Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments

(*MINOS Collaboration)

1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
2Institute of Modern Physics, East China University of Science and Technology, Shanghai
3Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 USA
4Argonne National Laboratory, Argonne, Illinois 60439, USA
5Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Physics Department, University of Wisconsin, Madison, Wisconsin 53706, USA

Department of Physics, Yale University, New Haven, Connecticut 06520, USA

Subdepartment of Particle Physics, University of Oxford, Oxford OX1 3RH, United Kingdom

Brookhaven National Laboratory, Upton, New York 11973, USA

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom

Lancaster University, Lancaster, LA1 4YB, UK

Department of Physics, National Taiwan University, Taipei

National United University, Miao-Li

Nanjing University, Nanjing

Institute of High Energy Physics, Beijing

Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

Instituto de Física, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil

Chinese University of Hong Kong, Hong Kong

Institute of Physics, National Chiao-Tung University, Hsinchu

Shandong University, Jinan

School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

Department of Engineering Physics, Tsinghua University, Beijing

Shenzhen University, Shenzhen

North China Electric Power University, Beijing

Sun Yat-Sen (Zhongshan) University, Guangzhou

Joint Institute for Nuclear Research, Dubna, Moscow Region

Physics Department, Tufts University, Medford, Massachusetts 02155, USA

Indiana University, Bloomington, Indiana 47405, USA

University of Minnesota, Minneapolis, Minnesota 55455, USA

Siena College, Loudonville, New York 12211, USA

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA

Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, USA

Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Lawrence Berkeley National Laboratory, Berkeley, California, 94720 USA

Universidade Estadual de Campinas, IFGW, CP 6165, 13083-970, Campinas, SP, Brazil

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Holy Cross College, Notre Dame, Indiana 46556, USA

Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, SP, Brazil

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Department of Physics, University of Minnesota Duluth, Duluth, Minnesota 55812, USA

Department of Physics, University of Warsaw, PL-02-093 Warsaw, Poland

Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai

Beijing Normal University, Beijing

Department of Physics, University of Houston, Houston, Texas 77204, USA

Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

China Institute of Atomic Energy, Beijing

University of Science and Technology of China, Hefei

Department of Physics, Stanford University, Stanford, California 94305, USA

School of Physics, Nankai University, Tianjin

Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA

Dongguan University of Technology, Dongguan

Department of Physics, University of California, Berkeley, California 94720, USA

Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, United Kingdom

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Xi'an Jiaotong University, Xi'an

Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Lauritsen Laboratory, California Institute of Technology, Pasadena, California 91125, USA

Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA

Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA

Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

China General Nuclear Power Group

Otterbein University, Westerville, Ohio 43081, USA

Department of Physics, University of Athens, GR-15771 Athens, Greece

College of Electronic Science and Engineering, National University of Defense Technology, Changsha

Physics Department, Texas A&M University, College Station, Texas 77843, USA
The discovery of neutrino flavor oscillations \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} marked a crucial milestone in the history of particle physics. It indicates neutrinos undergo mixing between flavor and mass eigenstates and hence carry nonzero mass. It also represents the first evidence of physics beyond the standard model of particle physics. Since then, neutrino oscillations have been confirmed and precisely measured with data from natural (atmospheric and solar) and man-made (reactor and accelerator) neutrino sources.

The majority of neutrino oscillation data available can be well described by a three-flavor neutrino model \footnote{14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g} in agreement with precision electroweak measurements from collider experiments \footnote{PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g} \footnote{Keywords: light sterile neutrino, MINOS, Daya Bay}. A few experimental results, however, including those from the Liquid Scintillator Neutrino Detector (LSND) \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} and MiniBooNE \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} experiments, cannot be explained by three-neutrino mixing. Both experiments observed an electron antineutrino excess in a muon antineutrino beam over short baselines, suggesting mixing with a new neutrino state with mass-squared splitting $\Delta m_{31}^2 \gg \Delta m_{32}^2$, where $\Delta m_{\mu}^2 = m_{\mu}^2 - m_{\tau}^2$, and m_i is the mass of the ith mass eigenstate. Precision electroweak measurements exclude standard couplings of this additional neutrino state for masses up to half the Z-boson mass, so that states beyond the known three active states are referred to as sterile. New light neutrino states would open a new sector in particle physics; thus, confirming or refuting these results is at the forefront of neutrino physics research.

