Planck light cone time separation between events. Causal relationships determine the
collapse of the quantum state into classical random observables.

Heuristically, although directions at the Planck length are highly uncertain (and fluctuate by a radian per Planck
time), from the macroscopic perspective, nearly classical directions emerge in a large scale average. The direction
to an event at distance R can be encoded by ≈ (R/`P ) qubits. Directions to distant objects are not independent,
but are entangled with each other. Every Planck step along an observer’s world line represents a new binary random
choice of “which direction to look.” Information from each event on the world line prepares the state and entangles
the projection of the displacement operators at all events on the future light cone. The random variable is a classical
shorthand for quantum decoherence, and the covariance is a classical shortcut to describe quantum entanglement
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among the individual Planck scale elements: events on a light cone must “agree on” the projection of the corresponding
spin state onto any given axis. In the plane of an interferometer, every point on a light cone steps clockwise or
counterclockwise by one Planck length from the previous one. Apparently non-local spatial correlations arise from
causal entanglement of the Planck scale degrees of freedom.

It will prove further convenient to define a rate of transverse position fluctuation, or an effective transverse “velocity”
or jitter,

dX⊥(T)

dT
≡ δX⊥(T)

tP
(6)

This quantity is not a physical velocity or momentum, but represents a discrete “motion” of the Planck scale quantum
elements whose symmetry gives rise to emergent causality. It is explicitly dependent only on T (and not individually
on t or x) due to the coherence of the fluctuations on light cones. This variable is distributed as

dX⊥(T)

dT
∼ N

(
0,

(
`P
tP

)2
)

(7)

with the covariance structure

cov

(
dX⊥
dT

(T′),
dX⊥
dT

(T′′)
)

=





(
`P
tP

)2

, |T′′ − T′| < 1
2 tP

0 , otherwise

(8)

The characteristic rate of a transverse position random walk is thus one coherence length per coherence time, or c.

III. EXOTIC CORRELATIONS IN INTERFEROMETER SIGNALS

We now estimate the effect of exotic displacements on measurable phase shifts in beams of freely-propagating light.
These phase shifts are measured by an interferometer consisting of a beamsplitter and two or more reflecting mirrors.
Light from a coherent source is split into two beams which propagate through an arrangement of mirrors and back
to the beamsplitter, where they recombine. Any difference in the distance propagated by the two beams introduces
a corresponding difference in the accumulated optical phase. Interference effects from this phase difference modulate
the power of the recombined beam, which is read out via a photodetector at the output, or antisymmetric port of
the instrument. In this section, the general response of an interferometer to exotic rotational displacements will
be derived. In spite of the simple and symmetric form of the fundamental exotic covariance, the projection onto
observables is surprisingly subtle. These results will be used below to compute the instrument response of specific
configurations of mirrors.

A. Effect of Exotic Displacements on the Signal

We model the effect of exotic displacements on an idealized interferometer. Propagating light encounters a beam-
splitter and divides into two separate paths, 1 and 2, of equal expected length. The power at the antisymmetric port
is exquisitely sensitive to the difference in path lengths[25]. A time series of measurements is represented by

S(t) ≡ S2(t)− S1(t). (9)

Here S1 and S2 represent the optical path lengths (OPL) of the two arms and S represents the optical path difference
(OPD), in the inertial frame of the beamsplitter, and t denotes laboratory time.

We now show how the exotic fluctuations manifest as random deviations from the classical OPL. The two classical
optical paths will be parameterized by propagation time τ ∈ [0, T ], where T is the full duration of the optical phase
measurement, twice the length of each path. At propagation time τ , the classical position of a tracer photon traversing
path i will be denoted by xi(τ). These tracer photons do not represent actual quanta of localized energy, but rather
null propagation in the inertial frame. At every point along optical path x1,2(τ), there exists a unit vector tangent
to the path, ẋ1,2(τ)/c ≡ dx1,2(τ)/cdτ . This unit vector represents the instantaneous direction of light travel through
interferometer.

The light origin, x1(0) = x2(0), provides a common reference for the optical phase measurement made by either
path. It can thus be regarded, under a relational theory, as a fixed reference point against which all other points
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FIG. 3. How quantum twists of the inertial frame project onto an interferometer signal. Laboratory time is plotted against
radial position in the observer frame, with the two transverse spatial dimensions suppressed, so each point represents a 2-sphere
at a single time. A sequence of future light cones (constant T surfaces) is shown for the same observer. Light paths are shown for
various interferometer configurations. As a path crosses each light cone, a projection of transverse displacement is added, that
accumulates as a random walk and eventually appears as a detectable difference in phase. Note that although the outbound and
inbound paths are spatially symmetric in laboratory time, their contribution to exotic correlation is not symmetric in measured
signal lag, because the opposite sign for the radial part of their propagation changes the rate at which they cross outbound
light cones and thereby accumulate variance. On the right, the red path is shown at two different beamsplitter reflection times,
along with the corresponding range of integration for time lag τ0.

in space appear to fluctuate. For each path, the optical distance propagated by the tracer photon over a classical
light-crossing time is given by the path integral

S1,2 (t+ T ) =

ˆ t+T

t

[
ẋ1,2 (t′ − t) + Ẋ⊥

(
T(t′, x1,2(t′ − t))

)
θ̂
]
· ẋ1,2(t′ − t)

c
dt′ , (10)
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where

Ẋ⊥(T(t, x)) ≡ d

dt
X⊥(T(t, x)) =

dX⊥(T)

dT
dT(t, x)

dt
(11)

is the rate of transverse exotic displacement per propagation time. These displacements occur in the direction
transverse to radial separation from the observer’s world line, a unit vector in the interferometer plane we denote by
θ̂. The vector sum of this rate and the classical velocity corresponds to the “effective” velocity of the tracer photon
relative to the classical spatial coordinates. The instantaneous effect on the OPL is obtained by taking the component
of this effective velocity in the direction of light travel.

