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ABSTRACT

Photometric surveys produce large-area maps of the galaxy distribution, but
with less accurate redshift information than is obtained from spectroscopic methods.
Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors,
that are obtained through multi-band imaging to produce a probability density
function (PDF) for each galaxy in the map. We used simulated data to study the
effect of using different photo-z estimators to assign galaxies to redshift bins in order
to compare their effects on angular clustering and galaxy bias measurements. We
found that if we use the entire PDF, rather than a single-point (mean or mode)
estimate, the deviations are less biased, especially when using narrow redshift bins.
When the redshift bin widths are ∆z = 0.1, the use of the entire PDF reduces the
typical measurement bias from 5%, when using single point estimates, to 3%.

Key words: Cosmology: large-scale structure of the Universe; galaxies: distances
and redshifts; methods: statistical

1 INTRODUCTION

The analysis of the three-dimensional distribution of galax-
ies has become one of the major probes used to understand
the history of the Universe and the growth of matter pertur-
bations. Spectroscopic surveys such as WiggleZ1 (Drinkwa-
ter et al. 2010), BOSS2 (Dawson et al. 2013) and VVDS3

(Le Fèvre et al. 2004) have obtained precise maps of this
distribution and many studies have increased our knowl-
edge about the expansion history of the Universe and the
growth of structures. However, targeting galaxies and ob-
taining spectra is a slow and costly process; therefore, past
and current spectroscopic surveys have been limited to rel-
atively low redshift and a reduced number of galaxies with
respect to photometric surveys.

Multi-band imaging of wide areas of the sky is comple-
mentary to spectroscopic surveys. These photometric sur-

? jasorey@illinois.edu
1 http://wigglez.swin.edu.au/site/
2 https://www.sdss3.org/surveys/boss.php
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veys, such as the Canada-France-Hawaii Telescope Legacy
Survey (CFHTLS)4, Dark Energy Survey (DES5, Dark En-
ergy Survey Collaboration 2005) and the Large Synoptic
Survey Telescope (LSST6, Ivezić et al. 2008), enable lower
accuracy redshift estimation from the colours of millions of
galaxies without being affected by spectroscopic selection
effects.

Photometric redshifts (photo-z) are estimated by us-
ing multi-band photometry as inputs to one or more differ-
ent techniques that map galaxy photometric properties into
a redshift. These techniques can broadly be classified into
two categories; the first is known as template-based meth-
ods (Benitez 2000; Ilbert et al. 2006), in which a set of
calibrated galaxy spectral energy distributions (SEDs) is fit
to the photometric data to find the one that best represents
the observed fluxes. The second category use a spectroscopic
training set and machine learning algorithms, such as ar-

4 http://www.cfht.hawaii.edu/Science/CFHTLS/
5 http://www.darkenergysurvey.org/
6 http://www.lsst.org/lsst/
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tificial neural networks (Collister & Lahav 2004), boosted
decision trees (Gerdes et al. 2010), or prediction trees and
random forests (Carrasco Kind & Brunner 2013), to gener-
ate a photo-z PDF estimate.

Probability density functions of various astronomical
measurements have been used in cosmological analyses, for
example, luminosity functions (Sheth 2007), weak lens-
ing (Mandelbaum et al. (2008)), cluster identification (van
Breukelen & Clewley 2009), the real-space clustering of
quasars (Myers, White & Ball 2009) and tomographic mag-
nification (Morrison et al. 2012). However, a systematic
analysis of the use of photometric redshift PDFs in galaxy
clustering has not been performed, mostly due to the lack
of reliable PDF estimation and its computational cost.

In this work, we study how the angular clustering of
galaxies depends on the chosen photo-z estimate and on the
photo-z bin width, by using realistic simulations to compare
clustering measurements based on photometric and spec-
troscopic redshifts. We also show how to include the full
probability density when estimating the angular correlation
functions, and we study the impact of using different photo-z
PDF statistics (e.g., mean, mode, and median) on estimating
the galaxy bias. In Section 2 we describe the methodology
followed in the paper. We describe the angular clustering
results and the fitting to galaxy bias in Section 3, and we
discuss these results in Section 4. Finally, we summarize the
main conclusions in Section 5.

2 METHODOLOGY

The standard approach to analyse galaxy clustering in pho-
tometric surveys begins with subdividing the catalogue into
sub-samples selected by ’top-hat’ photo-z redshift bins. The
photo-z value used to determine if a galaxy is in one or an-
other bin is usually a point estimate of the photo-z PDF. In
this paper, we quantify how angular clustering analyses are
affected by the choice of the specific photometric redshift
estimator, including one that uses the full PDF informa-
tion instead of photo-z point estimates. We address this by
measuring the clustering of a subsample of the DES-BCC
Aardvark simulation mock galaxy catalogue (Busha et al.
2013). We compared the clustering measurements given by
different photo-z estimators and when considering different
redshift bin widths. As a specific test, we quantify these dif-
ferences by fitting theoretical galaxy correlation functions
in order to estimate the linear galaxy bias, (Kaiser 1984),
as a metric to evaluate which photo-z estimator is more re-
liable (Coupon et al. 2012; Crocce et al. 2015; Soltan &
Chodorowski 2015).

2.1 Simulation Data

The mock galaxy catalogue considered here is the Aardvark
v1.0 catalogue from the Blind Cosmology Challenge (BCC)
simulations, developed for the DES. The catalogue is cre-
ated from three ΛCDM N-body dark matter simulations,
with sizes of 1050 Mpc/h, 2600 Mpc/h, 4000 Mpc/h and
14003, 20483 and 20483 particles, respectively. They were

created using Gadget-2 (Springel 2005) and initial condi-
tions given by CAMB (Lewis et al. 2000) and 2LPT (Crocce,
Pueblas & Scoccimarro 2006). The algorithm that populates
the dark matter halos with galaxies, ADDGALS (Busha et
al. 2013), follows a prescription based on SubHalo Abun-
dance Matching (SHAM) techniques, (Conroy, Wechsler &
Kravtsov 2006; Busha et al. 2013; Reddick et al. 2013). The
final catalogue is complete down to r < 25 and covers 1/4 of
the sky. Galaxy properties such as colour or luminosity are
assigned by matching a spectroscopic training sample from
the SDSS DR6 value added catalogue (Blanton et al. 2005)
at low redshift. This training is extrapolated to higher red-
shift matching the colour distribution to SDSS DR8 (Aihara
et al. 2011) and DEEP2 (Newman et al. 2013) photometric
data. Then, the output catalogue includes DES colors and
errors for each galaxy of the catalogue. These catalogues
have been compared with real data by the DES collabora-
tion (Chang at al. 2015; Leistedt et al. 2015).

The full BCC-Aardvark-v1.0c catalogue covers 10, 313
square degrees to the full DES depth, and includes a total of
1.36×109 galaxies. The simulated catalogue is stored in files
according to Healpix7 (Górski et al. 2005) pixels of nside =
8. We chose a contiguous area of the simulation by using 24
pixels, which corresponds to an area of about 1, 200 square
degrees on the sphere in order to have a significant sampling
of small scales. For our study, we have selected the galaxy
sample according to a magnitude limited cut of g < 24. This
cut corresponds to a selection in the g-band of signal-to-
noise greater than 20 in the simulation, which incorporates
the DES observed photometric error. The total number of
galaxies in the catalogue after applying the magnitude cut
is around 30 million galaxies.