Mixing between one or more light sterile neutrinos and the active neutrino flavors would have discernible effects on neutrino oscillation measurements. Oscillations from muon to electron (anti)neutrinos driven by a sterile neutrino require electron and muon neutrino flavors to couple to the additional neutrino mass eigenstates. Consequently, oscillations between active and sterile states will also necessarily result in the disappearance of muon (anti)neutrinos, as well as of electron (anti)neutrinos \footnote{10.11.10}, independently of the sterile neutrino model considered \footnote{10.11.10} \footnote{10.11.11}.

In this Letter, we report results from a joint analysis developed in parallel to the independent sterile neutrino searches from the Daya Bay \footnote{14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g} and the MINOS \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} experiments. In this analysis, the measurement of muon (anti)neutrino disappearance by the MINOS experiment is combined with electron antineutrino disappearance measurements from the Daya Bay and Bugey-3 \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} experiments using the signal confidence level (CL_s) method \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)}. The combined results are analyzed in light of the muon (anti)neutrino to electron (anti)neutrino appearance indications from the LSND \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} and MiniBooNE \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} experiments. The independent MINOS, Daya Bay, and Bugey-3 results are all obtained from disappearance measurements and therefore are insensitive to CP-violating effects due to mixing between the three active flavors. Under the assumption of CPT invariance, the combined results shown constrain both neutrino and antineutrino appearance.

The results reported here required several novel improvements developed independently from the Daya Bay-only \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} and MINOS-only \footnote{Chongqing University, Chongqing (Dated: October 9, 2016)} analyses, specifically: a full reanalysis of the MINOS data to search for sterile neutrino mixing, based on the CL_s method, a CL_s-based analysis of the Bugey-3 results taking into account new reactor flux calculations and the Daya Bay experiment’s reactor flux measurement, the combination of the Daya Bay results with the Bugey-3 results taking into account correlated systematics between the experiments, and, finally, the combination of the Daya Bay + Bugey-3 and MINOS results to place stringent constraints on electron neutrino and antineutrino appearance driven by sterile neutrino oscillations.

We adopt a minimal extension of the three-flavor neutrino model by including one sterile flavor and one additional mass eigenstate. This 3+1 sterile neutrino scenario is referred to as the \textit{four-flavor model} in the text. In this model, the muon to electron neutrino appearance probability $P_{\nu\mu\rightarrow\nu_e}(L/E)$ as a function of the propagation length L, divided by the neutrino energy E, can be expressed using a 4×4 unitary mixing matrix, U, by

$$P_{\nu\mu\rightarrow\nu_e}(L/E) = \left| \sum_i U_{li}U_{ei}^* e^{-i(m_i^2/2E)L} \right|^2 \tag{1}$$

In the region where $\Delta m_{41}^2 \gg |\Delta m_{32}^2|$ and for short baselines ($|\Delta m_{32}^2 L/4E| \sim 0$), Eq. (1) can be simplified to
\[
P_{\nu_{e} \rightarrow \nu_{e}}(L/E) \approx 4 |U_{e4}|^2 |U_{\mu 4}|^2 \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right) \approx P_{\nu_{\mu} \rightarrow \bar{\nu}_{e}}. \tag{2}
\]

A nonzero amplitude for the appearance probability, \(4 |U_{e4}|^2 |U_{\mu 4}|^2\), is a possible explanation for the MiniBooNE and LSND results. The matrix element \(|U_{e4}|^2\) can be constrained with measurements of electron antineutrino disappearance, as in the Daya Bay [14] and Bugey-3 [16] experiments. Likewise, \(|U_{\mu 4}|^2\) can be constrained with measurements of muon neutrino and antineutrino disappearance, as in the MINOS [15] experiment. For these experiments, the general four-neutrino survival probabilities \(P_{\nu_{e} \rightarrow \nu_{e}}(L/E)\) and \(P_{\nu_{\mu} \rightarrow \bar{\nu}_{e}}(L/E)\) are

\[
P_{\nu_{e} \rightarrow \nu_{e}}(L/E) = 1 - 4 \sum_{k>j} |U_{ek}|^2 |U_{ej}|^2 \sin^2 \left(\frac{\Delta m_{24}^2 L}{4E} \right), \tag{3}
\]

\[
P_{\nu_{\mu} \rightarrow \bar{\nu}_{e}}(L/E) = 1 - 4 \sum_{k>j} |U_{\mu k}|^2 |U_{\mu j}|^2 \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E} \right). \tag{4}
\]