Under the variable substitution τ ≡ t′ − t, eq. 10 becomes

S1,2 (t+ T ) =

ˆ T

0

[
ẋ1,2 (τ) + Ẋ⊥

(
T(t+ τ, x1,2(τ))

)
θ̂
]
· ẋ1,2(τ)

c
dτ (12)

=

ˆ T

0

[
cT̂1,2 (τ) +

dX⊥(T)

dT
dT
dτ

(τ, x1,2(τ)) θ̂

]
· ẋ1,2(τ)

c
dτ (13)

= cT +

ˆ T

0

dX⊥(T)

dT
P1,2(τ) dτ (14)

Here we use the fact that dT/dt′ = dT/dτ and independent of t, referring to the definition in eq. 3, and define

P1,2(τ) ≡
[
dT
dτ

(τ, x1,2(τ))

] [
θ̂ · ẋ1,2(τ)

c

]
(15)

=

(
1− 1

c

d|x1,2|
dτ

)(
θ̂ · 1

c

dx1,2

dτ

)
(16)

=
(

1− vr
c

)
1,2

(vθ
c

)
1,2

(17)

as a projection factor that captures all the dependence on the light path of a specific interferometer configuration.
The meaning of this factor becomes conceptually clear when we write x = (r, θ, z) in polar coordinates, and denote

ẋ = (ṙ, rθ̇, ż) = (vr, vθ, vz). The first half, dT/dτ , is the rate of spacetime propagation relative to outgoing radial
null surfaces (r/ct = 1), or equivalently, the number of independently fluctuating light cones that the light path slices
through per propagation time (see Figure 3). Its value is 0 when the propagation is purely radial in the outgoing
direction, 1 when it is purely angular, and 2 when it is purely radial in the incoming direction. This part is a projection

in the 1+1D space of (t, r). On the other hand, the second half, θ̂ · ẋ/c, is a projection in the 2D space of (r, θ). It
is simply the component of the exotic displacement that is spatially tangential to the light path.

In this form, the spatial fluctuations accumulated over a measurement duration can be clearly seen to manifest as
a deviation from the classical OPL. The difference of optical distances along two paths then yields the exotic effect
on the OPD,

S (t+ T ) =

ˆ T

0

dX⊥
dT

(
T(t+ τ, x2(τ))

)
P2(τ) dτ −

ˆ T

0

dX⊥
dT

(
T(t+ τ, x1(τ))

)
P1(τ) dτ (18)

The geometrical projection factor P1,2(τ) determines the statistical response of an instrument of arbitrary geometry.

B. Single-Interferometer Statistics

Eq. 18 represents OPD measurements made over an interval of time as a set of random variables indexed by
measurement time t. It is a straightforward, if somewhat complicated exercise to calculate the general statistical
moments of this measurement set in the presence of exotic spatial fluctuations.

The expected value of an OPD measurement is

〈
S(t)

〉
=

〈
1, 2∑

a

(−1)a
ˆ T

0

dX⊥
dT

(
T(τ + (t− T ), xa(τ))

)
Pa(τ) dτ

〉
(19)

=

1, 2∑

a

(−1)a
ˆ T

0

〈dX⊥(T)

dT

〉
Pa(τ) dτ (20)

= 0 , (21)
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using the additive separability of expectation values. The zero mean of the measurement is seen to be a direct con-
sequence of the zero-mean process generating the spatial fluctuations, independent of the geometry of the apparatus.

The autocovariance of two OPD measurements separated in time by τ0 is

CSS(τ0 | `P ) ≡
〈
S(t)S(t+ τ0)

〉
−
〈
S(t)

〉 〈
S(t+ τ0)

〉
(22)

=

1, 2∑

a, b

(−1)a+b

〈
ˆ T

0

dX⊥
dT

(
T(τ ′ + (t− T ), xa(τ ′))

)
Pa(τ ′) dτ ′

×
ˆ T +τ0

τ0

dX⊥
dT

(
T(τ ′′ + (t− T ), xb(τ

′′ − τ0))
)
Pb(τ ′′ − τ0) dτ ′′

〉
(23)

=

1, 2∑

a, b

(−1)a+b
ˆ T

0

dτ ′ Pa(τ ′)
ˆ T+τ0

τ0

dτ ′′ Pb(τ ′′ − τ0)

×
〈dX⊥
dT

(
T(τ ′, xa(τ ′))

) dX⊥
dT

(
T(τ ′′, xb(τ

′′ − τ0))
)〉

(24)

=

1, 2∑

a, b

(−1)a+b
ˆ T

0

dτ ′
dT
dτ ′

(τ ′, xa(τ ′)) Θa(τ ′)
ˆ T +τ0

τ0

dτ ′′
dT
dτ ′′

(τ ′′, xb(τ
′′ − τ0)) Θb(τ

′′ − τ0)

×
〈dX⊥
dT

(
T(τ ′, xa(τ ′))

) dX⊥
dT

(
T(τ ′′, xb(τ

′′ − τ0))
)〉

(25)

The first step (Eq. 23) follows from the vanishing mean just derived; in the second step, the statistical terms are
collected together; and in the third step (Eq. 25), projection factors are separated to reduce the integration to a single
light cone time variable. We then take a final step (Eq. 26) that invokes the covariance structure of the displacements.
The integral is evaluated only in the Planck-size bins where the covariance is not zero, a criterion that determines an
inverse function that maps light cone time onto the laboratory time of the corresponding part of the measured signal:

CSS(τ0 | `P ) ≈∑1, 2
a, b(−1)a+b c `P

´ T
|τ0|Θa(ξa(T, 0)) Θb(ξb(T, |τ0|)− |τ0|) dT, (26)

where we separate out just the spatial part of the projection factor P1,2(τ) as

Θ1,2(τ) ≡ θ̂ · ẋ1,2(τ)

c
(27)

and ξ1,2 is an inverse function for T(t, x) defined such that

τ ′ = ξ1,2(T, 0) when T = T(τ ′, x1,2(τ ′)) (28)

τ ′′ = ξ1,2(T, τ0) when T = T(τ ′′, x1,2(τ ′′ − τ0)). (29)

The inverse function is well-defined everywhere except when x1,2 is purely radial in the outgoing direction, where T
is constant over a null path (everywhere else, T is monotonically increasing). However, over those segments, Θ1,2 = 0,
making those parts irrelevant. The last step (Eq. 26) should be a highly accurate approximation mathematically;
the Planck scale is almost infinitesimal for practical purposes. However, since we treat the covariance structure
〈dX⊥/dT dX⊥/dT〉 as providing bins of Planck length width, our spacetime is not continuous but discrete at the
Planck scale. Formally the integral picks out a single value of Θ1,2 for each bin in T, instead of treating Θ1,2 as
slowly-varying continuous functions. For nearly or exactly radial propagation, the difference can be important in
numerical computations, but these regions are suppressed by near-zero values of Θ1,2. The mapping between T and
τ is nonlinear and dependent on x1,2, which means that in practice, for a specific interferometer configuration, the
range of intervals for τ ′ and τ ′′ map nontrivially to an integration over T. We show examples of this below.

