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Abstract

Measurements of two- and multi-particle angular correlations in pp collisions at√
s = 5, 7, and 13 TeV are presented as a function of charged-particle multiplic-

ity. The data, corresponding to integrated luminosities of 1.0 pb−1 (5 TeV), 6.2 pb−1

(7 TeV), and 0.7 pb−1 (13 TeV), were collected using the CMS detector at the LHC. The
second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of uniden-
tified charged particles, as well as v2 of K0

S and Λ/Λ particles, are extracted from
long-range two-particle correlations as functions of particle multiplicity and trans-
verse momentum. For high-multiplicity pp events, a mass ordering is observed for
the v2 values of charged hadrons (mostly pions), K0

S, and Λ/Λ, with lighter particle
species exhibiting a stronger azimuthal anisotropy signal below pT ≈ 2 GeV/c. For
13 TeV data, the v2 signals are also extracted from four- and six-particle correlations
for the first time in pp collisions, with comparable magnitude to those from two-
particle correlations. These observations are similar to those seen in pPb and PbPb
collisions, and support the interpretation of a collective origin for the observed long-
range correlations in high-multiplicity pp collisions.
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1 Introduction
The observation of long-range two-particle azimuthal correlations at large relative pseudora-
pidity (|∆η|) in high final-state particle multiplicity (high-multiplicity) proton-proton (pp) [1–3]
and proton-lead (pPb) [4–7] collisions at the LHC has opened up new opportunities for study-
ing novel dynamics of particle production in small, high-density quantum chromodynamic
(QCD) systems. A key feature of such correlations is an enhanced structure on the near-side
(relative azimuthal angle |∆φ| ≈ 0) of two-particle ∆η-∆φ correlation functions that extends
over a wide range in relative pseudorapidity (|∆η| ≈ 4). Such a long-range, near-side corre-
lation structure, known as the “ridge”, was first observed in relativistic nucleus-nucleus (AA)
collisions from RHIC to LHC energies, including copper-copper [8], gold-gold [8–12], and lead-
lead (PbPb) [13–18] systems. Based on extensive studies, it has been suggested that the hydro-
dynamic collective flow of a strongly interacting and expanding medium [19–21] is responsible
for these long-range correlations in these large heavy ion systems. In hydrodynamic models,
the detailed azimuthal correlation structure of emitted particles is typically characterized by
its Fourier components [22]. In particular, the second and third Fourier components, known as
elliptic (v2) and triangular (v3) flow, most directly reflect the medium response to, respectively,
the initial collision geometry and its fluctuations [23], providing insight into fundamental trans-
port properties of the medium [24–26]. Recently, at RHIC, such long-range correlations have
also been observed and studied in lighter AA systems such as dAu [27, 28] and 3HeAu [29].

In systems such as pp and pPb, where the transverse size of the overlap region is comparable
to that of a single proton, the formation of a hot and dense fluid-like medium was not expected.
The expectations for other small systems like dAu and 3HeAu were similar. Various theoretical
models have been proposed to interpret the origin of the observed long-range correlations in
small collision systems [30–37]. These include initial-state gluon correlations without final-state
interactions [33, 34] or, similar to what is thought to occur in AA systems, hydrodynamic flow
that develops in a conjectured high-density medium [35–37].

Owing to the magnitude of the correlation signal, significant progress has been made in unrav-
eling the nature of the ridge correlations in high-multiplicity pPb collisions. Measurements of
anisotropy Fourier harmonics (vn), using identified particles [38, 39] and multi-particle correla-
tion techniques [40–43], reveal features that support a collective, hydrodynamic-like origin of
the observed correlations [44–46].

In high-multiplicity pp collisions, the nature of the observed long-range correlation still re-
mains poorly understood. Long-range correlations in pp collisions were first observed at√

s = 7 TeV [1], and the extraction of anisotropy v2 harmonics in pp collisions was recently
reported using data at

√
s = 13 TeV [2]. A better understanding of the underlying particle cor-

relation mechanisms leading to these observations requires more detailed study of the prop-
erties of the v2 and higher-order harmonics in pp collisions. In particular, their dependence
on particle species, and other aspects related to their possible collective nature, are the key to
scrutinize various theoretical interpretations. Furthermore, a quantitative modeling of long-
range correlations in pPb collisions is found to be highly sensitive to the spatial structure of the
proton [35]. Fluctuations of the substructure of nucleons are not well understood, but they can
be better constrained with studies of anisotropy harmonics in pp collisions.

This paper extends the characterization of long-range correlation phenomena in high-multiplicity
pp collisions by presenting a detailed study of two- and multi-particle azimuthal correlations
with unidentified charged particles, as well as correlations of reconstructed K0

S and Λ/Λ par-
ticles at various LHC collision energies. The results of v2 and v3 harmonics, extracted from
two-particle correlations, are studied as functions of particle pT and event multiplicity. The
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residual contribution to long-range correlations of back-to-back jet correlations is estimated
and removed by subtracting correlations obtained from very low multiplicity pp events. The
v2 harmonics are also extracted using the multi-particle cumulant method to shed light on the
possible collective nature of the correlations. The pp results are directly compared to those
found for pPb and PbPb systems over a broad range of similar multiplicities.

2 The CMS detector and data sets
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter. Within the solenoid volume, there are a silicon pixel and strip tracker detector, a lead
tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron cal-
orimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured
in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The
silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It con-
sists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T
field of the solenoid. For non-isolated particles of 1 < pT < 10 GeV/c and |η| < 1.4, the
track resolutions are typically 1.5% in pT and 25–90 (45–150) µm in the transverse (longitudi-
nal) impact parameter [47]. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters
cover the range 2.9 < |η| < 5.2 on either side of the interaction region. These HF calorime-
ters are azimuthally subdivided into 20◦ modular wedges and further segmented to form
0.175×0.175 rad2 (∆η×∆φ) “towers”. The beam pickup for timing (BPTX) devices are designed
to provide precise information on the LHC bunch structure and timing of the incoming beams.
They are located around the beam pipe at a distance of 175 m from the interaction point on
either side. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [48]. The
detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 [49].

The data samples of pp collisions used in this analysis were collected by the CMS experiment
in 2010 at

√
s = 7 TeV, and in 2015 at 5.02 TeV (labeled as 5 TeV for simplicity) and 13 TeV, with

integrated luminosities of 6.2, 1.0, and 0.7 pb−1, respectively.