2.2 Photometric redshift code

We have used the publicly available code TPZ8 (Carrasco
Kind & Brunner 2013) to estimate the galaxy redshift prob-
ability distributions. TPZ is a parallel code that estimates
photo-z PDFs using prediction trees and random forests. A
prediction tree is constructed by splitting the data in re-
cursive branches until a convergence criterion is reached. In
order to construct more robust PDFs, the code uses the ran-
dom forest technique in which NT bootstrap samples of the
training set are created and prediction trees are generated
for the NT samples. In order to include the measurement
errors, e.g., magnitude errors, NR training samples are cre-
ated by perturbing the training set according to the errors of
the measurement variables. Finally, the PDF of each galaxy
in the sample is created by combining the prediction trees.
TPZ was one of the algorithms used in the DES Science
Verification Data (Sánchez et al. 2014), and produced one
of the best performances for that dataset.

We have considered 105 galaxies as a training set, up
to the full depth and a cut in the magnitude errors avoid-
ing extremely large values in order to use all the available
magnitude-redshift information from the simulation; and we,

7 http://healpix.jpl.nasa.gov/
8 http://lcdm.astro.illinois.edu/code/mlz.html
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therefore, use less than 1% of the available data for this pur-
pose. The training set galaxies were confined to a region of
54 square degrees. The test data used for the main analysis
of this paper was directly selected from the simulation with
no cuts on magnitude errors. The effect of the redshift se-
lection of galaxies for the training set in the results is shown
in section 3.5.1.

As defined in Carrasco Kind & Brunner 2013, the con-
centration of individual galaxy PDFs, p(z), is output by
TPZ as a PDF concentration parameter called zConf. This
parameter is defined as the integrated probability between
zphz±σTPZ(1+zphz), where zphz is the photometric redshift,
and it measures the narrowness of the PDF. In this case, we
selected σTPZ = 0.075, which is similar to the 1 − σ confi-
dence interval of the PDFs. We can select different quality
cuts by using this parameter, which is related to the BPZ
ODDS parameter (Benitez 2000).

TPZ is a particular method of the MLZ framework.
MLZ is code that computes photometric redshift PDFs us-
ing machine learning techniques. It incorporates a Bayesian
combination of techniques that estimate photometric red-
shift PDFs, including both template based methods and
unsupervised machine learning algorithms (Carrasco Kind
& Brunner 2014b), and also enables an efficient storage of
the PDFs by using a sparse representation basis (Carrasco
Kind & Brunner 2014a). For simplicity, we only used TPZ
for the photometric redshifts in this paper, which is justified
by the excellent results produced by TPZ on the DES Sci-
ence Verification Data (Sánchez et al. 2014), and by the fact
that we want to study the impact of using photo-z PDFs in
clustering as produced by a single technique (to simplify the
resulting analysis). TPZ has been used, together with other
codes listed in Sánchez et al. 2014, in several DES Science
Verification Data studies (Bonnett et al. 2015; Crocce et al.
2015; Giannantonio et al. 2015; Dark Energy Survey Col-
laboration 2015).

2.3 Survey configuration: Photo-z binning

Galaxy clustering analyses in photometric surveys are usu-
ally done by measuring angular correlations of galaxy sam-
ples selected in different redshift bins. We divide the full
redshift range, which in this paper we restrict to the range
0.2 < z < 1.4, into Nz redshift bins of width ∆z in order
to reduce the extent of the projection of radial information
for 2D clustering analysis. As shown in Asorey et al. (2012)
and Eriksen & Gaztañaga (2015), the optimal photometric
redshift bins are given by shells of about twice the size of the
photometric redshift standard deviation. In this paper, we
consider different configurations: ∆z = {0.1, 0.15, 0.2, 0.3}
in order to study the evolution of photometric clustering
with bin width. The true redshift distribution of galaxies,
n(z), is shown in Figure 1, together with the redshift distri-
bution obtained by stacking TPZ PDFs. We also show (red)
the n(z) of the spectroscopic training set. For this paper,
we were only interested in a patch of the sky that covers
1, 200 square degrees, which allows us to measure the small
scale clustering and to study how it depends on the different
photo-z statistical quantities.
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Figure 1. In blue, the galaxy redshift distribution for 31 million
galaxies with g < 24 in the BCC Aadvark 1.0 catalogue in the

selected region of 1, 200 square degrees used for our analysis. The

dashed black line shows the result of stacking the individual PDFs
of all the galaxies in the sample. In red, we show the true n(z)

for the a subset of galaxies with g < 24 of the training set used

in the photo-z machine learning algorithm.

In Figure 2, we present the evolution with redshift of
the photometric redshift error, σ, for the BCC sample of
galaxies, with g < 24, given by:

σ2 =

∫
(z − z̄)2p(z)dz (1)

where z̄ is the mean redshift, defined in Equation (2) below,
and we compare it with the different redshift bin widths
that we have considered in this paper. Although the opti-
mal choice would be ∆z = 0.15 or 0.2, we also consider
extreme cases with ∆z = 0.1 or 0.3 to extend the analysis
of the dependence of photo-z clustering on this quantity. In
Figure 3, we show the normalized dispersion between the
true redshift and the mean redshift.

2.4 Photo-z estimators per galaxy

2.4.1 Single point statistics

Once we have computed photo-z PDFs with TPZ, we esti-
mate single statistical summary quantities. In this study, we
focus on the mode redshift, ẑ, and the mean redshift, z̄.

We define the mean as the first moment of the PDF,
p(z):

z̄ =

∫
zp(z)dz (2)

The mode redshift is the redshift with highest probability
in the PDF, p(z):

p(ẑ) = pmax (3)

As the output of the PDF is binned in 200 bins the used
”mode” corresponds to the redshift of the bin with the high-
est probability. Another summarization or single point es-
timate that we consider in the paper is the Monte Carlo
sampling redshift, zMC (Wittman 2009). The Monte Carlo

c© 2016 RAS, MNRAS 000, 1–19
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Figure 2. Dependence of the square root of the mean photo-z

variance, given by σ2 in Equation (1) for galaxies in small true
redshift bins, on the true redshift. Standard deviations are given

by the square root of the variance of the photo-z errors in each

bin. Dashed lines correspond to the width of the different bin
configurations treated in this paper, in order to compare the bin

widths with the photo-z dispersion for the sample considered.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
ztrue

0.2

0.4

0.6

0.8

1.0

1.2

1.4

z m
ea
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3. Relative number of galaxies with mean photometric
redshift zmean and true redshift ztrue. It contains the information

of the dispersion of mean photometric redshifts with respect to the

true redshift. The color code corresponds to the relative number
of galaxies with respect to the 1:1 relation (black line) between

true redshift and mean photometric redshift.

photo-z is the redshift that corresponds to the value of the
cumulative distribution function given by a random number
in the interval (0, 1]. We also evaluated the median redshift,
but we decided not to include it in the final results as it
is similar to the other point estimates, thus for clarity we
decided to reduce the analysis to the chosen single point es-
timates. We created a catalogue for each redshift bin consid-
ered by selecting the galaxies with the single point estimate
in the range covered by the redshift bin.