Equations (23) to (26) specify the effect of Planck scale correlations on the signal of any interferometer. In general,
the covariance does not vanish but behaves approximately like a Planck random walk for some intervals of time, for
a layout where the light paths have a projected transverse component. The autocovariance identically vanishes for
separations |τ0| larger than the duration over which an individual measurement has nonzero geometrical projection
P1,2(τ) (see Figure 3).

Under the Wiener-Khinchin theorem, an equivalent, frequency-space representation of the autocovariance is the
power spectral density (PSD). The PSD is defined as the Fourier transform of the autocovariance,

C̃SS(f | `P ) ≡ 2

ˆ ∞

−∞
CSS(τ0 | `P ) e−i2πfτ0 dτ0 (30)

= 4

ˆ ∞

0

CSS(τ0 | `P ) cos (2πfτ0) dτ0 , (31)
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where the second equality follows from the fact that CSS(τ0 | `P ) = CSS(−τ0 | `P ). This PSD, written in the so-called
engineering convention, is defined only for positive frequencies, in which the power contained in the redundant negative
frequencies is folded via the multiplicative prefactor of two.

IV. PROJECTIONS FOR EXPERIMENTAL LAYOUTS

To aid in conceptual design of experiments, and to gain insight into the character of the exotic correlations, it is
useful to survey the signal response of specific interferometer configurations (see Figure 4). Two features stand out as
required for detectable effect: (1) a layout where light travels a substantial distance in a direction that is not purely
radial with respect to the “observer” (that is, the beamsplitter where the state is prepared); and (2) the ability to
measure correlations on a timescale short compared with a light travel time in the interferometer arms, or equivalently
over a frequency bandwidth comparable to the free spectral range.

The calculational framework above is designed for two optical paths labeled by 1 and 2 that eventually recombine. In
the Michelson configurations, a beamsplitter sends light into two separate arms. In the Sagnac configurations[26, 27],
the split light travels in opposite directions around the same path. In a Sagnac system, we consider tracer photons
propagating in opposite directions and label their optical paths by 1 and 2. The formalism applies entirely unchanged
in both cases. Idealized configurations, the “pie slice Sagnac” and the “circular Sagnac,” have curved light paths
that can be considered as limiting cases of many short segments. They are presented as thought experiments to
demonstrate statistical characteristics of the covariance structure. More realistic configurations for experimental
setups are a “square Sagnac” and a “bent Michelson.” One form of the latter will be the main focus of the second
phase of the Holometer program, as it is technologically simpler to implement and allows a reliable null configuration.

Throughout this section, we present our spectra normalized with respect to a system timescale T0. This is sometimes
the same as light circulation time T , but often, because the light phase is not sensitive to rotational shifts when
its propagation is purely radial, the effective optical path length over which there is nonzero geometrical coupling is
smaller. T0 is the duration of time a tracer photon spends within these segments— for example, for the bent Michelson
configuration, T0 is round trip time within the bent portion of the arm, whereas T is the total round trip time.

A. Michelson Interferometer with Straight Arms

A standard Michelson interferometer, commonly used in gravitational wave observatories and in the initial phase of
the Holometer experiment, has no sensitivity to the posited effect due to the fact that the light propagation is always
radial with respect to the reference observer world line at the beamsplitter, making the geometrical coupling Θ (τ)
zero over the whole light paths. Some spatial element of angular propagation is necessary to have nonzero response.
This property provides a useful way to design a null experiment to calibrate environmental noise and systematic
errors.

B. Pie Slice Sagnac Interferometer

This is the simplest configuration to understand, with a perfectly linear time-domain spectrum that is conceptually
straightforward to derive. As shown in Figure 4, it consists of two purely radial segments of equal length R, both of
them with zero geometrical coupling Θ (τ) to rotational jitter, connected by a circular arc that spans a quarter circle
of radius R, over which the light propagation is purely angular and the projection factors P1,2(τ) take values of ±1.
The completed loop therefore has a system timescale of just T0 = 1

2πR/c (despite the light circulation time being

T = ( 1
2π + 2)R/c), and the total accumulated correlation as a function of time lag τ0 is:

CSS(τ0 | `P ) =

{
22 c `P T0 (1− |τ0|/T0) , 0 < |τ0| < T0
0 , otherwise

(32)

where the factor of 2 comes from the two optical paths each picking up the same jitter. The time-domain signal
is an autocovariance of the OPD fluctuations, so the factor is squared (see Eq. 23). As the time lag τ0 increases
in magnitude, the duration of beamsplitter light cone time T over which there are correlated fluctuations decreases
linearly, up to the total timespan T0 over which the light propagation is angular and the light phase is sensitive to
rotational shifts.
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FIG. 4. Schematics of the optical paths in various interferometer setups where the light phase is sensitive to exotic rotation.
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The frequency-domain PSD can easily be calculated analytically:

C̃SS(f | `P ) = 8 c `P T 2
0 sinc2(π f T0) (33)

The resulting spectrum is shown in Figure 5.

C. Circular Sagnac Interferometer

This is an idealized Sagnac, a circular loop of radius R with two light paths going around it in opposite directions,
starting from a beamsplitter on the circumference. The geometrical coupling Θ (τ) over the light path is a perfect
sinusoidal function with one single frequency, at a system timescale equal to light circulation time T0 = T = 2πR/c.