3 Event and track selection
Minimum bias (MB) pp events were triggered by requiring the coincidence of signals from both
BPTX devices, indicating the presence of two proton bunches crossing at the interaction point
(zero bias condition). The data used in this study were recorded with an average number of
pp interactions per bunch crossing ranging from 0.1 to 1.4. Because of hardware limits on the
data acquisition rate, only a small fraction (∼10−3) of all MB triggered events were recorded.
In order to collect a large sample of high-multiplicity pp collisions, a dedicated trigger was
implemented using the CMS level-1 (L1) and high-level trigger (HLT) systems. At L1, the total
transverse energy summed over ECAL and HCAL was required to be greater than a given
threshold (40, 45 and 55 GeV thresholds are used). Online track reconstruction for the HLT was
based on the three layers of pixel detectors, requiring the track origin to be located within a
cylindrical region centered on the nominal interaction point with a length of 30 cm along the
beam and a radius of 0.2 cm perpendicular to the beam. For each event, the vertex reconstructed
with the highest number of pixel tracks was selected. The vertex reconstruction efficiency with
high track multiplicities is 100%. The number of pixel tracks (Nonline

trk ) with |η| < 2.4, pT >
0.4 GeV/c, and a distance of closest approach less than 0.12 cm to this vertex, was determined
for each event. Data were taken with HLT thresholds of Nonline

trk ≥ 60, 85, 110, seeded with L1
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total transverse energy thresholds of 40, 45, and 55 GeV, respectively.

In the offline analysis, hadronic collisions are selected by requiring at least one HF calorimeter
tower with more than 3 GeV of total energy in each of the two HF detectors. Events are also
required to contain at least one reconstructed primary vertex within 15 cm of the nominal in-
teraction point along the beam axis and within 0.15 cm in the direction transverse to the beam
trajectory. Beam related background is suppressed by rejecting events for which less than 25%
of all reconstructed tracks pass the high-purity selection (as defined in Ref. [47]). With these se-
lection criteria, 94–96% of the pp interactions simulated with PYTHIA 6 tune Z2 [50] and PYTHIA

8 tune CUETP8M1 [51] event generators that have at least one particle with energy E > 3 GeV
in both ranges −5 < η < −3 and 3 < η < 5 are selected.

In this analysis, primary tracks, i.e. tracks that emanate from the primary vertex and that satisfy
the high-purity criteria, are used to define the event charged-particle multiplicity and perform
correlation measurements. Additional requirements are also applied to enhance the purity of
primary tracks. The significance of the separation along the beam axis (z) between the track
and the primary vertex, dz/σ(dz), and the significance of the impact parameter relative to the
primary vertex transverse to the beam, dT/σ(dT), must be smaller than 3. The relative uncer-
tainty of the transverse-momentum measurement, σ(pT)/pT, must be smaller than 10%. To
ensure high tracking efficiency and to reduce the rate of misreconstructed tracks, only tracks in
the region |η| < 2.4 and pT > 0.3 GeV/c are included. The pT threshold is raised to 0.4 GeV/c for
purposes of the event multiplicity determination, to match the requirement in the HLT, while
tracks down to 0.3 GeV/c are used in the correlation analysis. Based on simulation studies using
GEANT4 to propagate particles from the PYTHIA 8 event generator, the combined geometrical
acceptance and efficiency for primary track reconstruction exceeds 60% for pT ≈ 0.3 GeV/c and
|η| < 2.4. The efficiency is greater than 90% in the |η| < 1 region for pT > 0.6 GeV/c. For the
event multiplicity range studied in this paper, no dependence of the tracking efficiency on the
multiplicity is found and the rate of misreconstructed tracks is 1–2%.

Additionally, the CMS loose [47] tracks are also used to incorporate secondary-track candidates
with larger track impact parameters, for reconstructing K0

S and Λ/Λ candidates (also called
V0 candidates). The reconstruction of V0 candidates in this analysis is identical to that in
Refs. [39, 52], where more details can be found. Oppositely charged tracks that are detached
(having large dz/σ(dz) and dT/σ(dT) values) from the primary vertex are selected to determine
if they point to a common secondary vertex. The pair of tracks are assumed to be π+π− in K0

S
reconstruction, while the assumption of π−p(π+p) is used in Λ (Λ) reconstruction. The angle
θpoint between the V0 momentum vector and the vector connecting the primary and V0 vertices
is required to satisfy cos

(
θpoint) > 0.999. The K0

S (Λ/Λ) reconstruction efficiency is about 6%
(1%) for pT ≈ 1 GeV/c and 17% (7%) for pT > 3 GeV/c within |η| < 2.4. This efficiency includes
the effects of acceptance and the branching ratio for V0 particle decays into neutral particles.
The relatively low reconstruction efficiency of the V0 candidates is primarily due to the low
efficiency for reconstructing daughter tracks with pT < 0.3 GeV/c or larger impact parameters.

Following the same procedure as used in previous analyses [1, 4, 43], the pp data sets at differ-
ent energies are divided into classes of reconstructed track multiplicity, Noffline

trk , where primary
tracks with |η| < 2.4 and pT > 0.4 GeV/c are counted. Details of the multiplicity classification in
this analysis, including the fractional inelastic cross section and the average number of primary
tracks before and after correcting for detector effects in each multiplicity range, are provided
in Table 1. Within a given Noffline

trk range, the average event multiplicity is expected to be larger
for higher

√
s data, as suggested by the average uncorrected Noffline

trk values. However, due to a
slightly higher tracking efficiency, and hence a smaller efficiency correction, the corrected av-
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erage multiplicity, Ncorrected
trk , for the same Noffline

trk range happens to be smaller for 7 TeV data
than for 5 TeV data. Uncertainties on Ncorrected

trk values come from systematic uncertainties on
the tracking efficiency correction factor estimated from MC simulations.

Table 1: Fraction of MB triggered events after event selections in each multiplicity bin, and the
average multiplicity of reconstructed tracks per bin with |η| < 2.4 and pT > 0.4 GeV/c, before
(Noffline

trk ) and after (Ncorrected
trk ) efficiency correction, for pp data at

√
s = 5, 7, and 13 TeV.