The mixing matrix augmented with one sterile state can be parametrized by

\[
U = R_{34}R_{24}R_{14}R_{23}R_{13}R_{12} \tag{19}, \text{ where } R_{ij} \text{ is the rotation matrix for the mixing angle } \theta_{ij}, \text{ yielding}
\]

\[
|U_{e4}|^2 = \sin^2 \theta_{14},
|U_{\mu 4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14},
4 |U_{e4}|^2 |U_{\mu 4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{14}. \tag{5}
\]

Searches for sterile neutrinos are carried out by using the reconstructed energy spectra to look for evidence of oscillations driven by the sterile mass-squared difference \(\Delta m_{31}^2\). For small values of \(\Delta m_{41}^2\), corresponding to slow oscillations, the energy-dependent shape of the oscillation probability could be measured in the reconstructed energy spectra. For large values corresponding to rapid oscillations, an overall reduction in neutrino flux would be seen. The \(C_{L_s}\) method [17][18] is a two-hypothesis test that compares the three-flavor (null) hypothesis (labeled 3ν) to an alternate four-flavor hypothesis (labeled 4ν). To determine if the four-flavor hypothesis can be excluded, we construct the test statistic \(\Delta \chi^2 = \chi_{4\nu}^2 - \chi_{3\nu}^2\), where \(\chi_{4\nu}^2\) is the \(\chi^2\) value resulting from a fit to a four-flavor hypothesis, and \(\chi_{3\nu}^2\) is the \(\chi^2\) value from a fit to the three-flavor hypothesis. The \(\Delta \chi^2\) observed with data, \(\Delta \chi_{obs}^2\), is compared to the \(\Delta \chi^2\) distributions expected if the three-flavor hypothesis is true, or the four-flavor hypothesis is true. To quantify this, we construct

\[
C_{L_b} = P(\Delta \chi^2 \geq \Delta \chi_{obs}^2|3\nu),
C_{L_{s+b}} = P(\Delta \chi^2 \geq \Delta \chi_{obs}^2|4\nu),
C_{L_s} = \frac{C_{L_{s+b}}}{C_{L_b}}. \tag{6}
\]

over a grid of \((\sin^2 2\theta_{14}, \Delta m_{31}^2)\) points for the Daya Bay + Bugey-3 experiments and a grid of \((\sin^2 \theta_{24}, \Delta m_{31}^2)\) for the MINOS experiment. \(C_{L_b}\) measures consistency with the three-flavor hypothesis, and \(C_{L_{s+b}}\) measures the agreement with the four-flavor hypothesis. The alternate hypothesis is excluded if the experiment is sensitive to it. For these experiments, the gen-

The MINOS experiment [22] operates two functionally equivalent detectors separated by 734 km. The detectors sample the NuMI neutrino beam [23], which yields events with an energy spectrum that peaks at about 3 GeV. Both detectors are magnetized steel and scintillator calorimeters, with the 1 kton Near Detector (ND) situated 1 km downstream of the NuMI production target, and the 5.4 kton Far Detector (FD) located at the Soudan Underground Laboratory [22]. The analysis reported here uses data from an exposure of 10.56 \times 10^{20} protons on target, for which the neutrino beam composition is 91.8% \(\nu_{e}, 6.9\% \bar{\nu}_{\mu}, \text{ and 1.3}\% (\nu_{\mu} + \bar{\nu}_{e})\). To look for sterile neutrino mixing, the MINOS experiment uses the reconstructed energy spectra in the ND and FD of both charged-current (CC) and neutral-current (NC) neutrino interactions. The sterile mixing signature differs depending on the range of \(\Delta m_{31}^2\) values considered. For \(\Delta m_{31}^2 \in (0.005, 0.05) \text{ eV}^2\), the muon neutrino CC spectrum in the FD would display deviations from three-flavor oscillations. For rapid oscillations driven by \(\Delta m_{41}^2 \in (0.05, 0.5) \text{ eV}^2\), the combination of finite detector energy resolution and rapid oscillations at the FD location would result in an apparent event rate depletion between the ND and FD. For larger sterile neutrino masses, corresponding to \(\Delta m_{41}^2 > 0.5 \text{ eV}^2\), oscillations into sterile neutrinos would distort the ND CC energy spectrum. Additional sensitivity is obtained by analyzing the reconstructed energy spectrum for NC candidates. The NC cross sections and interaction topologies are identical for all three active neutrino flavors, rendering the NC spectrum insensitive to standard oscillations, but mixing with a sterile
neutrino state would deplete the NC energy spectrum at the FD, as the sterile neutrino would not interact in the detector. For large sterile neutrino masses, such depletion would also be measurable at the ND.