2.4.2 Photo-z weights

The proposed technique to incorporate the PDF information
in our analysis consists on doing number counts in redshift
bins according to a weight for each galaxy in each radial
shell, where the weight is given by the probability that the
galaxy lies in the corresponding redshift bin. Because the
TPZ PDF output is discretized the PDF is given in redshift
bins. The output is normalized such that

∑
pk = 1, where pk

is the probability for the k-bin. We define the galaxy weight
in a redshift bin zmin < z < zmax as:

fz =
∑
k

pk(zk) (4)

where we add the values for redshifts zk ∈ [zmin, zmax] that
belong to the redshift bin in consideration. According to this
definition, a galaxy may have weights in different redshift
bins, where the total weight of the galaxy in the whole red-
shift space is ftot =

∑Nz
j=1 fzj = 1. We measured the galaxy

clustering by using the weights for the galaxy counts. The
case that involves the photo-z single point estimates (mean,
mode) is equivalent to setting the weight to fz = 1 for all
galaxies selected in the corresponding redshift bin.

We defined threshold cuts, pthreshold, in a similar way
as in Mandelbaum et al. (2008), as the process of determin-
ing if a galaxy lies within a redshift bin or not when using
weights. Thus, a galaxy α in redshift bin j would only be
incorporated if

fz > pthreshold (5)

When PDFs are broad and contain multiple peaks, we might
be introducing noise in each redshift bin from galaxies that
are not in the bin but have a non-negligible weight. This can
be addressed by applying the threshold cut.

In Figure 4, we present a graphic example of the dif-
ferent photometric redshift estimators that we use. We in-
tentionally selected a PDF with a most frequent (mode)
redshift, given by eq. (3) within the photometric bin 0.5 <
z < 0.8 but where the mean, defined in eq. (2) is in a dif-
ferent redshift bin. In blue, we show the portion of the PDF
between 0.5 < z < 0.8 that corresponds to the weight of the
galaxy in that redshift bin. Of course the PDF displayed
in Figure 4 is an extreme case. For this particular PDF,
zConf=0.37, while near z=0.6 the mean PDF quality pa-
rameter is zConf∼ 0.95. In Appendix A, we discuss the sta-
tistical properties of the mean and the mode and the overall
quality of the photometric sample PDFs .

With photo-z PDFs we can easily obtain the photomet-
ric sample redshift distribution, n(z), in each bin by stacking
all the individual p(z) of the selected galaxies.

n(z)pdf =
∑

pi(z)fzi (6)

In this paper, we have considered this definition as the de-
fault estimation of n(z) by setting fz = 1 for the galax-
ies selected according to single point statistics in a redshift
bin. We can also determine the true n(z) measured by the
distribution of the true redshifts of this simulated sample.
We weighted the true redshift of each galaxy by the PDF
weight when considering full PDF information. Throughout

c© 2016 RAS, MNRAS 000, 1–19
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Figure 4. Example of the definitions of the different photometric
redshift estimators, where the mode redshift is shown by the ver-

tical red dotted line and the mean redshift by the black dashed

line. The blue region corresponds to the part of the PDF that
is between the photometric bin 0.5 < z < 0.8 (true redshift is

z=0.603), which is shown as a hatched area. The PDF weight de-

fined in eq. (4) would be the fraction of the total area below the
continuous line that is contained in the blue region.

this paper, when we refer to true values, we are considering
the latter definition.

2.5 Two point angular correlation function
estimators

2.5.1 Pixel based estimator

We computed the angular correlations by using pixel maps
of the galaxy density field. These maps are created by using
Healpix for each redshift bin and for each photometric red-
shift estimator, with nside = 1024, corresponding to a mini-
mum angular resolution of 0.06 degrees. For the definition of
the estimator, see Scranton et al. (2002), Crocce, Cabré, &
Gaztañaga (2011), and Wang, Brunner & Dolence (2013).
The angular correlation, is:

w(θ) =
1

Npairs

∑
ij

δiδj (7)

where Npairs is the number of pixel pairs at an angle θ. We
defined the density contrast as δi = (ni − n̄)/n̄ where ni
is the number of counts in pixel i and n̄ the mean number
density of galaxies. When selecting galaxies in terms of the
PDFs, the total number of counts in every pixel is the sum of
the weights of all the galaxies in the pixel, i.e.: ni =

∑
gal∈i

fz

and n̄ =
∑
i

∑
gal∈i

fz.

In our analysis, we only focused on individual redshift
bins and we have not considered the correlations and co-
variance between different bins and the effect that assigning
weights of the same galaxy to different bins might have in
the analysis of galaxy clustering cross-correlations. In order
to include errors on our measurements, we considered jack-
knife samples, dividing the survey area into NJK regions,

each about 3 square degrees. The covariance matrix, there-
fore, is given by:

Cθi,θj =
NJK − 1

NJK

NJK∑
k=1

(wk(θi)−w(θi))(wk(θj)−w(θj)) (8)

which is the same definition used in Scranton et al. (2002);
Norberg et al. (2009); Wang, Brunner & Dolence (2013).
For the galaxy bias fitting, we adopt the mixed approach
used in Crocce et al. 2015, where the correlation matrix
between diagonal elements and off-diagonal elements of the
covariance matrix is calculated by using theoretical angular
power spectra that are rescaled by the variances given by the
jackknife errors in order to determine the covariance matrix
of the angular correlations.

2.5.2 Direct pair counting estimator

An alternative method to measure angular correlations con-
sists of using pair counts. In order to estimate the angular
correlation functions, we used the Landy-Szalay estimator,
(Landy & Szalay 1993),

w(θ) =
DD − 2DR+RR

RR
(9)

where DD is the number of galaxy-galaxy pairs, DR is
the galaxy-random pairs and RR the random random pairs
within θ and θ + δθ. Random catalogues are created by
throwing points in the survey footprint following a uniform
density. These are appropriately normalized to the total
number of counts. When counting pairs, each galaxy was
weighted according to Equation (4). We computed the point-
to-point angular correlation functions by using the publicly
available tree code9, explained and used in Dolence & Brun-
ner (2008); Wang, Brunner & Dolence (2013). We compare
in section 3 the point-to-point estimator with the pixel based
estimator.

2.6 Theoretical modeling

The angular auto-correlation within a given redshift bin is
given by:

w(θ) =

∫
dr1φ(r1)

∫
dr2φ(r2)ξ(r1, r2, θ) (10)

where the spatial correlation function ξ(r1, r2, θ) encodes the
3D information of the density field that we are projecting.
The window functions, φ, are a combination of the galaxy
redshift distribution, n(z), the galaxy bias, b(z), and the
linear growth rate of structure, D(z), in such a way that
φ(z(r)) = n(z)b(z)D(z), where we assumed the linear local
bias model (Kaiser 1984):

δg = bgδ (11)

We parametrize the bias by one parameter b per redshift bin
in the following way:

w(θ) = b2
∫
dz1n(z1)D(z1)

∫
dz2n(z2)D(z2)ξ(r12, θ) (12)

9 http://lcdm.astro.illinois.edu/code/tpacf.html
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Figure 5. A comparison, demonstrating good agreement, be-
tween the pixel based clustering measurement (purple points)

and the point-to-point clustering measurement (purple shadow
include measurements within the error bars) for the photometric

redshift bin 1.0 < z < 1.2 when considering galaxy weights and a

threshold on the weights of fz > 0.1.

where r212 = r(z1)2 + r(z2)2 − 2r(z1)r(z2)cos(θ), being r(z)
the comoving distance to redshift z.

We used CAMB (Lewis et al. 2000) to obtain the linear
power spectrum with Halofit (Smith et al. 2003; Takahashi
et al. 2012) in order to include non-linearities at small scales.
We Fourier transform this angular power spectrum in order
to compute the 3D angular correlations required by Equa-
tion (10). For this paper, we considered a flat ΛCDM model
driven by the simulation cosmological parameters when com-
puting the theoretical correlation function. We also included
linear redshift space distortions as a series of multipoles fol-
lowing (Kaiser 1987; Hamilton 1992).