Noffline
trk

Fraction
〈

Noffline
trk

〉 〈
Ncorrected

trk

〉
5 TeV 7 TeV 13 TeV 5 TeV 7 TeV 13 TeV 5 TeV 7 TeV 13 TeV

MB 1.0 1.0 1.0 13 15 16 16±1 17±1 19±1
[0, 10) 0.48 0.44 0.43 4.8 4.8 4.8 5.8±0.3 5.5±0.2 5.9±0.3
[10, 20) 0.29 0.28 0.26 14 14 14 17±1 16±1 17±1
[20, 30) 0.14 0.15 0.15 24 24 24 28±1 28±1 30±1
[30, 40) 0.06 0.08 0.08 34 34 34 41±2 40±2 42±2
[40, 60) 0.03 0.05 0.07 47 47 47 56±2 54±2 58±2
[60, 85) 3× 10−3 7× 10−3 0.02 66 67 68 80±3 78±3 83±3
[85, 95) 9× 10−5 3× 10−4 1× 10−3 88 89 89 106±4 103±4 109±4
[95, 105) 2× 10−5 9× 10−5 5× 10−4 98 99 99 118±5 114±4 121±5
[105, 115) 5× 10−6 2× 10−5 2× 10−4 108 109 109 130±5 126±5 133±5
[115, 125) 1× 10−6 8× 10−6 6× 10−5 118 118 119 142±6 137±5 145±6
[125, 135) 2× 10−7 2× 10−6 2× 10−5 126 128 129 153±6 149±6 157±6
[135, 150) 5× 10−8 4× 10−7 8× 10−6 139 140 140 167±7 162±6 171±7
[150, ∞) 5× 10−9 8× 10−8 2× 10−6 155 156 158 186±8 181±7 193±8

4 Analysis technique
The analysis techniques for two- and multi-particle correlations are identical to those used in
Refs. [3, 4, 13, 14, 39, 40, 43]. They are briefly summarized in this section for the analysis of the
new pp data samples.

4.1 Two-particle correlations and Fourier harmonics

For each track multiplicity class, “trigger” particles are defined as charged particles or V0 can-
didates with |η| < 2.4 and originating from the primary vertex within a given ptrig

T range. The
number of trigger particles in the event is denoted by Ntrig. Particle pairs are then formed
by associating each trigger particle with the remaining charged primary tracks with |η| < 2.4
and from a specified passoc

T interval (which can be either the same as or different from the ptrig
T

range). A pair is removed if the associated particle is the daughter of any trigger V0 candidate
(this contribution is negligible since associated particles are mostly primary tracks). The two-
dimensional (2D) per-trigger-particle associated yield is defined in the same way as done in
previous analyses,

1
Ntrig

d2Npair

d∆η d∆φ
= B(0, 0)

S(∆η, ∆φ)

B(∆η, ∆φ)
, (1)
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where ∆η and ∆φ are the differences in η and φ of the pair. The same-event pair distribution,
S(∆η, ∆φ), represents the yield of particle pairs normalized by Ntrig from the same event,

S(∆η, ∆φ) =
1

Ntrig

d2Nsame

d∆η d∆φ
. (2)

The mixed-event pair distribution,

B(∆η, ∆φ) =
1

Ntrig

d2Nmix

d∆η d∆φ
, (3)

is constructed by pairing the trigger particles in each event with the associated charged parti-
cles from 20 different randomly selected events in the same 0.5 cm wide zvtx range and from the
same track multiplicity class. The same-event and mixed-event pair distributions are first cal-
culated for each event, and then averaged over all the events within the track multiplicity class.
The ratio B(0, 0)/B(∆η, ∆φ) mainly accounts for pair acceptance effects, with B(0, 0) represent-
ing the mixed-event associated yield for both particles of the pair going in approximately the
same direction and thus having maximum pair acceptance. Following the procedure described
in Refs. [4, 13, 14, 39, 43], each reconstructed primary track and V0 candidate is weighted by
a correction factor derived from MC simulations, which accounts for detector effects includ-
ing the reconstruction efficiency, the detector acceptance, and the fraction of misreconstructed
tracks.

The azimuthal anisotropy harmonics of charged particles, K0
S and Λ/Λ particles can be ex-

tracted via a Fourier decomposition of long-range two-particle ∆φ correlation functions, ob-
tained by averaging the 2D two-particle correlation function over |∆η| > 2 (to remove short-
range correlations, such as jet fragmentation),

1
Ntrig

dNpair

d∆φ
=

Nassoc

2π

[
1 + ∑

n
2Vn∆ cos(n∆φ)

]
, (4)

where Vn∆ are the Fourier coefficients and Nassoc represents the average number of pairs per
trigger particle for a given (ptrig

T , passoc
T ) bin. The first three Fourier terms are included in the fits

to the dihadron correlation functions. Including additional terms has a negligible effect on the
results of the Fourier fit.

Assuming Vn∆ coefficients can be factorized into the product of single-particle anisotropies [43],
the elliptic and triangular anisotropy harmonics, v2{2, |∆η| > 2} and v3{2, |∆η| > 2}, of trigger
particles can be extracted as a function of pT from the fitted Fourier coefficients from the two-
particle correlation method,

vn(ptrig
T ) =

Vn∆(ptrig
T , pref

T )√
Vn∆(pref

T , pref
T )

, n = 2, 3. (5)

Here, a fixed pref
T range for the “reference” charged primary particles is chosen to be 0.3 < pT <

3.0 GeV/c to minimize correlations from jets at higher pT.

To extract v2 signal for V0 candidates, the invariant mass distributions are fitted by a sum of
two Gaussian functions with a common mean to describe the true V0 signal peak, and a fourth-
order polynomial function to model the background, as done in Ref. [39]. The v2 values are first
extracted for V0 candidates from the peak region (which contains contributions from genuine
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V0, as well as background V0 candidates from random combinatorics) and from a sideband
region (which contains only background V0s from random combinatorics), denoted as vobs

2 and
vbkg

2 . Here the peak region is defined as the mass window of ±2σ around the center of the
V0 candidate mass peak, where σ is found from the addition in quadrature of the standard
deviations of the two Gaussian functions weighted by their yields. The sideband region is
defined as the mass window outside ±3σ mass range around the V0 candidate mass peak to
upper limit of 0.565 (1.135) GeV and lower limit of 0.430 (1.155) GeV for K0

S (Λ/Λ) particles. The
v2 signal for V0 candidates can then be calculated as

vsig
2 =

vobs
2 − (1− f sig) vbkg

2
f sig , (6)

where f sig represents the signal yield fraction in the peak region determined from the fits to the
mass distribution.