The simulated FD-to-ND ratios of the reconstructed energy spectra for ν_e CC and NC selected events, including four-flavor oscillations for both the ND and FD, are fit to the equivalent FD-to-ND ratios obtained from data [15]. Current and previous results of the MINOS sterile neutrino searches, along with further analysis details, are described in Refs. [15–26]. The MINOS experiment employs the Feldman-Cousins ordering principle [27] in obtaining exclusion limits in the four-flavor parameter space. However, this approach requires a computationally impractical joint fit to be consistent, since it requires minimizing χ^2 over Δm^2_{41}, a shared parameter between the MINOS and Daya Bay + Bugey-3 experiments. Thus, the CL_s method described above is used.

While the MINOS experiment does not have any sensitivity to $\sin^2 \theta_{14}$, there is a small sensitivity to $\sin^2 \theta_{34}$ due to the inclusion of the NC channel. During the fit, $\sin^2 \theta_{34}$ is allowed to vary freely in addition to Δm^2_{32} and $\sin^2 \theta_{23}$, while $\sin^2 \theta_{24}$ and Δm^2_{41} are held fixed to define the particular four-flavor hypothesis that is being tested. Since the constraint on $\sin^2 \theta_{34}$ is relatively weak, the distribution of $\Delta \chi^2$ deviates from the normal distribution and the Gaussian CL_s method cannot be used. The $\Delta \chi^2_{34}$, and $\Delta \chi^2_{44}$, distributions are constructed by fitting pseudoexperiments.

In the three-flavor case, pseudoexperiments are simulated using the same parameters listed in Ref. [15], i.e. $\sin^2 \theta_{12} = 0.307$, $\Delta m^2_{21} = 7.54 \times 10^{-5}$ eV2 based on a global fit to neutrino data [28], and $\sin^2 \theta_{13} = 0.022$ based on a weighted average of results from reactor experiments [29–31]. For the atmospheric oscillation parameters, equal numbers of pseudoexperiments are simulated in the upper and lower octant ($\sin^2 \theta_{23} = 0.61$ and $\sin^2 \theta_{23} = 0.41$, respectively), with $|\Delta m^2_{23}| = 2.37 \times 10^{-3}$ eV2, based on the most recent MINOS results [32]. The uncertainties on solar oscillation parameters have negligible effect on the analysis, so fixed values are used. In the four-flavor case, Δm^2_{41}, $\sin^2 \theta_{23}$, and $\sin^2 \theta_{34}$ are taken from fits to data at each ($\sin^2 \theta_{23}, \Delta m^2_{41}$) grid point. In both the three- and four-flavor cases, half of the pseudoexperiments are generated in each mass hierarchy. A comparison of MINOS exclusion contours obtained using the Feldman-Cousins procedure [15] with those obtained using the CL_s method is shown in Fig. 1.

Note that if $\Delta m^2_{41} = 2\Delta m^2_{31}$ or $\Delta m^2_{41} \ll \Delta m^2_{31}$ and $\sin^2 \theta_{23} = \sin^2 \theta_{34} = 1$, θ_{23} can take on the role normally played by θ_{23}. In these cases, the four-flavor model is degenerate with the three-flavor model, leading to regions of parameter space that cannot be excluded.