The two optical paths can be parameterized as follows (in polar coordinates, x = (r, θ)):

xa(τ) =

(
cT0
π

sin
πτ

T0
, π(−1)a

(
1

2
− τ

T0

))
(34)

where a = 1, 2. We then calculate:

Θa (τ) = θ̂ · ẋa(τ)

c
= (−1)a−1 sin

πτ

T0
(35)

T(τ ′, x1,2(τ)) = τ ′ − T0
π

sin
πτ

T0
(36)

and similar for τ ′′, with τ = τ ′′−τ0 used as the input. The inverse functions ξ1,2(T, τ0) are well-defined over the entire

domain, but non-analytic. The integrals for CSS(τ0 | `P ) and C̃SS(f | `P ) can also only be evaluated numerically. The
results are shown in Figure 5.

Notably, despite the perfectly symmetrical and sinusoidal form of the geometrical coupling, the nonlinear mapping
between T and τ in eq. 36 results in an asymmetric weighting over the light circulation time, because there is more
accumulated fluctuation when the light path slices through more layers of future light cones per time. This asymmetric
response might seem counterintuitive, but it is an important feature of the theory that is a natural consequence of
the arrow of time. If one naively assumes a covariance structure that is linearly dependent on τ instead of defining T
on future light cones, the resulting PSD goes negative at certain frequencies, which means that it cannot represent a
real-valued physical observable undergoing a wide-sense stationary random process[28].

D. Square Sagnac Interferometer

The calculations for the device response and spectra expected in a square Sagnac closely follow those of a config-
uration to be discussed in the next section, a Michelson interferometer with one or two arms bent 90◦ inward at the
midpoint (see Figure 4). Since we are positing a Planckian jitter that is stochastic and covariant on light cones, the
magnitude of the accumulated correlated fluctuation per optical path (1 or 2) is exactly the same for Sagnac and
Michelson layouts at zero time lag τ0, despite the difference of a round trip versus a complete loop. The mapping
between T and τ is also identical (see Figure 3). The geometrical coupling Θ (τ) differs by a sign change halfway
along the light path, which does meaningfully change the behavior of the cross correlation at nonzero time lag and

thereby the distribution of fluctuation power in the frequency domain. The resulting CSS(τ0 | `P ) and C̃SS(f | `P ) are
shown in Figure 5.

E. Bent Michelson Interferometer

It is easy to see the schematic similarities between a square Sagnac interferometer and a Michelson with both arms
folded inward to form a square. The key difference is whether the light makes complete loops around the square or
reflects back halfway through the light path. For the classical Sagnac effect, as in classical rotations measured with
optical gyroscopes, this difference matters, because the time-symmetric round trip light path within a bent Michelson
would show zero coupling to that effect. But the exotic rotational fluctuations are stochastic in time and follow the
same covariance structures defined on concentric future light cones around an observer at the beamsplitter, so they
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accumulate total variance at exactly the same rate in both devices, although that variance is distributed differently
in time and frequency.

Sagnac interferometers have been operated many times in the past as optical gyroscopes, but not with the sensitivity
required at high frequency to measure exotic rotational correlations. For technical reasons, the Holometer program
plans instead to to search for exotic rotational correlations with a pair of Michelson interferometers with only one
bent arm. We describe this set up in more explicit detail than the other examples. We also evaluate the displayed
solution for definite physical dimensions that approximate the real apparatus. One “north” arm is 2L = 39 meters
long, and the other “east” arm is bent in the middle with a folding mirror at L = 19.5 meters from the beamsplitter.
The reference design is shown in Fig. 4. Since the straight arm has zero coupling to the effect, this device has 1/22

the amount of accumulated variance observable in a Michelson with two bent arms.

Define unit vectors î, ĵ in the east and north directions respectively. Adopting a beamsplitter-centered coordinate
system, the classical round-trip light paths through the east and north arms can be parameterized as

x1(τ) =





cτ î , 0 < τ < T

L̂i + (cτ − L)̂j , T < τ < 2T

L̂i + (3L− cτ )̂j , 2T < τ < 3T

(4L− cτ )̂i , 3T < τ < 4T

x2(τ) =

{
cτ ĵ , 0 < τ < 2T

(4L− cτ )̂j , 2T < τ < 4T
(37)

where T = L/c and the arm-segment length L = 19.5m. It is straightforward to calculate the geometrical couplings:

Θ1 (τ) = θ̂ · ẋ1(τ)

c
=





0 , 0 < τ < T

Θ�(τ) ≡ 1√
1+(τ/T−1)2

, T < τ < 2T

Θ�(τ) ≡ − 1√
1+(3−τ/T )2

, 2T < τ < 3T

0 , 3T < τ < 4T

(38)

Θ2 (τ) = θ̂ · ẋ2(τ)

c
= 0 (39)

where we see that the system timescale over which the light phase is sensitive to rotational shifts is actually T0 = 2L/c,
instead of the light circulation time T = 4L/c. Here the arrows label the outgoing and incoming halves of the light
round trip within the bent portion of the arm (the negative sign on the return half of eq. 38 is the only difference we
have with the square Sagnac calculations, because there the light completes the loop in one direction).

We also derive the mapping between propagation time and beamsplitter light cone time in the bent “east” arm,
shown in Figure 3:

T(τ ′′, x1(τ ′′ − τ0)) =





τ0 0 < τ ′′ − τ0 < T

T�(τ ′′, τ0) ≡ τ ′′ −
√
T 2 + (τ ′′ − τ0 − T )2 T < τ ′′ − τ0 < 2T

T�(τ ′′, τ0) ≡ τ ′′ −
√
T 2 + (τ ′′ − τ0 − 3T )2 2T < τ ′′ − τ0 < 3T

τ0 + 2(τ ′′ − τ0 − 2T ) 3T < τ ′′ − τ0 < 4T

(40)

with a similar expression for τ ′, with τ0 = 0. These can then be used to evaluate the autocovariance CSS(τ0 | `P ) and

autospectrum C̃SS(f | `P ), from Eqs. (25) and (30). The numerical solution is shown in Fig. 5 for `P = lP . A more
detailed discussion of the origin of the segmented structure is given in Appendix A.