Although a requirement of |∆η| > 2 can largely exclude near-side jet-like correlations for vn{2}
extraction, contributions from back-to-back (i.e. dijet) correlations are still present in the long-
range, away-side (∆φ ≈ π) region, especially for pp collisions. By assuming that the shape
of the jet-induced correlations is invariant with event multiplicity, a procedure of removing
jet-like correlations in pPb collisions was proposed in Refs. [15, 16]. The method consists of
subtracting the results for low-multiplicity events, where the ridge signal is not present, from
those for high-multiplicity events. For this analysis, a very similar low-multiplicity subtraction
method developed for pPb collisions [43] is employed. The Fourier coefficients, Vn∆, extracted
from Eq. (4) for 10 ≤ Noffline

trk < 20 are subtracted from the Vn∆ coefficients extracted in the
higher-multiplicity region, with

Vsub
n∆ = Vn∆ −Vn∆(10 ≤ Noffline

trk < 20)
Nassoc(10 ≤ Noffline

trk < 20)
Nassoc

Yjet

Yjet(10 ≤ Noffline
trk < 20)

. (7)

Here, Yjet represents the near-side jet yield obtained by integrating the difference of the short-
and long-range event-normalized associated yields for each multiplicity class as shown for
105 ≤ Noffline

trk < 150 in Fig. 2 (to be described in Section 5.1) over |∆φ| < 1.2. The ratio,
Yjet/Yjet(10 ≤ Noffline

trk < 20), is introduced to account for the enhanced jet correlations resulting
from the selection of higher-multiplicity events. This jet subtraction procedure is verified using
PYTHIA 6 (Z2) and PYTHIA 8 tune CUETP8M1 pp simulations, where no jet modification from
initial- or final-state effects is present. The residual Vn∆ after subtraction is found to be con-
sistent with zero. The azimuthal anisotropy harmonics vn after correcting for back-to-back jet
correlations estimated from low-multiplicity data (denoted as vsub

n ) can be extracted from Vsub
n∆

using Eq. (5) and (6). In this paper, both the vn and vsub
n results are presented.

4.2 Fourier harmonics from multi-particle correlations

To avoid a model-dependent correction of jet-like correlations in extracting vn harmonics from
two-particle correlations, a multi-particle cumulant analysis using the Q-cumulant method [53]
is employed to determine the second-order elliptic harmonic, similar to what was done in pPb
and PbPb collisions [40, 43]. By simultaneously correlating several (no less than four) parti-
cles, the multi-particle cumulant technique has the advantage of suppressing short-range two-
particle correlations such as jets and resonance decays. It also serves as a powerful tool to
directly probe the collective nature of the observed azimuthal correlations.
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The two-, four-, and six-particle azimuthal correlations [53] are evaluated as:

〈〈2〉〉 ≡
〈〈

ein(φ1−φ2)
〉〉

,

〈〈4〉〉 ≡
〈〈

ein(φ1+φ2−φ3−φ4)
〉〉

,

〈〈6〉〉 ≡
〈〈

ein(φ1+φ2+φ3−φ4−φ5−φ6)
〉〉

.

(8)

Here φi (i = 1, . . . , 6) are the azimuthal angles of one unique combination of multiple particles
in an event, n is the harmonic number, and

〈〈
· · ·
〉〉

represents the average over all combina-
tions from all events within a given multiplicity range. The corresponding cumulants, cn{4}
and cn{6}, are calculated as follows [53]:

cn{4} =〈〈4〉〉 − 2× 〈〈2〉〉2,

cn{6} =〈〈6〉〉 − 9× 〈〈4〉〉〈〈2〉〉+ 12× 〈〈2〉〉3.
(9)

The Fourier harmonics vn that characterize the global azimuthal behavior are related to the
multi-particle cumulants [53] using

vn{4} = 4
√
−cn{4},

vn{6} = 6

√
1
4

cn{6}.
(10)

Note that a non-imaginary vn{4} coefficient, which would suggest a bulk medium collective
behavior, requires having a negative cn{4} value.

4.3 Systematic uncertainties

Systematic uncertainties in this analysis include those from the experimental procedure for
obtaining the two-particle vn harmonics, as well as from the jet subtraction procedure.

The experimental systematic effects are evaluated by varying conditions in extracting vsub
2 {2}

and v2{4} values. The systematic uncertainties are found to have no significant dependence
on pT and

√
s so they are quoted to be constant percentages over the entire pT range for all

collision energies. Experimental systematic uncertainties due to track quality requirements
are examined by varying the track selection thresholds for dz/σ(dz) and dxy/σ(dxy) from 2 to
5. A comparison of high-multiplicity pp data for a given multiplicity range but collected by
two different HLT triggers with different trigger efficiencies is made to study potential trigger
biases. The possible contamination of residual pileup events, especially for 5 and 7 TeV data, is
also investigated by varying the pileup selection of events in performing the analysis, from no
pileup rejection at all to selecting events with only one reconstructed vertex. The sensitivity of
the results to the primary vertex position (zvtx) is quantified by comparing results at different
zvtx locations over a 30 cm wide range.

In the jet subtraction procedure for vn{2}measurements, while the factor Yjet/Yjet(10 ≤ Noffline
trk <

20) accounts for any bias in the magnitude of jet-like associated yield due to multiplicity selec-
tion, a change in the ∆φ width of away-side yields could lead to residual jet effects in vn{2}
results. This systematic uncertainty is evaluated by integrating the associated yields of the
long-range region over a fixed ∆φ window of |∆φ| < π/3 and |∆φ − π| < π/3 on the near
and away side. By taking the difference of the yields in two ∆φ windows symmetric around
∆φ = π/2, contributions from the second and fourth Fourier components are cancelled. By
choosing the ∆φ window size to be 2π/3, any contribution from the third Fourier component
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to the near- and away-side associated yields is also cancelled. Any dependence of this yield
difference on the event multiplicity (beyond that induced by the Yjet/Yjet(10 ≤ Noffline

trk < 20)
factor) would indicate a modification of jet correlation width in ∆φ. The systematic uncertainty
of vn due to this effect is estimated to be 16%, 9%, and 6% for Noffline

trk < 40, 40 ≤ Noffline
trk < 85,

and Noffline
trk > 85, respectively. In the same sense, any multiplicity dependence of the ∆η distri-

bution of the away-side would indicate a modification of the jet correlation. The ∆η distribution
is investigated in a fixed window |∆φ−π| < π/16 for different Noffline

trk ranges, resulting in sys-
tematic uncertainties of 8%, 3%, and 2.5% for Noffline

trk < 40, 40 ≤ Noffline
trk < 85, and Noffline

trk > 85,
respectively. In addition, by separating events in a given multiplicity range into two groups
corresponding to the top and bottom 30% in the leading particle pT distribution, jet correla-
tions are either strongly enhanced or suppressed in a controlled manner. After applying the
subtraction procedure, the vn results for the two event groups are consistent within 5%.

Table 2 summarizes various sources of systematic uncertainties in this analysis for multiplicity-
dependent results. The same sources apply to pT differential results, leading to total experi-
mental systematic uncertainty of 5% and method uncertainties of 9%, 13%, 23%, and 37% for
ptrig

T < 2.2 GeV/c, 2.2 ≤ ptrig
T < 3.6 GeV/c, 3.6 ≤ ptrig

T < 4.6 GeV/c, and ptrig
T ≥ 4.6 GeV/c,

respectively.