3 RESULTS

3.1 Comparison between direct pair counting and
pixel-based estimators

As shown in Wang, Brunner & Dolence (2013), pixel-based
and point-to-point pair count methods yield similar results
for 2-point angular clustering. However, this previous work
only considered unweighted pair counts in any given bin, i.e.,
weights of fz = 1. In Figure 5, we extend this previous result
to compare the results for both pair count and pixel-based
methods when considering galaxy weights in the redshift bin
1.0 < z < 1.2 and a threshold pthreshold = 0.1. As shown
in this figure, over the angular range 0.1 < θ < 1.0, we
find a good agreement. The number of jackknife regions is
different in the two cases, however, being NJK = 32 for the
point-to-point case and NJK = 384 when considering the
pixel-based estimator. We opted to use the computationally
simpler pixel-based estimator in the rest of the paper.

3.2 Clustering amplitude

We now focus our analysis on the relative amplitude between
the angular clustering signal using different photo-z selection
criteria and the true redshift clustering. This allows us to
directly study how the different statistical representations
of photometric redshift change the measurement signal.

In the analysis, we divide the redshift range 0.2 < z <
1.4 into different numbers of bins in order to consider dif-
ferent bin configurations. As a result, a comparison between
individual redshift bins for different bin configurations may
consider different redshift regions for different configuration.
For this reason, we present clustering results for bins with
different widths in symmetrical manner about a given cen-
tral redshift. As discussed previously, we restrict our analysis
to four different bin widths. In Figure 6, we present the ra-
tios of the photometric redshift clustering with respect to
the true redshift clustering, for different statistical estima-
tors and a redshift bin centered at z = 1.

In the left panels, we show the results for a broad bin
of ∆z = 0.3 in the redshift range 0.85 < z < 1.15. As
expected, for all algorithms, the amplitude of the cluster-
ing of the photometric sample is smaller than when using
the true redshifts, since the errors on a photometric red-
shift estimate will suppress this inherent clustering. Notice
that the clustering measurements when using the mode, ẑ,
and mean, z̄, are similar. Any small differences are due to
the fact that each selection produces a different n(z) when
individual PDFs are not symmetric, like the one shown in
Figure 4.

In the bottom panels we show the clustering ratios
with respect to the true clustering when using PDF weights
with different probability thresholds. This allows us to both
clean our sample, as if using a quality cut, and sample
more narrow redshift bins. The thresholds considered are
pthreshold = 0.0, 0.1. The signal depends on the cut on the
selection of weighted galaxies. The stronger the cut, the
cleaner the sample and the clustering amplitude increases,
as well as the intrinsic n(z). But this may also bias our re-
sults as we may be changing the average galaxy types in the
sample, as discussed in Mart́ı et al. (2014). Here we consid-
ered a low threshold that is non-negligible to compare with
the full PDF case. To aid in the comparison with the point
estimate photo-z selection, we also present the ratio for ẑ
with the red dashed line.

We consider narrower bin configurations in order to
test what happens as we approach the intrinsic photo-z dis-
persion error, summarized in Figure 2. We see in the case
when ∆z = 0.2 that the amplitude of the photometric sam-
ples clustering decreases with respect to the true redshift
clustering. The angular clustering signal is proportional to
n(z)2, as explained by Equation (10), which in the top hat
case means that it is inversely proportional to (∆z)2. Pho-
tometric samples distribution in true redshift are broader
than the top hat bin and therefore, the signal amplitude is
smaller. The bin considered in this case for galaxy selection
is 0.9 < z < 1.1. We see that the differences between the
mode and the mean are bigger than in the previous case
with ∆z = 0.3. This may be a result of the fact that when
we consider bins much bigger than the intrinsic separations,
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Figure 6. This comparison between angular clustering measurements that use photometric redshifts and true redshifts. We consider
different redshift estimators for redshift bins centered at z = 1 but with different widths. (Top) The results when computed by using the

mode (red triangles) and the mean (black stars). (Bottom) The results when using PDF weights, with threshold pthreshold = 0 (green
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panels. The ratios with respect to the true redshift results decrease with the bin width and are different depending on the considered

photo-z statistics used. We have shifted the x-axis positions of the black stars and purple triangles for clarity.

the differences between photo-z single statistic estimators
are smaller. As we extend the comparison to smaller widths,
∆z = 0.15 (0.925 < z < 1.075), the ratio between the an-
gular clustering signal for the photometric samples and the
sample with true redshift becomes smaller. This is in agree-
ment with the trend we saw before, as w(θ) ∝ (1/∆z)2 for
true redshift clustering, while the photo-z dispersion keeps
the corresponding signal diluted in the radial direction.

The case with ∆z = 0.1 (0.95 < z < 1.05) shows the
same trend than the previous cases with bigger bin widths.
The ratio of the photometric redshift signals to the true
redshift signal continues to decrease. The results with mean
and mode estimators tend to converge as the bin width ap-
proaches the photo-z dispersion error.

We found that the evolution of the clustering amplitude
with bin width evolves differently for the different estima-
tors. We show in Figure 7 the clustering amplitude evolution
at θ = 0.1 degrees. For photometric redshift estimators, the
clustering signal increases by about 50% when increasing the
numbers of bins by a factor of 4. Therefore, increasing the
number of bins beyond the limit in which the bin width is
comparable with the photo-z error is not an efficient process
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Figure 7. The evolution of the clustering amplitude at θ = 0.1
for a redshift bin centered at z = 0.5 with a given bin width,
∆z. We show the evolution for the true redshift and for differ-

ent photometric redshift statistics in order to quantify when the

clustering signal saturates with bin width.
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Figure 8. Bias evolution for different redshift bin configurations: The evolution with redshift of the linear galaxy bias when dividing
the full sample into redshift bins. Results are shown both for the different bin widths and the different photometric redshift statistics,

described in section 2.4: spectroscopic redshift results (blue shadow), mean photo-z (black star), mode photo-z (red triangle), and photo-z

PDF weights (green cross). In each bin, the spectroscopic sample is different than the corresponding photo-z sample, thus we cannot
directly compare them. The x-axis position is given by the mean redshift in each bin according to the n(z), which is given by stacking

the photo-z PDFs.

for any photo-z estimator, at least from the point of view of
a clustering measurement, especially for bins with a width
smaller than ∆z = 0.15, which is twice the mean photo-z
error, as shown in Figure 2.

3.3 Bias measurement

3.3.1 PDF redshift distributions

We next evaluate how the selection of galaxies in radial shells
when using different photo-z statistics affects the informa-
tion on the linear galaxy bias bg, as defined in Equation
(11). Fitting the galaxy bias, or any cosmological parame-
ter, can help us to calibrate the effect of different photo-z
statistics. We only used angular auto-correlation functions
and we parametrized the galaxy bias by one parameter per
redshift bin. For each redshift bin, we found the best fit bias,

b, and its error by sampling a χ2 given by:

χ2(b) =
∑
θ,θ′

(wobs(θ)− b2wth(θ))C−1
θ,θ′(wobs(θ

′)− b2wth(θ′))

(13)
where the observed angular correlation wobs is given by
Equation (7), the theoretical b2wth is given by Equation
(12) and C−1

θ,θ′ is the inverse of the covariance matrix.