Interestingly, this spectrum has a nonzero DC response. This might seem counterintuitive, since the light path
follows perfectly time-symmetric round trips (unlike in the Sagnac examples). But due to the nonlinear mapping
in eq. 40, the outward trip picks up much less jitter than the portion returning inward, when the light path slices
through more layers of future light cones per unit time. The fluctuations themselves average to zero, but the device
response appears asymmetric. This is a consequence of the fact that the observer dependence is linked to future light
cones. Since the frequency spectrum approaches a constant value at zero frequency, the mean square displacement
decreases approximately linearly for averaging times longer than the apparatus size. The dominant contribution to
the total displacement still comes from frequencies on the order of the free spectral range.

With Planck length normalization, the predicted signal is detectable. Assuming sensitivity similar to that already
achieved with the Fermilab Holometer, a highly significant detection is expected after several hours of integration.
With several hundred hours of data, the program should be able to probe an order of magnitude lower.
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pie slice Sagnac

circular Sagnac

square Sagnac

Michelson with one bent arm

Michelson with two bent arms

Time domain Frequency domain

power

FIG. 5. The time- and frequency-domain autocovariance of signals in various interferometer setups, normalized to their system
scales. For the bent Michelson, predictions in physical units are presented, with nominal standard Planck length normalization
and the approximate dimensions of an experiment being commissioned. The precise coherence scale is considered a parameter
to be fixed by experiment. Note locations of time domain inflections, as discussed in Appendix A. In the square Sagnac, they
occur in the second derivative.
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V. SPATIAL ENTANGLEMENT AND CROSS-CORRELATION

Consider a collection of tangent 2-spheres with a variety of different radii. They represent 2-sections of light cones
corresponding to a variety of different observers’ world lines. According to the future-light-cone covariance hypothesis,
these spheres all share the same exotic phase displacement in the tangent directions, and must “choose” the same value
of δX⊥ to collapse the Planck subsystem at their intersection point— the same projection of exotic twist onto any axis.
Thus, covariance on causal boundaries appears as a sort of spooky conspiracy among many observers belonging to
these light cones. How do the Planck subsystems “know about” their large scale relationships with distant observers?

The answer of course is that the relationship among quantum subsystems is always determined by the preparation
and measurement of the whole state. The covariance represents entanglement, which is imposed by the assembly of
subsystems into a whole system. The projection of the state is fixed by the world line of an observer. Different observers
see different projections, but the whole system collapses in a self consistent way. The system is not exactly classical,
but has “spooky” correlations. They appear to be nonlocal, with spacelike separations, but actually rigorously respect
causal structure.

Indeed, the basic principle is that “all correlations are local”: entanglement of states leads to the same transverse
displacements for all events on a line with zero space time interval separation. For one observer, we have expressed
this statement in terms of future light cone covariance, but the statement still applies in the case of signals cross
correlated between two separate interferometers. Exotic fluctuations measured by nearly co-located interferometers
are expected to exhibit a high degree of correlation. The degree of entanglement between spatial positions be can
expressed in terms of the covariance structure on light cones.

A B

11

3. Power Spectral Density

Under the Wiener-Khinchin theorem, an equivalent, frequency-space representation of the autocovariance is the
power spectral density (PSD). The PSD is defined as the Fourier transform of the autocovariance,

gCSS(f | `P ) ⌘ 2

ˆ 1

�1
CSS(⌧0 | `P ) e�i2⇡f⌧0 d⌧0 (44)

= 2

"
ˆ 1

�1
CSS(⌧0 | `P ) cos (2⇡f⌧0) d⌧0 � i

ˆ 1

�1
CSS(⌧0 | `P ) sin (2⇡f⌧0) d⌧0

#
(45)

= 2

(
ˆ 0

�1
CSS(⌧0 | `P ) cos (2⇡f⌧0) d⌧0 +

ˆ 1

0

CSS(⌧0 | `P ) cos (2⇡f⌧0) d⌧0

�

� i


ˆ 0

�1
CSS(⌧0 | `P ) sin (2⇡f⌧0) d⌧0 +

ˆ 1

0

CSS(⌧0 | `P ) sin (2⇡f⌧0) d⌧0

�)
(46)

= 4

ˆ 1

0

CSS(⌧0 | `P ) cos (2⇡f⌧0) d⌧0 , (47)

where the final equality follows from the fact that CSS(⌧0 | `P ) = CSS(�⌧0 | `P ). This PSD, written in the so-called
engineering convention, is defined only for positive frequencies, into which the power contained in the redundant
negative frequencies is folded via the multiplicative prefactor of two.

V. SPATIAL ENTANGLEMENT AND “SPOOKY” CROSS-CORRELATION

Basic principle: “All correlations are local” — entanglement of states leads to random variables covariant for events
with zero space time interval separation

For one observer, we have expressed this statement in terms of future light cone covariance
This statement requires more unpacking in the case of signals cross correlated between two separate machines
Exotic spatial fluctuations measured by nearly co-located interferometers are expected to exhibit a high degree of

correlation due to the entanglement of neighboring quantum position states. The degree of entanglement between
spatial positions be can expressed in terms of the covariance structure specified by the Gauss-Markov formalism.

A
B

FIG. 5. The entanglement of rotational fluctuations measured relative to two observers is fixed by their tangent light cones.
Along the direction separating the observers, exotic displacements for the two are the same.

Consider the configuration of two observer world lines A and B, with separation RAB , as illustrated in Fig. 5.

The displacement rates dXA,B
? /dTA,B are relational variables, specific to each observer and its light cone time.

Covariance has defined for light cones of each observer, but the two sets of displacements are not independent of each

Covariance on 
tangent light cones

FIG. 6. The entanglement of exotic rotational displacements measured relative to two observers A and B is fixed by the in-
common future tangent light cones. Along the spatial direction separating the observers, but only at laboratory time separations
larger than their separation RAB/c, exotic displacements for the two are the same. If the RAB between beamsplitters is small
compared to the region explored by their optical paths, signals of two interferometers display significant cross correlation. Thus,
exotic rotational fluctuations are highly correlated in both space and time.