Table 2: Summary of systematic uncertainties for multiplicity-dependent vsub
n {2} from two-

particle correlations (after correcting for jet correlations), and v2{4}, v2{6} from multi-particle
correlations in pp collisions. Different multiplicity ranges are represented as [m, n).

Source
vsub

n {2} (%) v2{4}, v2{6} (%)
[0,40) [40,85) [85,∞) [0,85) [85,∞)

HLT trigger bias — — 2 — 2
Track quality cuts 1 1 1 1 1
Pileup effects 1.5 1.5 1.5 1.5 1.5
Vertex dependence 1.5 1.5 1.5 1.5 1.5
Jet subtraction procedure 18 9.5 6.5 — —
Total 18.2 9.8 7.2 2.4 3.1

Systematic uncertainties originating from different sources are added in quadrature to obtain
the overall systematic uncertainty shown as boxes in the figures. No energy dependence has
been observed for the systematic uncertainties, therefore, they are only shown for 13 TeV re-
sults. Because of insufficient statistical precision, the uncertainties in v3 are assumed to be the
same as those in v2, as was done in Refs. [39, 43]. Systematic uncertainties of v2{2} results for
V0 particles are taken from Ref. [39] in pPb collisions except for the HLT trigger bias and jet
subtraction method, which are quoted to be the same as for the inclusive charged particles.
Different particle species have different η distributions, which can affect the comparison of re-
sults if there is a strong η dependence. This effect is found to be negligible by comparing v2{2}
results for V0 particles with different reconstruction efficiency corrections for the η distribu-
tion. The relative systematic uncertainties for the two-particle Vn∆ coefficients as a function
of Noffline

trk in Fig. 4 (described in Section 5.2) are exactly twice those for the corresponding vn
harmonics, since Vn∆ = v2

n when trigger and associated particles are selected from the same
pT range. In the same way, relative systematic uncertainties for multi-particle c2{m} measure-
ments as a function of Noffline

trk in Fig. 9 (described in Section 5.3) are exactly m times those for
the corresponding v2{m} harmonics, where m = 4 or 6.
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5 Results
5.1 Two-particle correlation functions
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Figure 1: The 2D two-particle correlation functions for inclusive charged particles (top), K0
S par-

ticles (middle), and Λ/Λ particles (bottom), with 1 < ptrig
T < 3 GeV/c and associated charged

particles with 1 < passoc
T < 3 GeV/c, in low-multiplicity (10 ≤ Noffline

trk < 20, left) and high-
multiplicity (105 ≤ Noffline

trk < 150, right) pp collisions at
√

s = 13 TeV.

Figure 1 shows the 2D ∆η–∆φ correlation functions, for pairs of a charged (top), a K0
S (mid-

dle), or a Λ/Λ (bottom) trigger particle with a charged associated particle, in low-multiplicity
(10 ≤ Noffline

trk < 20, left) and high-multiplicity (105 ≤ Noffline
trk < 150, right) pp collisions at√

s = 13 TeV. Both trigger and associated particles are selected from the pT range of 1–3 GeV/c.
For all three types of particles at high multiplicity, in addition to the correlation peak near
(∆η, ∆φ) = (0, 0) that results from jet fragmentation, a long-range ridge structure is seen at
∆φ ≈ 0 extending at least 4 units in |∆η|, while such a structure is not observed in low multi-
plicity events. On the away-side (∆φ ≈ π) of the correlation functions, a long-range structure is
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also seen and found to exhibit a much larger magnitude compared to that on the near-side for
this pT range. This away-side correlation structure contains contributions from back-to-back
jets, which need to be accounted for before extracting any other source of correlations.

To investigate the observed correlations in finer detail, the 2D distributions shown in Fig. 1 are
reduced to one-dimensional (1D) distributions in ∆φ by averaging over |∆η| < 1 (defined as
the “short-range region”) and |∆η| > 2 (defined as the “long-range region”), respectively, as
done in Refs. [1, 4, 13, 14]. Figure 2 shows examples of 1D ∆φ correlation functions for trigger
particles composed of inclusive charged particles (left), K0

S particles (middle), and Λ/Λ parti-
cles (right), in the multiplicity range 10 ≤ Noffline

trk < 20 (open symbols) and 105 ≤ Noffline
trk < 150

(filled symbols). The curves show the Fourier fits from Eq. (4) to the long-range region, which
will be discussed in detail in Section 5.2. To represent the correlated portion of the associated
yield, each distribution is shifted to have zero associated yield at its minimum following the
standard zero-yield-at-minimum (ZYAM) procedure [43]. An enhanced correlation at ∆φ ≈ 0
in the long-range region is observed for 105 ≤ Noffline

trk < 150, while such a structure is not
presented for 10 ≤ Noffline

trk < 20. As illustrated in Fig. 1 (right), the near-side long-range ridge
structure remains nearly constant in ∆η. Therefore, the near-side jet correlation can be ex-
tracted by taking a difference of 1D ∆φ projections between the short- and long-range regions,
as shown in the bottom panels in Fig. 2.
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Figure 2: The 1D ∆φ correlation functions for the long-range (top) and short- minus long-range
(bottom) regions after applying the ZYAM procedure in the multiplicity range 10 ≤ Noffline

trk <

20 (open symbols) and 105 ≤ Noffline
trk < 150 (filled symbols) of pp collisions at

√
s = 13 TeV, for

trigger particles composed of inclusive charged particles (left, crosses), K0
S particles (middle,

squares), and Λ/Λ particles (right, circles). A selection of 1–3 GeV/c for both ptrig
T and passoc

T is
used in all cases.

After subtracting the results, with the ZYAM procedure applied, for low-multiplicity 10 ≤
Noffline

trk < 20 scaled by Yjet/Yjet(10 ≤ Noffline
trk < 20) as in Eq. (7), the long-range 1D ∆φ cor-

relation functions in the high-multiplicity range 105 ≤ Noffline
trk < 150 for pp collisions at
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√
s = 13 TeV are shown in Fig. 3, for trigger particles composed of inclusive charged parti-

cles (left), K0
S (middle), and Λ/Λ (right) particles. A “double-ridge” structure on the near and

away side is observed after subtraction of jet correlations. The shape of this structure, which
is dominated by a second-order Fourier component, is similar to what has been observed in
pPb [4–7] and PbPb [13–17] collisions.
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Figure 3: The 1D ∆φ correlation functions for the long-range regions in the multiplicity range
105 ≤ Noffline

trk < 150 of pp collisions at
√

s = 13 TeV, after subtracting scaled results from
10 ≤ Noffline

trk < 20 with the ZYAM procedure applied. A selection of 1–3 GeV/c for both ptrig
T

and passoc
T is used in all cases.