The Daya Bay experiment measures electron antineutrinos via inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$. The antineutrinos are produced by six reactor cores and detected in eight identical Gd-doped liquid-scintillator antineutrino detectors (ADs) [33] in three underground experimental halls (EHs). The flux-averaged baselines for EH1, EH2, and EH3 are 520, 570, and 1590 m, respectively. The target mass in each of the two near EHs is 40 tons, and that in the far EH is 80 tons. Details of the IBD event selection, background estimates, and assessment of systematic uncertainties can be found in Refs. [29–53]. By searching for distortions in the $\bar{\nu}_e$ energy spectra, the experiment is sensitive to $\sin^2 2\theta_{14}$ for a mass-squared splitting $\Delta m^2_{41} \in (0.0003, 0.2)$ eV2. For $\Delta m^2_{41} > 0.2$ eV2, spectral distortions cannot be resolved by the detector. Instead, the measured antineutrino flux can be compared with the predicted flux to constrain the sterile neutrino parameter space. Recently, the Daya Bay Collaboration published its measurement of the overall antineutrino flux [35]. The result is consistent with previous measurements at short baselines, which prefer 5% lower values than the latest calculations [36–37], a deficit commonly referred to as the reactor antineutrino anomaly [38]. However, the reactor spectrum measurement from the Daya Bay Collaboration [35] (and from the RENO Collaboration [30] and the Double Chooz Collaboration [31]) shows clear discrepancies with the latest calculations, which indicates an underestimation of their uncertainties. The uncertainties on the antineutrino flux models for this analysis are increased to 5% from the original 2% as suggested by Refs. [39–40]. The Daya Bay Collaboration has recently updated the sterile neutrino search result in Ref. [14] with limits on $\sin^2 2\theta_{14}$ improved by about a factor of two with respect to previous results [41]. This data set is used in producing the combined results presented here.

Two independent sterile neutrino search analyses are conducted by Daya Bay. The first analysis uses the predicted $\bar{\nu}_e$ spectrum to generate the predicted prompt spectrum for each antineutrino detector simultaneously, taking into account de-
tector effects such as energy resolution, nonlinearity, detector efficiency, and oscillation parameters described in [29]. A log-likelihood function is constructed with nuisance parameters to include the detector-related uncertainties and a covariance matrix to incorporate the uncertainties on reactor neutrino flux prediction. The Gaussian CL_{s} method is used to calculate the excluded region. The second analysis uses the observed spectra at the near sites to predict the far site spectra to further reduce the dependency on reactor antineutrino flux models. Both analyses yield consistent results [14].

The Bugey-3 experiment was performed in the early 1990s and its main goal was to search for neutrino oscillations using reactor antineutrinos. In this experiment, two 6Li-doped liquid scintillator detectors measured ν_e generated from two reactors at three different baselines (15, 40 and 95 m) [16]. The Bugey-3 experiment detected IBD interactions with the recoil neutron capturing on 6Li ($n + ^6$Li $\rightarrow ^4$He + 3H + 4.8 MeV). Probing shorter baselines than the Daya Bay experiment, the Bugey-3 experiment is sensitive to regions of parameter space allowed by the LSND experiment [6], with less noticeable effects for smaller $\Delta m^2_{\nu\bar{\nu}}$ values. The reproduced Bugey-3 limit on the sterile neutrino mixing, and the limit obtained by combining the Bugey-3 with the Daya Bay results through a χ^2 fit, with common overall normalization and oscillation parameters, are shown in Fig. 2.

Individually, the MINOS and Bugey-3 experiments are both sensitive to regions of parameter space, and the MINOS measurement allows for θ_{13} to be constrained with an uncertainty [14]. In Figs. 1 and 2, respectively. We illustrate this sensitivity in Fig. 3 which displays a comparison of the energy spectra for Bugey-3 and MINOS data to four-flavor (4ν) predictions produced at the LSND best-fit point [8] as an example. For Bugey-3, a $\Delta \chi^2$ value of 48.2 is found between the data and the four-flavor prediction. Taking equal priors between these two models, the posterior likelihood for 3ν vs 4ν is 1 vs 3.4×10^{-11} in the Bayesian framework. For the MINOS experiment, a $\Delta \chi^2$ value of 38.0 is obtained between the data and the prediction. The posterior likelihood for 3ν vs 4ν is 1 vs 5.6×10^{-9}.