Consider the configuration of two observer world lines A and B, with separation RAB , as illustrated in Fig. 6. The

displacement rates dXA,B
⊥ /dTA,B are relational variables, specific to each observer and its light cone time. Covariance

has been defined for future light cones of each observer, but the two sets of displacements are not independent of each
other because they share the same emergent space-time. The variables refer to displacements in specific emergent
directions in space: projections tangent to the radial vector to each observer. For two observers A and B, the directions
agree along one line in space, the continuation of the segment separating the observers, where light cones are tangent.
Along this line, transverse projections are identical at the same event in the same direction: displacements with
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respect to each of the two observers agree in magnitude and direction, for events in future light cones of both (which
excludes events in the interval between them, of spatial extent RAB .)

This constraint determines the entanglement over the rest of the space-time. The resulting covariance can be
written in terms of the two light cone times:

cov

(
dXA
⊥

dTA
(TA),

dXB
⊥

dTB
(TB)

)
=





(
`P
tP

)2

, |TA − TB | < 1
2 tP

0 , otherwise

(41)

Analogously to the single-interferometer case (Eq. 23), the cross-interferometer statistics of two measurement sets
can now be calculated by using the covariance in Eq. (41):

CAB(τ0 | `P ) =
〈
SA(t)SB(t+ τ0)

〉
(42)

=

1, 2∑

a, b

(−1)a+b

〈
ˆ T

0

dXA
⊥

dTA
(
TA(τ ′ + (t− T ), xA,a(τ ′))

)
PA,a(τ ′) dτ ′

×
ˆ T +τ0

τ0

dXB
⊥

dTB
(
TB(τ ′′ + (t− T ), xB,b(τ

′′ − τ0))
)
PB,b(τ ′′ − τ0) dτ ′′

〉
(43)

Although this formula is almost the same as the autocovariance (Eq. 23), the final result differs from Eq.(26),
because the separation RAB enters implicitly, via the covariance and the range of integration. In laboratory time t,
the agreement TA = TB occurs at time offset of |tA − tB | = RAB/c. This effective truncation eliminates a portion
of the range of integration when evaluating the signal cross-response, which reduces the signal cross covariance below
that of the autocovariance.

However, for two similar interferometers separated by a distance much smaller than their size, the non-overlapping
parts of the integral due to the time offset are small compared its total value, and the cross covariance is almost
equal to the autocovariance. The circle or pie slice examples illustrate this point explicitly. Consider two pie slice
interferometers with a small radial displacment offset RAB = δR << R. The offset can still be macroscopic, much
larger than wavelength, beam width or even mirror size. Since the light cones are almost concentric and the projection
factors are geometrically identical except for this fractionally small offset, the nonvanishing part of the correlation
integral changes by only a small factor, δC/C = (CAB − CA)/CA ≈ 1− 2δR/R (see Fig. 7).
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can now be calculated by using the covariance in Eq. (51):

CAB(⌧0 | `P ) =
⌦
SA(t) SB(t + ⌧0)

↵
(52)

=

1, 2X

a, b

(�1)a+b

*
ˆ T

0

dX?
dT

�
TA(⌧ 0 + (t � T ), xA,a(⌧ 0))

�
PA,a(⌧ 0) d⌧ 0

⇥
ˆ T +⌧0

⌧0

dX?
dT

�
TB(⌧ 00 + (t � T ), xB,b(⌧

00 � ⌧0))
�

PB,b(⌧
00 � ⌧0) d⌧ 00

+
(53)

[NOTE: please check!]
Although this formula is almost the same as the autocovariance (Eq. 31), the final result di↵ers from Eq.(34),

because the separation RAB enters implicitly, via the covariance and the range of integration. In laboratory time t,
the agreement TA = TB occurs at time o↵set of |tA � tB | = RAB/c. This e↵ective truncation eliminates a portion of
the range of integration when evaluating the signal cross- response, which reduces the signal cross covariance below
that of the autocovariance.

However, for two similar interferometers separated by a distance much smaller than their size, the non-overlapping
parts of the integral due to the time o↵set are small compared its total value, and the cross covariance is almost
equal to the autocovariance. The simple pie slice example illustrates this point explicitly. Consider two pie slice
interferometers with a small radial displacment o↵set RAB = �R << R. The o↵set can still be macroscopic, much
larger than wavelength, beam width or even mirror size. Since the light cones are almost concentric and the projection
factors are geometrically identical except for this fractionally small o↵set, the nonvanishing part of the correlation
integral changes by only a small factor, �C/C = (CAB � CA)/CA ⇡ 1 � 2�R/R.

[NOTE: do we need to spell this out more rigorously? either a figure or a bounding argument?]
Thus, the signals measured by neighboring interferometers correlate in time purely due to the spatial proximity of

the instruments, even if their optical paths do not coincide. This behavior makes intuitive sense: they measure the
exotic rotational fluctuation of almost the same space-time volume at almost the same time, in almost the same way;
and the exotic displacements on light cones close to the tangent cone are almost the same, because the directions to
the beamsplitters at nearly the same and place nearly agree. This property is important in the design of experiments,
since it allows them to take advantage of cross correlation to eliminate many spurious sources of noise and signal
contamination.

[NOTE: possibly include figure with overlapping and/or tangent pie slices; and/or a figure like figure 3 but showing
two observers and shading the appropriate overlap region, for pie slices; and/or a simple figure with tangent circles
to illustrate the general mathematical principle at work]

VI. COMMENTS AND INTERPRETATION

A. Time asymmetry and Decoherence

There is an apparent time asymmetry in the system we have described: the e↵ect on a signal is not the same for
outgoing and incoming parts of the same light path. The reason is simple to see: the path encounters light cones
at di↵erent rates in the two directions. It is also apparent in the correlation functions, which show features at time
intervals that do not correspond to the time intervals between reflections.