5.2 Two-particle fourier harmonics vn

Fourier coefficients, Vn∆, extracted from 1D ∆φ two-particle correlation functions for the long-
range ∆η region using Eq. (4), are first studied for inclusive charged hadrons. Figure 4 shows
the V2∆ and V3∆ values for pairs of inclusive charged particles averaged over 0.3 < pT <
3.0 GeV/c as a function of multiplicity in pp collisions at

√
s = 13 TeV, before and after correct-

ing for back-to-back jet correlations estimated from low-multiplicity data (10 ≤ Noffline
trk < 20).

The Vn∆ results for 5 and 7 TeV are equal to the 13 TeV results within the uncertainties.

Before corrections, the V2∆ coefficients are found to remain relatively constant as a function of
multiplicity. This behavior is very different from the PYTHIA 8 tune CUETP8M1 MC simulation,
where the only source of long-range correlations is back-to-back jets and the V2∆ coefficients
decrease with Noffline

trk . The V3∆ coefficients found using the PYTHIA 8 simulation are always
negative because of dominant contributions at ∆φ ≈ π from back-to-back jets [15], with their
magnitudes decreasing as a function of Noffline

trk . A similar trend is seen in the data for the
low multiplicity region, Noffline

trk < 90. However, for Noffline
trk ≥ 90, the V3∆ coefficients in pp

data change to positive values. This transition directly indicates a new phenomena that is not
present in the PYTHIA 8 simulation. After applying the jet correction procedure detailed in
Section 4.1, V2∆ exhibits an increase with multiplicity for Noffline

trk . 100, and reaches a relatively
constant value for the higher Noffline

trk region. The V3∆ values after subtraction of jet correlations
become positive over the entire multiplicity range and increase with multiplicity.

The elliptic (v2) and triangular (v3) flow harmonics for charged particles with 0.3 < pT <
3.0 GeV/c, after applying the jet correction procedure, are then extracted from the two-particle
Fourier coefficients obtained using Eq. (5), and are shown in Fig. 5 for pp collisions at

√
s = 5,

7, and 13 TeV. The previously published pPb data at
√sNN = 5 TeV and PbPb data at

√sNN =
2.76 TeV [43] are also shown for comparison among different collision systems.

Within experimental uncertainties, for pp collisions at all three energies, there is no or only a
very weak energy dependence for the vsub

2 values. The vsub
2 results for pp collisions show a



12 5 Results

offline
trkN

0 50 100 150

∆2V

0

2

4

6

3−10×

No sub.
Low mult. sub.

 = 13 TeVsCMS pp 

| > 2η∆|
 < 3 GeV/c

T
0.3 < p

PYTHIA8
PYTHIA8 sub.

offline
trkN

0 50 100 150

∆3V
1.0−

0.5−

0.0

3−10×

No sub.
Low mult. sub.

 = 13 TeVsCMS pp 

| > 2η∆|
 < 3 GeV/c

T
0.3 < p

PYTHIA8
PYTHIA8 sub.

Figure 4: The second-order (left) and third-order (right) Fourier coefficients, V2∆ and V3∆, of
long-range (|∆η| > 2) two-particle ∆φ correlations as a function of Noffline

trk for charged particles,
averaged over 0.3 < pT < 3.0 GeV/c, in pp collisions at

√
s = 13 TeV, before (open) and after

(filled) correcting for back-to-back jet correlations, estimated from the 10 ≤ Noffline
trk < 20 range.

Results from PYTHIA 8 tune CUETP8M1 simulation are shown as curves. The error bars corre-
spond to statistical uncertainties, while the shaded areas denote the systematic uncertainties.

similar pattern as the pPb results, becoming relatively constant as Noffline
trk increases, while the

PbPb results show a moderate increase over the entire Noffline
trk range shown in Fig. 5. Overall,

the pp data show a smaller vsub
2 signal than pPb data over a wide multiplicity range, and both

systems show smaller vsub
2 values than for the PbPb system.

The vsub
3 values of the pp data are comparable to those observed in pPb and PbPb collisions in

the very low multiplicity region Noffline
trk < 60, although systematic uncertainties are large for all

the three systems. At higher Noffline
trk , vsub

3 in pp collisions increases with multiplicity, although
at a slower rate than observed in pPb and PbPb collisions.

The v2 values reported by the ATLAS collaboration for pp collisions at
√

s = 13 TeV in Ref. [2]
have a different multiplicity dependence than the results presented in this paper. A nearly con-
stant v2 value is observed over the entire multiplicity range. This distinct difference, especially
in the low multiplicity region, is rooted in the different approaches employed in identifying
the v2 signal from jet-like correlations. In the method from CMS and also previous ATLAS and
ALICE analyses [5, 6, 54], v2 is always extracted with respect to all of the particles in each event.
As seen in Eq. (4), the Fourier coefficients in the current analysis represent an oscillation mul-
tiplied by the full Nassoc. In the new approach by the ATLAS collaboration [2], v2 is extracted
with respect to a subset of particles in each event. In Ref. [2], their equivalent of our Eq. (4) uses
a smaller number than the full Nassoc in the events, thereby assuming that some of the particles
do not participate in the underlying processes producing the observed azimuthal correlations.
As a result, using the method of Ref. [2], a cos(2∆φ) modulation with exactly the same ampli-
tude would yield a bigger Vn∆ parameter compared to that found using Eq. (4). This, in turn,
leads to larger v2 values comparing to results obtained with respect to all of the particles. The
difference between the two methods becomes larger as Noffline

trk decreases. It was checked that
when applying exactly the same kinematic selections and analysis methods, no discrepancy
is found between the two experiments. In the study of v2 from multiparticle correlations, as
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Figure 5: The vsub
2 (top) and vsub

3 (bottom) results of charged particles as a function of Noffline
trk ,

averaged over 0.3 < pT < 3.0 GeV/c, in pp collisions at
√

s = 5, 7, and 13 TeV, pPb collisions
at
√sNN = 5 TeV, and PbPb collisions

√sNN = 2.76 TeV, after correcting for back-to-back jet
correlations estimated from low-multiplicity data. The error bars correspond to the statistical
uncertainties, while the shaded areas denote the systematic uncertainties. Systematic uncer-
tainties are found to have no dependence on

√
s for pp results and therefore are only shown

for 13 TeV.

will be discussed in Section 5.3, the v2 is always considered with respect to all the particles in
the event for each multiplicity class, which is consistent with the method used in this paper to
extract v2 from two-particle correlations.