The total redshift range considered is 0.2 < z < 1.4,
and all bins have the same width for each configuration. The
angular range considered was set to cover the co-moving co-
ordinates range 10h−1Mpc < r < 60h−1Mpc, which corre-
sponds to different angular ranges in each redshift bin. The
minimum scale was selected by testing at which scale the
linear growth model for the spatial correlation departs from
a non-linear model. Notice that this is a conservative cut
when compared with the cuts used in (Crocce et al. 2015).
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Figure 9. Relative bias between PDF stacking and the true redshift distribution: The relative differences in galaxy bias measurements

when measuring the redshift distribution by using PDF stacking with respect to the bias measurements given by using the true redshift
distribution. This computation is done for the three photo-z selection methods in each of the four redshift bin widths considered in this

paper. Notice that for each method we are using the same photometric sample in each bin, but we are fitting the galaxy bias by using
different redshift distributions.

This corresponds to θmin = 0.8 degrees at the lowest redshift
and θmin = 0.19 degrees at highest redshift bin.

The comparison between the different photo-z selection
methods is done by comparing each galaxy bias measure-
ment with the true result, which is determined by using the
true redshift distribution of the selected galaxies in order to
do a fair comparison. First, we show in Figure 8 the galaxy
bias measurement made by using different photometric red-
shift statistics and the bias measurement done by selecting
galaxies according to the spectroscopic redshift. Notice that
the spectroscopic sample in each bin is different than the
photometric samples considered, but since this is accounted
for in the bias measurement, we can study how the photo-z
statistic measurements compare with the spectroscopic one.

In panel a of Figure 8, we show the evolution of galaxy
bias for the broad ∆z = 0.3 bin configuration. We only show
results for the true redshift, zs, the mode redshift, ẑ, the
mean redshift, z̄, and the PDF weighted samples for clarity.
We do not show here the results when applying photomet-
ric redshift quality cuts. The measurements are similar and

the slightly different values for the different estimators are
within the statistical error bars. This is reasonable as we
are considering a broad redshift bins in this panel, and the
differences between different photometric samples redshift
distributions are thus small.

The same trend is observed when considering Nz = 6
redshift bins, as shown in panel b on Figure 8. This case
corresponds to bins with ∆z = 0.2 width, which is larger
than twice the photo-z dispersion, and, therefore, photo-
metric redshift effects are still not the biggest issue. The
evolution of linear galaxy bias with redshift resembles the
results of Crocce et al. 2015 for a MICECATv2.0 (Carretero
et al. 2015) sample, as the ratio bg(z = 1.1)/bg(z = 0.3) is
similar for both simulations.

We show in the lower left plot in Figure 8 the measure-
ment of the bias for the different redshift estimators when
considering Nz = 8 redshift bins. In this case, we begin to
observe bigger differences between the case when using pho-
tometric redshifts and the case when the bias was obtained
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by using spectroscopic redshifts, especially when compared
to the previous cases that used larger bin widths.

Finally, we show in the bottom right panel of Figure 8
the bias evolution when using 12 bins of width ∆z = 0.1.
The differences between the photo-z galaxy bias results and
the spectroscopic bias measurement are larger than for the
previous cases with broader bin configurations. The closest
result to the spectroscopic results value of the bias is ob-
tained when using the full PDF information (pthreshold = 0),
especially at intermediate redshifts.

We show in Figure 9 the measurement bias between the
method that uses PDF stacking to estimate n(z) and the
true value, given by the n(z) measured directly from the
true redshifts from the simulation of the photometric sam-
ple. When considering full PDF information, we weighted
the stacked PDFs and the corresponding true redshifts by
the corresponding PDF weight. We show in the top left
panel the relative differences when considering ∆z = 0.3
for the three methods, finding small deviations with respect
to the true results with minor differences between the dif-
ferent selection techniques. These observed differences exist
because the PDF stacking technique is not perfectly recon-
structing the true n(z) of the population sample in the tomo-
graphic bins. In this case, the differences are small because
the bin width is broad and photo-z systematics in the n(z)
are smaller.

When we decrease the bin width to ∆z = 0.2, the dif-
ferences grow, as shown in the top right panel of Figure 9.
The three methods are still producing similar results, and,
because the bins are still too broad, the relative bias is zero,
within the error bars. When the configuration changes to
bins with widths ∆z = 0.15, differences start to become
more apparent and the PDF weighting method begins to
differ from the single point estimate estimators. For the nar-
rowest bin width configuration considered, ∆z = 0.1, the
differences at intermediate redshifts are larger than 5% for
single point estimators, whereas for PDF weighted galaxy
samples, these differences are around 3%. We include a table
in Appendix B that presents all galaxy bias measurements
and the relative differences with the true results.

In order to summarize and quantify these results, we
show in Figure 10 the mean value of the mean absolute de-
viation between each selection method and the true result
for each bin width. We found that for the largest bin widths,
the differences are around 1% and are similar for the three
photo-z selection statistics: mean, mode, and pdf weighting.
However, for the narrower bins, the deviation when we con-
sider summary statistics is around 5%, while it is 3% when
using the photo-z PDF galaxy weighting method.

3.4 Reducing the redshift bin catalogue size

Using full PDF information in galaxy clustering produces
less biased measurements than point estimate photo-z meth-
ods, but it also increases the size of each redshift bin galaxy
sample. We also studied how a Monte Carlo sampling of
the PDF, in order to define a point estimate that encloses
more of the PDF than the mean or the mode, or applying
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Figure 10. Evolution with redshift bin width of the percent-

age deviation of the mean of the absolute difference with the true

redshift result for the different photometric redshift statistics. We
artificially shift the x-axis values in order to more clearly show

the results from the different measures. Notice the accumulated

measurement bias when using photo-z redshifts, which is smaller
when using PDF weights in the clustering measurements, espe-

cially for the narrower bin configurations.

a threshold cut based on the amount of PDF in each bin
compares to the full PDF inclusion method.

3.4.1 Monte Carlo sampling redshift

We extended the previous analysis to include a Monte Carlo
sampling redshift, zMC , which assigns a redshift value based
on the cumulative distribution function for each galaxy. We
make our previous galaxy bias measurement in the differ-
ent redshift bins according to zMC . In Figure 11 we show
the best fit galaxy bias for galaxies selected according to
zMC in Nz = 8 redshift bins of ∆z = 0.15. We observe that
in this case the results are similar to the results given by
PDF weights (for example, the results from panel c of Fig-
ure 8), both when using PDF sampling or the true redshift
distributions. This is expected, as we are using the proba-
bilistic information to determine the Monte Carlo sampling
redshifts.