The asymmetry can be traced to our basic hypothesis of covariance on future and not past light cones. Physically,
this choice is motivated by the preparation of the system and matching to the cosmic inertial frame. The “noise” from
the Planck scale corresponds to the new information arriving from the past about the rotational frame of the distant
universe. A measurement is aligned with the forward direction of time defined by quantum decoherence, which is
also the direction in which entropy increases. The “collapse of the wave function” in this situation corresponds to
matching with the rotation state of the rest of the universe— the reconciliation with “environmental information,”
as shown in Fig. (2). It is important to note that all of the measurable predicted correlations, as well as all of the
physical elements of the system, are symmetric in time.

B. Interpretation of exotic rotation as an exotic displacement of mirror world lines

The e↵ect can equivalently be visualized as an e↵ect on world lines of reflecting elements. In this view, the exotic
e↵ect is imprinted on the phase of light at the reflection events, with no e↵ect on free light propagation. This view

FIG. 7. Slices of two tangent light cone surfaces, with slightly separated centers, at a single time in the lab frame. Because they
are tangent, the exotic transverse displacements relative to their respective centers are identical everywhere on both circles.
For an offset δR much smaller than the overall scale R, the integrals that project these displacements onto neighboring pie-slice
Sagnac signals (say) differ by only a small fractional amount, of the order of δR/R. Thus, the cross correlation of two machines
is close to the autocorrelation, to first order in δR/R, even for macroscopic values of δR. Similarly, it is a good approximation
to assume a constant displacement in the plane of the propagating wave fronts or reflecting optics, as long as they are small
compared to the scale of the whole system being measured.

Thus, the signals measured by neighboring interferometers correlate in time purely due to the spatial proximity of
the instruments, even if their optical paths do not coincide. This behavior makes intuitive sense: they measure the
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exotic rotation of almost the same emergent space-time volume at almost the same time, in almost the same way.
The exotic displacements on light cones close to the tangent cone are almost the same, because the directions to the
beamsplitters at nearly the same and place nearly agree. This property is important in the design of experiments,
since it allows them to take advantage of cross correlation to eliminate many spurious sources of noise and signal
contamination.

VI. COMMENTS AND INTERPRETATION

A. Time Asymmetry and Decoherence

There is an apparent time asymmetry in the system we have described: the effect on a signal is not the same for
outgoing and incoming parts of the same light path. The reason is simple to see: the path encounters light cones
at different rates in the two directions. It is also apparent in the correlation functions, which show features at time
intervals that do not correspond to the time intervals between reflections.

The asymmetry can be traced to our basic hypothesis of covariance on future and not past light cones. Physically,
this choice is motivated by the preparation of the system and matching to the cosmic inertial frame. The “noise” from
the Planck scale corresponds to the new information arriving from the past about the rotational frame of the distant
universe. A measurement is aligned with the forward direction of time defined by quantum decoherence, which is also
the direction in which entropy increases. The “collapse of the wave function” in this situation corresponds to matching
with the rotation state of the rest of the universe— the reconciliation of the observer’s state with environmental
information, as shown in Fig. 2. It is important to note that all of the measurable predicted correlations, as well as
all of the physical elements of the system, are symmetric in time.

B. Quantum Spookiness and Emergent Time

It seems spooky, in the EPR sense, to say that a space-time itself depends on an observer and a measurement
path. But in this sense, a perfectly classical, standard space-time also represents a spooky global conspiracy: the
geometry of general relativity is a complete dynamical system that is independent of any observer. Here, a consistent
picture emerges if we allow for appropriate causal spooky entanglements among observers. Our model of covariance
formulates a specific hypothesis how macroscopic rotational relationships can emerge statistically from the Planck
scale, assuming only a covariance that respects causal relationships. Nested causal surfaces of the entangled system
resemble the intricately interlocked gears of a clockwork (as in Fig. 7). Tangent displacements at causal boundaries
agree at every point for all of the nested causal diamonds at that point. All observers can agree about physical
observables, because all exotic “motions” are defined in terms of radial light propagation and have no effect on
radially propagating phase. This consistency also ensures that the whole system closely resembles a continuous
classical geometry on large scales. A path in space that begins and ends on an observer’s world line provides an
operational definition of an inertial frame, built statistically out of relationships among quantum elements at the
Planck scale.

A well known feature of relational quantum geometry is that time itself is also part of the quantum system. This
issue has been avoided in the analysis above by analyzing the exotic motion in an observer’s inertial frame, and
covariance on Lorentz invariant light cones. For a single world line, light phase along any radial direction represents
a perfect “light cone time” clock. But for two separate world lines, their clock phases only agree for light propagating
along the radial separation between them. There are differences in the transverse phase, which can be visualized
as due an exotic transverse “movement without motion” of the underlying space at each world line relative to the
other that causes a Planck scale random drift of transversely oriented light clocks. In this sense, emergent time is not
separate from position, but also displays quantum weirdness.

C. Relation to Gravity

It is well known that gravity creates a quantum catastrophe in the ultraviolet: Wheeler’s “quantum foam,” a
chaotic roiling state of virtual black holes. Many of those problems have been addressed by UV completions of field
theory, but as discussed above, quantum foam also creates problems in the infrared associated with rotation[16]: in
quantum foam, the local inertial frame is a superposition of states with a natural rotational indeterminacy at the
Planck frequency. The model here addresses those problems in a systematic way. However, our statistical model has
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been formulated entirely around inertial frames in a flat space-time, and has not addressed the issue of emergent
curvature.