In our combined analysis, we obtain $\Delta \chi^2_{obs}$ as well as $\Delta \chi^2_{4\nu}$ and $\Delta \chi^2_{3\nu}$ distributions for each $(\sin^2 2\theta_{14}, \Delta m^2_{\text{IBD}})$ grid point of the Daya Bay and Bugey-3 combination, and for each $(\sin^2 2\theta_{14}, \Delta m^2_{\text{IBD}})$ grid point from the MINOS experiment. We then combine pairs of grid points from the MINOS and the
Daya Bay and Bugey-3 results at fixed values of Δm_{41}^2 to obtain constraints on electron neutrino or antineutrino appearance due to oscillations into sterile neutrinos. Since the systematic uncertainties of accelerator and reactor experiments are largely uncorrelated, for each $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24}, \Delta m_{41}^2)$ grid point, a combined $\Delta \chi^2_{\text{obs}}$ is constructed from the sum of the corresponding MINOS and Daya Bay/Bugey-3 $\Delta \chi^2_{\text{obs}}$ values. Similarly, the combined $\Delta \chi^2_{3\nu}$ and $\Delta \chi^2_{\text{lfv}}$ distributions are constructed by adding random samples drawn from the corresponding MINOS and Daya Bay/Bugey-3 distributions. Finally, the CL$_s$ value at every $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24})$ point is calculated using Eq. (6), while the Δm_{41}^2 value is fixed. While CL$_s$ is single valued at every $(\sin^2 2\theta_{14}, \sin^2 2\theta_{24})$ point for a given value of Δm_{41}^2, it is multivalued as a function of $\sin^2 2\theta_{14}$ (cf. Eq. (5)). To obtain a single-valued function, we make the conservative choice of selecting the largest CL$_s$ value for any given $\sin^2 2\theta_{14}$. The 90% CL$_s$ exclusion contour resulting from this procedure is shown in Fig. 3. Under the assumption of CPT conservation, the combined constraints are equally valid in constraining electron neutrino or antineutrino appearance. The combined results of the Daya Bay + Bugey-3 and the MINOS experiments constrain $\sin^2 2\theta_{14}$ in the MINOS and Daya Bay/Bugey-3 experiments to $[3.0 \times 10^{-4}$ (90% CL$_s$), 4.5×10^{-4} (95% CL$_s$)] for $\Delta m_{41}^2 = 1.2$ eV2.

In conclusion, we have combined constraints on $\sin^2 2\theta_{14}$ derived from a search for electron antineutrino disappearance at the Daya Bay and Bugey-3 reactor experiments with constraints on $\sin^2 2\theta_{24}$ derived from a search for muon (anti)neutrino disappearance in the NuMI beam at the MINOS experiment. Assuming a four-flavor model of active-sterile oscillations, we constrain $\sin^2 2\theta_{14}$, the parameter controlling electron (anti)neutrino appearance at short-baseline experiments, over 6 orders of magnitude in Δm_{41}^2. We set the strongest constraint to date and exclude the sterile neutrino mixing phase space allowed by the LSND and MiniBooNE 90% CL allowed regions. Regions of parameter space to the right of the red contour are excluded. The regions excluded at 90% CL by the KARMEN2 Collaboration [45] and the NOMAD Collaboration [46] are also shown. We note that the excursion to small mixing in the exclusion contour at around $\Delta m_{41}^2 \sim 5 \times 10^{-3}$ eV2 is originated from the island in Fig. 1.
Austin for the provision of computing resources.

The Daya Bay experiment is supported in part by the Ministry of Science and Technology of China, the U.S. Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the Ministry of Education in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, and the National Commission for Scientific and Technological Research of Chile. We acknowledge Yellow River Engineering Consulting Co., Ltd. and China Railway 15th Bureau Group Co., Ltd. for building the underground laboratory. We are grateful for the ongoing cooperation from the China Guangdong Nuclear Power Group and China Light & Power Company.

Note Added.—Recently, a paper appeared by the IceCube Collaboration that sets limits using sterile-driven disappearance of muon neutrinos [45]. The results place strong constraints on \(\sin^2 2\theta_{14} \) for \(\Delta m_{14}^2 \in (0.1, 10) \) eV\(^2\). Further, a paper that reanalysed the same IceCube data in a model including nonstandard neutrino interactions also appeared [49].

* Deceased.

† Now at Department of Chemistry and Chemical Technology, Bronx Community College, Bronx, New York 10453, USA