3.4.2 Quality cuts

The effect of sparse PDFs with multiple peaks can introduce
significant noise into our PDF weighting scheme. Although
it is not the main interest of this paper, we considered a case
in which we applied a threshold cut fz > (pthreshold = 0.1)
in order to select galaxies in the different bins. The effect is
a combination of a quality cut and a cut on galaxies that
are not in the bin but whose tails are inside the bin, which
produces bigger catalogues in each tomographic bin. In Fig-
ure 12, we present a comparison between a photo-z sample
selected according to full photo-z PDFs for a configuration
with bin width ∆z = 0.15 and a a sample selected by ap-

c© 2016 RAS, MNRAS 000, 1–19



Angular clustering with photometric redshift PDFs 11

0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

b
(z

)

∆z=0.15

zMC PDF n(z)

pthres=0.0 PDF n(z)

zMC True n(z)

pthres=0.0 True n(z)
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weights.
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Figure 12. PDF threshold cuts: A comparison between the effect

of applying a threshold cut on the selection process with photo-z

PDF weights for the configuration in a redshift bin width of ∆z =
0.15. Both samples produce similar galaxy bias measurements.

plying a threshold to the photo-z PDF weights of fz > 0.1.
We found that the results are similar, supporting the idea
of applying threshold cuts to reduce the size of the galaxy
density in each pixel in the map, although cuts to a sample
have to be applied carefully in order to avoid introducing
selection biases to the sample, see, e.g., Mart́ı et al. (2014).
We observe this effect in Figure 12, as the true results for
both samples are not exactly equivalent. A detailed study
of using quality cuts from PDF information is outside the
scope of this paper.
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Figure 13. Training set sample variance: Relative differences be-
tween the amplitude of the theoretical dark matter angular corre-

lations when using the spectroscopic n(z) of the training set and

the mean n(z) of ten samples with the same number of spectro-
scopic objects as the training set but distributed across the cata-

logue area. We considered both the full redshift range 0 < z < 2

(black) and a redshift bin 0.3 < z < 0.5 (red). We find a relative
bias in the angular range 0.1 < θ < 1 smaller than 2%, which

propagates to an error smaller than 1% on the galaxy bias, which

is lower than the observed galaxy bias described in this paper.

3.5 Systematics

3.5.1 Training set sample variance

Since we use one galaxy sample from one particular pixel
of the simulation for our photo-z training set, we wanted to
demonstrate that the choice of this one pixel did not bias
our results. As a result, we compared the spectroscopic n(z)
for the galaxies in our training sample with the mean spec-
troscopic n(z) from ten randomly selected galaxy samples
from the entire area, to demonstrate that our results were
not dependent on the choice of a particular pixel. We are
not, in this paper, exploring the more traditional concept
of photometric redshift ’sample variance’ as discussed, for
example, in Cunha et al. 2012.

We show in Figure 13 the relative difference between
theoretical angular correlations, computed by using Equa-
tion (10), when we used the training set n(z) (red line in
Figure 1) and the mean n(z) of ten different random sam-
ples extracted from the catalogue with the same number of
galaxies as the training set, which is similar to the blue solid
line in Figure 1. We found relative differences smaller than
2% over the redshift range for all angles, 0.1 < θ < 1. This
implies a relative difference smaller than 1% for the galaxy
bias, which is lower than the differences observed for our
different photo-z statistics.

3.5.2 True redshift distribution reconstruction

As observed in section 3.3, the main difference between the
photometric redshift and the true redshift galaxy bias mea-
surement is a result of the failure to recover the true redshift

c© 2016 RAS, MNRAS 000, 1–19



12 Asorey et al.

0.2 0.4 0.6 0.8 1.0 1.2
z

0.00

0.02

0.04

0.06

0.08

0.10

N
o
rm

a
liz

e
d
 N

(z
)

0.65<z̄<0.8

True n(z)

TPZ-PDF n(z)

True n(z) weights

PDF n(z) weights

Gaussian PDF n(z) (σ=0.03−0.1)

Figure 14. Redshift distribution reconstruction: A comparison
between the PDF stacking n(z) (dashed green) and the true red-

shift distribution (blue) obtained by selecting galaxies with mean

photometric redshift in the redshift bin 0.65 < z < 0.8. The red
region covers the space between the n(z) obtained by stacking

gaussian PDFs for the galaxy sample with standard deviation

within σgauss = 0.03 − 0.1. The differences between redshift dis-
tributions are contained within the photo-z error. We compare

with the redshift distribution of stacked weighted PDFs (solid

black) and weighted true redshifts (dotted black) for the same
redshift bin.

distribution, n(z). As an example, in Figure 14, we show the
difference between the true redshift distribution (blue line)
and the PDF stacking PDF (green dashed line) for galax-
ies selected with mean redshift within 0.65 < z < 0.8. The
red shadowed region shows the range between n(z) created
by stacking gaussian PDFs with standard deviations in the
range σgauss = 0.03 to σgauss = 0.1. We see that the differ-
ence between the measured n(z) is within the accuracy of
the photo-z catalogue, shown in Figure 2. We also show, for
comparison, the true redshift distribution from the weighted
sample and the true weighted redshift distribution. We ex-
plore this result in more detail in Appendix C, where we look
at the differences between the n(z) obtained from stacking
the photo-z PDF of galaxies selected in redshift shells ac-
cording to their mean redshift and the true distribution of
the same sample when using both different bin configura-
tions and different redshift ranges.

4 DISCUSSION

In this paper, we have studied how the angular galaxy clus-
tering obtained from photometric populations depends on
the different statistical estimators used to assign galaxies to
specific redshift bins. The primary estimators that we have
considered are the mean and the mode of a galaxy’s photo-z
PDF. We found differences between the different estimators,
in part, since they produce different galaxy samples in each
top hat photometric redshift bin. As a result, the clustering
signal is different when using either the mean or the mode.

We also included the full PDF information in our clus-
tering analysis by weighting each galaxy according to the in-
tegrated probability that the galaxy actually resided within
each redshift bin. This clustering signal is smaller than the
clustering signal from single point estimates samples. If we
apply a threshold cut of pthreshold = 0.1, the clustering am-
plitude increases. This is explained by the fact that when
we consider a larger threshold the corresponding n(z) is nar-
rower than when considering all galaxies with non-negligible
weights in a redshift bin. However, we also may be sampling
different type of galaxies, since we are only selecting galaxies
with higher probability to lie within the bin.

We extended the comparison between the different pho-
tometric redshift statistical representations to a cosmolog-
ical parameter estimation analysis by measuring the linear
galaxy bias in different redshift bins. We find that, in gen-
eral, the photo-z estimators produce similar results, espe-
cially when considering broad bins. We find that there is
a relative bias with respect to the true galaxy bias results,
since the PDF stacking redshift distributions in each bin
differ from the true redshift distributions. For narrow bins,
the selection method given by PDF weights produces less bi-
ased differences with respect to the true results. The mean
deviation for a bin configuration with width ∆z = 0.1 is 3%
when using PDF weights, while it is 5% when using summary
or single point estimate statistics. Thus, the use of photo-z
PDF weights to select galaxies in tomographic redshift bins
in order to measure the galaxy clustering in a photometric
survey produces more robust results than using single point
estimates. We can use the methodology presented in this
paper to calibrate the effect of assigning galaxies to photo-z
bins to ensure that the model parameters from simulations
mimic the real data catalogues. This also applies to other
photo-z methods that estimate PDFs (Sánchez et al. 2014;
Bonnett et al. 2015; Leistedt et al. 2015) as they will have
similar behaviours.

Creating maps with PDF weights involves much larger
data sets than catalogues of galaxies selected only by red-
shift. One way to reduce the amount of data is to apply a
cautious PDF quality cut by using a threshold when consid-
ering PDF weights. We found similar results to the full PDF
results, although any cut on a sample has to be carefully
tested. Another way to reduce the size of the catalogues,
while still retaining a certain level of the PDF information,
is by using Monte Carlo Sampling point estimates. We found
that Monte Carlo Sampling estimators produce similar re-
sults to our PDF weight results.

The effect of choosing different photometric redshift
training samples from the simulation on the calculation of
the galaxy bias measurement is smaller than 1%, which is
lower than the effects due to the different photo-z statistics
used in this paper. Likewise, the differences between stacking
photo-z PDFs to compute the redshift distribution and the
true redshift distribution are also within the photo-z errors.