The covariance imposed here reduces the number of independent degrees of freedom. As discussed in earlier work[10–
16], the information scales as the area of a causal boundary in Planck units. Thus, the model agrees with holographic
entropy estimates from semiclassical quantum gravity[29–34] and loop quantum gravity[1–3], and entangles virtual
field states[35] enough to reconcile them with gravity on large scales. By construction, the exotic degrees of freedom
posited here live on causal surfaces, so they are compatible with a flat-space limit of quantum gravity, and fit well
with a thermodynamic theory of emergent curvature[32]. A complete theory that addresses these issues would of
course require generalization to accelerated observers and curved space-time.
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Appendix A: Detailed Analysis of the Bent Michelson Configuration

The simple setup of the experiment design chosen for this example allows a detailed set of analytical expressions
for the integrals along each segment, as explicitly shown in this appendix. Starting with Eqs. (38) and (39), we see
that the light propagation has a nonzero angular component only along the “bent” portion of the east arm. From this
point on, we drop the subscripts 1 and 2 for the two arms, and only carry out calculations over the east arm (using
x1(τ) and Θ1 (τ) above). So,

CSS(τ0 | `P ) =

ˆ 4T

0

dτ ′
dT
dτ ′

(τ ′, x(τ ′)) Θ(τ ′)
ˆ 4T+τ0

τ0

dτ ′′
dT
dτ ′′

(τ ′′, x(τ ′′ − τ0)) Θ(τ ′′ − τ0)

×
〈dX⊥
dT

(
T(τ ′, x(τ ′))

) dX⊥
dT

(
T(τ ′′, x(τ ′′ − τ0))

)〉
(A1)

where x(τ) = x1(τ) and Θ (τ) = Θ1 (τ).

From eq. 40, we derive inverse functions of T�(τ ′′, τ0) and T�(τ ′′, τ0), as follows:

τ ′′ = ξ�(T, τ0) ≡ 1

2

(
T 2

T + τ0 − T
+ T + τ0 + T

)
(A2)

τ ′′ = ξ�(T, τ0) ≡ 1

2

(
T 2

3T + τ0 − T
+ 3T + τ0 + T

)
(A3)

Again, similar equations hold for τ ′, with τ0 = 0. These inverse functions do not hold over the entire light paths, but
in the ranges T < τ ′ < 3T and T < τ ′′ − τ0 < 3T where the geometrical coupling is nonzero, they are well-defined.

We use the following notation for the projection factors:

P�(τ) ≡
[
dT�

dτ
(τ, 0)

]
Θ�(τ) and P�(τ) ≡

[
dT�

dτ
(τ, 0)

]
Θ�(τ) (A4)

We now have the tools to evaluate eq. A1, the autocovariance of the signal for a layout that approximates an
experiment now under construction.

Evaluating CSS(τ0 | `P ) is best done in segments. We know CSS(τ0 | `P ) is symmetric, so we will consider positive
values of τ0 without any loss of generality. Figure 3 is a schematic representation of eq. 40, showing light cone slices
of T versus the radial axis |x(τ)|, where τ = τ ′ and τ = τ ′′ − τ0 for the two tracer photon trajectories separated by
time lag τ0. We see that T(τ ′, x(τ ′)) or T(τ ′′, x(τ ′′ − τ0)) − τ0 stays at 0 until the bend mirror (τ = T ), runs to

(2−
√

2)T at the end mirror reflection (τ = 2T ), and then to 2T at the bend mirror on the way back (τ = 3T ).

Following the covariance structure, the integrals should be performed over the range of time where there are
future light cones commonly intersected by both tracer photon paths, within the constraints T < τ ′ < 3T and
T < τ ′′ − τ0 < 3T . These integrals should be subdivided into separate segments whenever either tracer photon path
flips from outgoing to incoming, at τ = 2T . Converting the integrals into intervals in T, we see that it should be
performed between τ0 and 2T , with segment divisions at (2−

√
2)T and τ0 + (2−

√
2)T .

Correlations between segments in the same direction (outgoing or incoming) give positive contributions to the
integral, but anti-correlations between outgoing and incoming segments give negative ones. This sharp discontinuity
in geometrical coupling at the end mirror reflection gives rise to inflections in the autocorrelation whenever a segment
division is eliminated by increases in time lag τ0 (see Figure 5). This is a feature not seen in the square Sagnac
spectra— although the mirror reflections happen at roughly the same points, the geometrical coupling is continuous
there.

The functional support for CSS(τ0 | `P ) divides into the following three ranges, making clear the origin of these
features:
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i) 0 < τ0 < (2−
√
2)T

CSS(τ0 | `P )

=

ˆ 2T

ξ�(τ0, 0)

dτ ′ P�(τ ′)
ˆ ξ�((2−

√
2)T, τ0)

T+τ0

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉

+

ˆ ξ�(τ0+(2−
√
2)T, 0)

2T

dτ ′ P�(τ ′)
ˆ 2T+τ0

ξ�((2−
√
2)T, τ0)

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉

+

ˆ 3T

ξ�(τ0+(2−
√
2)T, 0)

dτ ′ P�(τ ′)
ˆ ξ�(2T, τ0)

2T+τ0

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉
(A5)

= c `P

ˆ (2−
√
2)T

τ0

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT

+ c `P

ˆ τ0+(2−
√
2)T

(2−
√
2)T

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT

+ c `P

ˆ 2T

τ0+(2−
√
2)T

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT (A6)

ii) (2−
√
2)T < τ0 <

√
2T

CSS(τ0 | `P )

=

ˆ ξ�(τ0+(2−
√
2)T, 0)

ξ�(τ0, 0)

dτ ′ P�(τ ′)
ˆ 2T+τ0

T+τ0

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉

+

ˆ 3T

ξ�(τ0+(2−
√
2)T, 0)

dτ ′ P�(τ ′)
ˆ ξ�(2T, τ0)

2T+τ0

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉
(A7)

= c `P

ˆ τ0+(2−
√
2)T

τ0

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT

+ c `P

ˆ 2T

τ0+(2−
√
2)T

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT (A8)

iii)
√
2T < τ0 < 2T

CSS(τ0 | `P )

=

ˆ 3T

ξ�(τ0, 0)

dτ ′ P�(τ ′)
ˆ ξ�(2T, τ0)

T+τ0

dτ ′′ P�(τ ′′ − τ0) ×
〈
dX⊥
dT

(
T�(τ ′, 0)

) dX⊥
dT

(
T�(τ ′′, τ0)

)〉
(A9)

= c `P

ˆ 2T

τ0

Θ�(ξ�(T, 0)) Θ�(ξ�(T, τ0)− τ0) dT (A10)