The v2 results as a function of pT for high-multiplicity pp events at
√

s = 5, 7, and 13 TeV
are shown in Fig. 6 before (left) and after (right) correcting for jet correlations. To compare
results with similar average Noffline

trk , 105 ≤ Noffline
trk < 150 is chosen for 13 TeV while 110 ≤

Noffline
trk < 150 is chosen for 5 and 7 TeV. Little energy dependence is observed for the pT-

differential v2 results, especially before correcting for jet correlations, as shown in Fig. 6 (left).
This conclusion also holds after jet correction procedure for vsub

2 results (Fig. 6, right) within
systematic uncertainties, although systematic uncertainties for vsub

2 are significantly higher at
high pT because of the large magnitude of the subtracted term. This observation is consistent
with the energy independence of associated long-range yields on the near-side reported in
Ref. [3]. The observed pT dependence of vsub

2 , in high-multiplicity pp events with peak values
at 2–3 GeV/c at various energies, is similar to that in pPb [38, 43, 54] and PbPb [14, 55, 56]
collisions.
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Figure 6: The v2 results of inclusive charged particles, before (left) and after (right) subtracting
correlations from low-multiplicity events, as a function of pT in pp collisions at

√
s = 13 TeV for

105 ≤ Noffline
trk < 150 and at

√
s = 5, 7 TeV for 110 ≤ Noffline

trk < 150. The error bars correspond
to the statistical uncertainties, while the shaded areas denote the systematic uncertainties. Sys-
tematic uncertainties are found to have no dependence on

√
s for pp results and therefore are

only shown for 13 TeV.
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Figure 7: The v2 results for inclusive charged particles, K0
S and Λ/Λ particles as a function

of pT in pp collisions at
√

s = 13 TeV, for 10 ≤ Noffline
trk < 20 (left) and 105 ≤ Noffline

trk < 150
(right). The error bars correspond to the statistical uncertainties, while the shaded areas denote
the systematic uncertainties.
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Figure 8: Top: the vsub
2 results of inclusive charged particles, K0

S and Λ/Λ particles as a function
of pT for 105 ≤ Noffline

trk < 150, after correcting for back-to-back jet correlations estimated from
low-multiplicity data. Bottom: the nq-scaled vsub

2 results for K0
S and Λ/Λ particles as a function

of KET/nq. Ratios of vsub
2 /nq for K0

S and Λ/Λ particles to a smooth fit function of data for K0
S

particles are also shown. The error bars correspond to the statistical uncertainties, while the
shaded areas denote the systematic uncertainties.

The dependence of the elliptic flow harmonic on particle species can shed further light on the
nature of the correlations. The v2 data as a function of pT for identified K0

S and Λ/Λ particles
are extracted for pp collisions at

√
s = 13 TeV. Figure 7 shows the results for a low (10 ≤

Noffline
trk < 20) and a high (105 ≤ Noffline

trk < 150) multiplicity range before applying the jet
correction procedure.

At low multiplicity (Fig. 7 left), the v2 values are found to be similar for charged particles, K0
S

and Λ/Λ hadrons across most of the pT range within statistical uncertainties, similar to the ob-
servation in pPb collisions at

√sNN = 5 TeV [39]. This would be consistent with the expectation
that back-to-back jets are the dominant source of long-range correlations on the away side in
low-multiplicity pp events. Moving to high-multiplicity pp events (105 ≤ Noffline

trk < 150, Fig. 7



16 5 Results

right), a clear deviation of v2 among various particle species is observed. In the lower pT re-
gion of . 2.5 GeV/c, the v2 value of K0

S is greater than that of Λ/Λ at a given pT value. Both are
consistently below the inclusive charged particle v2 values. Since most charged particles are
pions in this pT range, this indicates that lighter particle species exhibit a stronger azimuthal
anisotropy signal. A similar trend was first observed in AA collisions at RHIC [57, 58], and
later also seen in pPb collisions at the LHC [38, 39]. This behavior is found to be qualitatively
consistent with hydrodynamic models [44, 45]. At pT > 2.5 GeV/c, the v2 values of Λ/Λ parti-
cles become greater than those of K0

S particles. This reversed ordering of K0
S and Λ/Λ at high

pT is similar to what was previously observed in pPb and PbPb collisions [39].

After applying the correction for jet correlations, the vsub
2 results as a function of pT for 105 ≤

Noffline
trk < 150 are shown in Fig. 8 (top) for the identified particles and charged hadrons. The

vsub
2 values for all three types of particles are found to increase with pT, reaching 0.08–0.10 at

2 < pT < 3 GeV/c, and then to decrease for higher pT values. The particle mass ordering of v2
values in the lower pT region is also observed after applying jet correction procedure, while at
higher pT the ordering is reversed. As done in Ref. [39], the scaling behavior of vsub

2 divided
by the number of constituent quarks, nq, as a function of transverse kinetic energy per quark,
KET/nq, is investigated for high-multiplicity pp events in Fig. 8 (bottom). The dashed curve
corresponds to a polynomial fit to the K0

S data. The ratio of nq-scaled vsub
2 results for K0

S and
Λ/Λ particles divided by this polynomial function fit is also shown in Fig. 8 (bottom). An
approximate scaling is seen for KET/nq & 0.2 GeV within about ±10%.

5.3 Multi-particle correlations and collectivity
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Figure 9: The c2{4} (left) and c2{6} (right) values as a function of Noffline
trk for charged particles,

averaged over 0.3 < pT < 3.0 GeV/c and |η| < 2.4, in pp collisions at
√

s = 5, 7, and 13 TeV.
The pPb data at

√sNN = 5 TeV are also plotted for comparison. The error bars correspond to the
statistical uncertainties, while the shaded areas denote the systematic uncertainties. Systematic
uncertainties are found to have no dependence on

√
s for pp results and therefore are only

shown for 13 TeV.

To further reduce the residual jet correlations on the away side and explore the possible collec-
tive nature of the long-range correlations, a four- and six-particle cumulant analysis is used to
extract the elliptic flow harmonics, v2{4} and v2{6}. The four-particle cumulant c2{4} values
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for charged particles with 0.3 < pT < 3.0 GeV/c are shown in Fig. 9 (left), as a function of Noffline
trk

for pp collisions at
√

s = 5, 7, and 13 TeV. The pPb data at
√sNN = 5 TeV [43] are also plotted for

comparison. The six-particle cumulant c2{6} values for pp collisions at
√

s = 13 TeV are shown
in Fig. 9 (right), compared with pPb data at

√sNN = 5 TeV [43]. Due to statistical limitations,
c2{6} values are only derived for high multiplicities (i.e., Noffline

trk ≈ 100) for 13 TeV pp data.