5 CONCLUSIONS

With photometric surveys, we can accumulate much larger
galaxy samples in less time than with spectroscopic surveys.
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However, the lack of true redshifts restricts the quality of any
radial information on such a survey, as photometric redshift
are produced from multi-band imaging.

Therefore, we need to set a statistical definition of a
photometric redshift in order to identify which tomographic
redshift bin contains a given galaxy. The search for an op-
timal definition is the main goal of this paper. The core
analysis of this paper consisted of defining a new photo-z
selection method that includes the full photo-z PDF infor-
mation by weighting each galaxy in the redshift bin with the
probability that the galaxy lies in that bin, and to compare
this result with methods based on single statistical estimates
such as the mean or the mode of the photo-z PDF.

We found, using mock galaxy catalogues and a machine
learning photo-z code, that if we use single point statis-
tics, like the mode or the mean, there is an offset on the
galaxy bias measurements. These bias measurements are
obtained either by measuring photometric redshift distribu-
tions by stacking the individual photo-z PDFs or from the
true redshift distribution of the same galaxies. This shift
must be taken into account when considering similar large
scale structure analyses that leverage galaxies drawn from
photometric surveys. This corrective effect can be estimated
by applying a similar method to measure the offset in the
determination of the cosmological measurement of interest
by using simulations in similar conditions to the expected
photometric data. In our case, we used the galaxy bias as
the metric to test different photo-z statistics, and we found
that, for single point statistics, the cumulative deviation is
a 5% for a bin configuration with width ∆z = 0.1.

Our results are closer to the ground truth if we weight
the contribution of each galaxy to a photo-z bin according
to the amount of their photo-z PDF in each redshift bin.
This approach, on the other hand, produces a difference of
3% in the ∆z = 0.1. Therefore, and especially for narrow
photometric top hat bins, PDF weighting is more optimal
than simply using summary statistic photometric redshifts.
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Figure A1. Photometric standardized error for the mean: The

photometric standardized error computed from the mean of each
individual galaxy’s photo-z PDF compared to the best fit Gaus-

sian, shown with the solid red line (mean µ and error σG).

1 − σ 2 − σ

z̄ 70% 93%

ẑ 69% 90%

Table A1. Proportion of photometric redshifts inside 1 − σ and

2 − σ level confidence intervals for the mean, z̄ and the mode, ẑ,

photometric redshifts. In the ideal case, they are 68% and 95%.

APPENDIX A: ERROR DISTRIBUTION

In order to check the robustness of the galaxy photo-z PDFs
that we used in the paper, we estimated the distribution
of the photometric standardized error of the photo-z BCC
galaxies used in the paper, (zphot − ztrue/σ). The standard
deviation, σ, is given by Equation (1). In Figure A1, we
show the results using the mean redshifts. We observe that
the simple error estimate is close to the unbiased estimate
(µ = 0, σG = 1). We can also consider the mode redshift, as
shown in Figure A2, where we see that the distribution of the
modes tends to be more concentrated than the distribution
of the means.

We also tested how photometric redshifts are dis-
tributed according to the confidence intervals by estimat-
ing the number of galaxies with photometric redshifts inside
1− σ and 2− σ levels, which is shown in Table A1. We see
that the distribution of mean values in confidence intervals
is close to the expected 68% and 95% distributions. When
considering the mode, the values are more concentrated as
we are considering the peaks of each individual PDF.

APPENDIX B: GALAXY BIAS RESULTS

In tables B1, B1, B1, B1 we show the galaxy bias fits for
the different bin configurations and the three photometric
redshift methods: mean, mode, and PDF, used in this paper
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Figure A2. Photometric standardized error for the mode: The

photometric standardized error computed from the mode of each
individual galaxy’s photo-z PDF compared to the best fit Gaus-

sian. As modes are defined by the peak of each PDF, the distribu-

tion tends to be more concentrated than the distribution of mean
PDF values.

to select galaxies in tomographic redshift bins. In each case,
we stack the galaxy photo-x PDFs to compute the redshift
distribution. We also present the goodness of fit for each fit
and the relative difference with the appropriate true mea-
surement.

APPENDIX C: TRUE REDSHIFT
DISTRIBUTIONS

As shown in section 3.3, the galaxy bias measurements ob-
tained from n(z) given by PDF stacking are different than
the true measurements. This is caused by the difference be-
tween the true redshift distribution of the photo-z galaxy
sample and the PDF stacking n(z). As an example, we show
in Figure C1 the differences between the true redshift n(z)
and the PDF stacking n(z) for galaxies selected according
to the mean redshift for a given set of top hat redshift bins
at low redshift. We note that the tails of the PDF stacking
n(z) are longer than

the true redshift distribution. This disagreement is ex-
pected and has been observed when using template based
and machine learning algorithms that incorporate PDFs. We
expanded the comparison to intermediate redshift (Figure
C2) and high redshift (Figure C3), observing similar differ-
ences. For comparison, we also show the redshift distribution
for the PDF weighted galaxies, when stacking PDFs or true
redshifts.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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z̄ ẑ p(z)
PDF-stacking Relative difference PDF-stacking Relative difference PDF-stacking Relative difference

Photo-z bin Galaxy bias χ2 Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z))

0.2 < z < 0.5 1.52 ± 0.064 12.3/7 −0.05 ± 0.057 1.50 ± 0.061 12.1/7 −0.01 ± 0.057 1.52 ± 0.063 11.2/7 0 ± 0.06

0.5 < z < 0.8 1.61 ± 0.036 0.99/7 −0.018 ± 0.032 1.61 ± 0.037 0.92/7 −0.03 ± 0.031 1.61 ± 0.036 0.58/7 −0.02 ± 0.03

0.8 < z < 1.1 1.96 ± 0.026 7.6/7 0.016 ± 0.020 1.97 ± 0.027 8.3/7 0.015 ± 0.019 1.95 ± 0.026 7.4/7 0.016 ± 0.019

1.1 < z < 1.4 2.37 ± 0.024 5.71/7 −0.033 ± 0.015 2.39 ± 0.024 8.9/7 0 ± 0.014 2.37 ± 0.022 7/7 −0.017 ± 0.013

Table B1. Galaxy bias measurements for photometric samples selected according to the mean, z̄, mode, ẑ, or PDF weighted galaxies in

redshift bins, given different bin configurations.

z̄ ẑ p(z)

PDF-stacking Relative difference PDF-stacking Relative difference PDF-stacking Relative difference

Photo-z bin Galaxy bias χ2 Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z))

0.2 < z < 0.4 1.40 ± 0.058 14.6/7 −0.06 ± 0.055 1.42 ± 0.059 14.2/7 −0.05 ± 0.056 1.45 ± 0.059 12.9/7 −0.03 ± 0.056

0.4 < z < 0.6 1.59 ± 0.041 4.1/7 −0.03 ± 0.035 1.59 ± 0.041 4.4/7 −0.02 ± 0.027 1.59 ± 0.042 4.5/7 −0.01 ± 0.037

0.6 < z < 0.8 1.72 ± 0.031 2.6/8 0.04 ± 0.026 1.71 ± 0.031 2.8/8 0.04 ± 0.027 1.67 ± 0.03 2.9/8 0.02 ± 0.026

0.8 < z < 1.0 1.91 ± 0.027 4/7 0.03 ± 0.021 1.91 ± 0.027 3.7/7 0.04 ± 0.02 1.87 ± 0.026 4.3/7 0.02 ± 0.02

1.0 < z < 1.2 2.19 ± 0.022 12/8 −0.02 ± 0.013 2.18 ± 0.022 11.1/8 −0.02 ± 0.014 2.19 ± 0.021 12.9/8 −0.02 ± 0.013

1.2 < z < 1.4 2.34 ± 0.021 3.9/8 −0.06 ± 0.011 2.36 ± 0.021 5.5/8 −0.02 ± 0.012 2.39 ± 0.019 6.9/8 −0.02 ± 0.011

Table B2. Galaxy bias measurements for photometric samples selected according to the mean, z̄, mode, ẑ, or PDF weighted galaxies in
redshift bins of width ∆z = 0.2.

z̄ ẑ p(z)

PDF-stacking Relative difference PDF-stacking Relative difference PDF-stacking Relative difference

Photo-z bin Galaxy bias χ2 Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z))

0.2 < z < 0.35 1.37 ± 0.058 12.5/7 −0.07 ± 0.056 1.42 ± 0.062 12.7/7 −0.05 ± 0.059 1.43 ± 0.058 12.6/7 −0.04 ± 0.055

0.35 < z < 0.5 1.58 ± 0.042 8/8 0.026 ± 0.038 1.65 ± 0.042 7.8/8 0.09 ± 0.039 1.60 ± 0.043 6.5/8 −0.05 ± 0.04

0.5 < z < 0.65 1.66 ± 0.042 3.6/7 0.01 ± 0.035 1.66 ± 0.042 1.9/7 −0.01 ± 0.035 1.62 ± 0.04 1.2/7 −0.03 ± 0.033

0.65 < z < 0.8 1.76 ± 0.034 2.9/7 0.06 ± 0.029 1.75 ± 0.033 2.7/7 0.05 ± 0.28 1.69 ± 0.031 2.7/7 −0.03 ± 0.027

0.8 < z < 0.95 1.86 ± 0.027 2.3/7 0.04 ± 0.021 1.87 ± 0.027 2.2/7 0.04 ± 0.021 1.82 ± 0.026 /7 0.028 ± 0.021

0.95 < z < 1.1 2.19 ± 0.024 16/8 0.043 ± 0.016 2.18 ± 0.023 16.7/8 0.04 ± 0.016 2.12 ± 0.021 17.2/8 0.014 ± 0.014

1.1 < z < 1.25 2.33 ± 0.021 8/7 −0.025 ± 0.013 2.33 ± 0.021 11.4/7 0.01 ± 0.013 2.33 ± 0.02 8.5/7 −0.02 ± 0.011

1.25 < z < 1.4 2.38 ± 0.020 3.9/8 −0.07 ± 0.011 2.37 ± 0.021 4.2/8 −0.04 ± 0.011 2.39 ± 0.019 6.8/8 −0.03 ± 0.011

Table B3. Galaxy bias measurements for photometric samples selected according to the mean, z̄, mode, ẑ, or PDF weighted galaxies in

∆z = 0.15 redshift bins.

z̄ ẑ p(z)
PDF-stacking Relative difference PDF-stacking Relative difference PDF-stacking Relative difference

Photo-z bin Galaxy bias χ2 Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z)) Galaxy bias χ2/dof Comparison True (n(z))

0.2 < z < 0.3 1.36 ± 0.059 8.7/7 −0.05 ± 0.059 1.47 ± 0.068 8.1/7 0.028 ± 0.068 1.4 ± 0.057 8.2/7 −0.03 ± 0.056

0.3 < z < 0.4 1.45 ± 0.046 6.2/8 −0.01 ± 0.044 1.52 ± 0.048 5.7/8 0.04 ± 0.046 1.51 ± 0.049 /8 0.01 ± 0.046

0.4 < z < 0.5 1.60 ± 0.045 7.9/7 0.01 ± 0.04 1.68 ± 0.046 7.3/7 0.08 ± 0.042 1.62 ± 0.045 6.2/7 0.05 ± 0.041

0.5 < z < 0.6 1.73 ± 0.045 3.8/7 0.01 ± 0.037 1.71 ± 0.041 1.7/7 0 ± 0.033 1.63 ± 0.039 1.4/7 −0.03 ± 0.033

0.6 < z < 0.7 1.82 ± 0.033 2.5/8 0.1 ± 0.028 1.79 ± 0.033 2.7/8 0.09 ± 0.028 1.70 ± 0.032 1.6/8 0.04 ± 0.028

0.7 < z < 0.8 1.79 ± 0.028 12.3/8 0.08 ± 0.025 1.77 ± 0.028 13.1/8 0.07 ± 0.024 1.70 ± 0.025 8.7/8 0.04 ± 0.022

0.8 < z < 0.9 1.84 ± 0.028 0.85/7 0.06 ± 0.023 1.85 ± 0.028 0.8/7 0.076 ± 0.023 1.77 ± 0.025 2/7 0.04 ± 0.021

0.9 < z < 1.0 2.12 ± 0.027 7.3/7 0.07 ± 0.019 2.06 ± 0.027 6.7/7 0.06 ± 0.020 1.99 ± 0.023 9.9/7 0.03 ± 0.017

1.0 < z < 1.1 2.27 ± 0.023 12.2/8 0.06 ± 0.015 2.22 ± 0.023 14.2/8 0.04 ± 0.015 2.16 ± 0.02 16.2/7 0.014 ± 0.013

1.1 < z < 1.2 2.31 ± 0.02 12.6/7 −0.02 ± 0.012 2.32 ± 0.02 16.7/7 −0.01 ± 0.012 2.29 ± 0.018 9.4/7 −0.02 ± 0.011

1.2 < z < 1.3 2.31 ± 0.02 3.5/8 −0.05 ± 0.011 2.32 ± 0.02 4.6/8 0.03 ± 0.011 2.38 ± 0.018 7.2/8 −0.02 ± 0.010

1.3 < z < 1.4 2.43 ± 0.021 4.1/8 −0.06 ± 0.011 2.42 ± 0.021 5.1/8 −0.05 ± 0.012 2.40 ± 0.018 6.8/8 −0.04 ± 0.01

Table B4. Galaxy bias measurements for photometric samples selected according to the mean, z̄, mode, ẑ, or PDF weighted galaxies in
redshift bins of width ∆z = 0.1.
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Figure C1. Low redshift: A comparison of the redshift distributions for the true redshift distribution of galaxies selected according to

mean photo-z redshift and the PDF stacking redshift distribution for the same galaxies over the lowest redshift range of the true galaxy
sample. We also show the redshift distribution for galaxies selected according to the photo-z PDFs when stacking weighted PDFs (solid

black) and true redshifts of weighted galaxies (dotted black).
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Figure C2. Intermediate redshift: A comparison between the true redshift distribution of galaxies selected according to mean photo-z

redshift and the PDF stacking redshift distribution for the same galaxies over the intermediate redshift range of the true galaxy sample.
The redshift distributions of galaxies selected according to PDF weights when stacking PDFs (solid black) or true redshifts of weighted
galaxies (dotted black) are also displayed.
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Figure C3. High redshift: A comparison between the true redshift distribution of galaxies selected according to mean photo-z redshift

compared with the distribution given by the PDF stacking of the same sample over the highest redshift range of the true galaxy sample.
We also show the redshift distributions when stacking weighted PDFs (solid black) and true redshifts of weighted galaxies (dotted black)
for the different redshift bins.
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