The c2{4} values for pp data at all energies show a decreasing trend with increasing multi-
plicity, similar to that found for pPb collisions. An indication of energy dependence of c2{4}
values is seen in Fig. 9 (left), where c2{4} tends to be more positive for a given Noffline

trk range
at lower

√
s energies. As average pT values are slightly smaller at lower collision energies, the

observed energy dependence may be related to smaller negative contribution to c2{4} from
smaller pT-averaged v2{4} signals. In addition, when selecting from a fixed multiplicity range,
a larger positive contribution to c2{4} from larger jet-like correlations in the much rarer high-
multiplicity events in lower energy pp collisions can also result in an energy dependence. At
Noffline

trk ≈ 60 for 13 TeV pp data, the c2{4} values become and remain negative as the multi-
plicity increases further. This behavior is similar to that observed for pPb data where the sign
change occurs at Noffline

trk ≈ 40, indicating a collective v2{4} signal [59]. For pp data at
√

s = 5
and 7 TeV, no significant negative values of c2{4} are observed within statistical uncertainties.

offline
trkN

0 50 100 150

2v

0.05

0.10  = 13 TeVspp 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

CMS

|>2}η∆{2, |sub
2v
{4}2v
{6}2v
{8}2v
{LYZ}2v

offline
trkN

0 100 200 300

2v

0.05

0.10  = 2.76 TeVNNsPbPb 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

offline
trkN

0 100 200 300

2v

0.05

0.10  = 5 TeVNNspPb 

 < 3.0 GeV/c
T

0.3 < p

| < 2.4η|

Figure 10: Left: The vsub
2 , v2{4} and v2{6} values as a function of Noffline

trk for charged particles,
averaged over 0.3 < pT < 3.0 GeV/c and |η| < 2.4, in pp collisions at

√
s = 13 TeV. Middle: The

vsub
2 , v2{4}, v2{6}, v2{8}, and v2{LYZ} values in pPb collisions at

√sNN = 5 TeV [40]. Right:
The vsub

2 , v2{4}, v2{6}, v2{8}, and v2{LYZ} values in PbPb collisions at
√sNN = 2.76 TeV [40].

The error bars correspond to the statistical uncertainties, while the shaded areas denote the
systematic uncertainties.

To obtain v2{4} and v2{6} results using Eq. (10), the cumulants are required to be at least
two standard deviations away from their physics boundaries (i.e. c2{4}/σc2{4} < −2 and
c2{6}/σc2{6} > 2), so that the statistical uncertainties can be propagated as Gaussian fluctu-
ations [60]. The v2{4} and v2{6} results, averaged over 0.3 < pT < 3.0 GeV/c and |η| < 2.4,
for pp collisions at

√
s = 13 TeV are shown in the left panel of Fig. 10, as a function of event

multiplicity. The v2 data obtained from long-range two-particle correlations after correcting for
jet correlations (vsub

2 ) are also shown for comparison.

Within experimental uncertainties, the multi-particle cumulant v2{4} and v2{6} values in high-
multiplicity pp collisions are consistent with each other, similar to what was observed previ-
ously in pPb and PbPb collisions [40]. This provides strong evidence for the collective nature of
the long-range correlations observed in pp collisions. However, unlike for pPb and PbPb colli-
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sions where v2{2} values show a larger magnitude than multi-particle cumulant v2 results, the
v2 values obtained from two-, four-, and six-particle correlations are comparable in pp colli-
sions at

√
s = 13 TeV within uncertainties. In the context of hydrodynamic models, the relative

ratios of v2 among two- and various orders of multi-particle correlations provide insights to the
details of initial-state geometry fluctuations in pp and pPb systems. As shown in Ref. [46], the
ratio of v2{4} to v2{2} is related to the total number of fluctuating sources in the initial stage of
a collision. The comparable magnitudes of v2{2} and v2{4} signals observed in pp collisions,
compared to pPb collisions at similar multiplicities, may indicate a smaller number of initial
fluctuating sources that drive the long-range correlations seen in the final state. Meanwhile, it
remains to be seen whether other proposed mechanisms [32–34] in interpreting the long-range
correlations in pPb and PbPb collisions can also describe the features of multi-particle correla-
tions seen in pp collisions.

6 Summary
The CMS detector has been used to measure two- and multi-particle azimuthal correlations
with K0

S, Λ/Λ and inclusive charged particles over a broad pseudorapidity and transverse
momentum range in pp collisions at

√
s = 5, 7, and 13 TeV. With the implementation of high-

multiplicity triggers during the LHC 2010 and 2015 pp runs, the correlation data are explored
over a broad particle multiplicity range. The observed long-range (|∆η| > 2) correlations are
quantified in terms of azimuthal anisotropy Fourier harmonics (vn). The elliptic (v2) and trian-
gular (v3) flow Fourier harmonics are extracted from long-range two-particle correlations. After
subtracting contributions from back-to-back jet correlations estimated using low-multiplicity
data, the v2 and v3 values are found to increase with multiplicity for Noffline

trk . 100, and reach
a relatively constant value at higher values of Noffline

trk . The pT dependence of the v2 harmonics
in high-multiplicity pp events is found to have no or very weak dependence on the collision
energy. In low-multiplicity events, similar v2 values as a function of pT are observed for in-
clusive charged particles, K0

S and Λ/Λ, possibly reflecting a common back-to-back jet origin
of the correlations for all particle species. Moving to the higher-multiplicity region, a parti-
cle species dependence of v2 is observed with and without correcting for jet correlations. For
pT . 2 GeV/c, the v2 of K0

S is found to be larger than that of Λ/Λ. This behavior, which is con-
sistent with predictions of hydrodynamic models, is similar to what was previously observed
for identified particles produced in pPb and AA collisions at RHIC and the LHC. This mass
ordering is reversed at higher pT values. Finally, v2 signals based on four- and six-particle cor-
relations are observed for the first time in pp collisions. The v2 values obtained with two-, four-,
and six-particle correlations at

√
s = 13 TeV are found to be comparable within uncertainties.

These observations provide strong evidence supporting the interpretation of a collective origin
for the observed long-range correlations in high-multiplicity pp collisions.
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Université de Mons, Mons, Belgium
N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
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J.D. Ruiz Alvarez, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger8, M. Finger Jr.8

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim9,10, E. El-khateeb11, E. Salama12,11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
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Bihan, K. Skovpen, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
S. Gadrat
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A. Braghieria, A. Magnania ,b, P. Montagnaa ,b, S.P. Rattia ,b, V. Rea, C. Riccardia ,b, P. Salvinia,
I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd
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