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ABSTRACT

Data re-sampling methods such as the delete-one jackknife are a common tool for
estimating the covariance of large scale structure probes. In this paper we investigate
the concepts of internal covariance estimation in the context of cosmic shear two-point
statistics. We demonstrate how to use log-normal simulations of the convergence field
and the corresponding shear field to carry out realistic tests of internal covariance
estimators and find that most estimators such as jackknife or sub-sample covariance
can reach a satisfactory compromise between bias and variance of the estimated co-
variance.

In a forecast for the complete, 5-year DES survey we show that internally esti-
mated covariance matrices can provide a large fraction of the true uncertainties on
cosmological parameters in a 2D cosmic shear analysis. The volume inside contours
of constant likelihood in the Ωm-σ8 plane as measured with internally estimated co-
variance matrices is on average & 85% of the volume derived from the true covariance
matrix. The uncertainty on the parameter combination Σ8 ∼ σ8Ω

0.5

m
derived from

internally estimated covariances is ∼ 90% of the true uncertainty.

Key words: large scale structure – cosmic shear – covariance – jackknife – angular
correlation function

1 INTRODUCTION

Two-point statistics of cosmological random fields such as
the cosmic shear correlation functions or the galaxy cluster-
ing angular correlation function are common probes of the
large scale structure of the universe. Recent measurements of
these correlation functions are e.g. reported in Thomas et al.
(2011); Kilbinger et al. (2013); de Simoni et al. (2013);
Becker et al. (2015). In order to use these statistics for con-
straining cosmological models one needs a quantitative de-
scription of the joint distribution of the correlation func-
tion estimators. When assuming multivariate Gaussian er-
rors, this is given by the covariance matrix. On large an-
gular scales this covariance matrix can - both for cosmic
shear and galaxy clustering - be well described by a Gaus-
sian approximation for the involved fields (Schneider et al.
2002; Crocce et al. 2011). It has, however, been shown, that
the Gaussian approximation fails to describe the true PDF
of the weak lensing convergence field (Taruya et al. 2002;

⋆ E-mail: oliverf@usm.uni-muenchen.de

Vale & White 2003) and that it underestimates the true co-
variance of the cosmic shear correlation functions on small
scales, which can be alleviated by an empirical re-scaling
(Semboloni et al. 2007; Sato et al. 2011), a log-normal ap-
proximation (Hilbert et al. 2011), or halo model approaches
(e.g. Cooray & Hu 2001; Takada & Jain 2009; Eifler et al.
2014).

Alternatives to modelling the covariance matrix are to
estimate it from many independent realisations of cosmo-
logical N-body simulations or to estimate it internally, i.e.
from the data itself. The latter method is independent of
assuming a particular cosmological model and is hence of-
ten used to complement the other methods (Kilbinger et al.
2013; Wang et al. 2013; Becker et al. 2015.).

So far the performance of internal covariance estimators
has only been systematically studied for the galaxy cluster-
ing 2-pt function (in most detail by Norberg et al. 2009) or
for cross-correlations of the Cosmic Microwave Background
(CMB) and the galaxy field (Cabré et al. 2007). In our pa-
per, we will concentrate on cosmic shear correlation func-
tions. We will show that the shape noise part of the covari-
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ance can be very accurately estimated internally while the
cosmic variance part is generally underestimated. Gaussian
simulations of the convergence field hence yield an overly
optimistic test of internal covariance estimators, since the
Gaussian model underpredicts the cosmic variance contri-
bution to the covariance. We overcome this problem by em-
ploying log-normal simulations of the convergence field.

In our paper we want to study the performance of in-
ternal covariance estimators such as bootstrap, jackknife
or the sub-sample covariance. There is no complete agree-
ment in the literature yet on whether internal covariance
estimates can be used to constrain cosmological parame-
ters from measured 2pt-correlations or whether they are a
mere tool to generate reasonable errorbars in plots of cor-
relation functions (see e.g. Norberg et al. 2009; Wang et al.
2013; de Simoni et al. 2013; Taylor et al. 2013). We want to
address the questions of how many internal resamplings are
required in order to get a stable covariance matrix, whether
internal estimators over- or underestimate the covariance
matrix and whether/how internal covariance estimates can
yield unbiased estimates of the inverse covariance matrix.

Our paper is organized as follows: In section 2 we in-
troduce the cosmic shear correlation functions and explain
the Gaussian and the log-normal model for the covariance
of 2-pt. function estimators. In section 3 we describe the
simulations we use to generate mock shape catalogues that
follow any given input power spectrum and whose underly-
ing convergence field has a log-normal PDF. These are the
simulations with which we will test the performance of in-
ternal covariance estimators.

In section 4 we introduce two principle ways of per-
forming jackknife estimation of the covariance of two-point
measures - the pair-jackknife and the galaxy-jackknife. Fur-
thermore, we are explaining why jackknife, bootstrap and
subsample covariance are almost equivalent.

In section 5 we apply internal covariance estimation to
simulated cosmic shear surveys. We show that in the pair-
scheme all estimators are almost identical and we demon-
strate the systematic effects of the different estimation
schemes when varying the number of re-samplings. Our
method to find optimal estimation schemes has to be re-
run for any specific survey, because the performance of
internal estimators depends crucially on the depth and
area of a survey. In the end of section 5 we configure our
simulations to match the complete, 5-year Dark Energy
Survey (DES, The Dark Energy Survey Collaboration 2005;
Flaugher 2005) and test the accuracy of jackknife covariance
matrices for this particular setting. The code used for our
simulations is made publicly available1.

In section 6 we discuss the results of our work.

1 www.usm.uni-muenchen.de/people/oliverf/, the code also con-
tains many other useful features, that e.g. enable the user to cre-
ate mock data suitable for galaxy-galaxy lensing or galaxy clus-
tering measurements.

2 COSMIC SHEAR BASICS

2.1 Cosmic Shear Correlation Functions

Cosmic shear measures the correlated distortion of galaxy
shapes due to gravitational lensing by the large scale struc-
ture of the universe as a function of the angular dis-
tance of galaxy pairs on the sky. We follow here the no-
tation of Schneider et al. (2002) and employ the flat-sky-
approximation, i.e. we assume a tangential Cartesian coor-
dinate system ϑ = (ϑ1, ϑ2) on the sky.

In this coordinate system the comic shear field is at each
point characterized by a complex number γ(ϑ) = γ1 + iγ2.
If the separation vector ∆ϑ = ϑ2 − ϑ1 of two points on
the sky has the polar angle φ then the tangential and cross

components of γ at ϑ2 and ϑ1 (with respect to each other)
are defined as

γt = −Re
(

γe−2iφ
)

; γ× = −Im
(

γe−2iφ
)

. (1)

The cosmic shear correlation functions ξ±(θ) are defined as
the expectation values

ξ±(θ) = 〈γt,1γt,2〉 ± 〈γ×,1γ×,2〉 , (2)

where θ is the absolute value of ∆ϑ. It can be computed in
terms of the power spectrum Pκ(ℓ) of the scalar convergence
field κ(ϑ) as

ξ±(θ) =
1

2π

∫

dℓ ℓ Pκ(ℓ)J0,4(ℓθ) , (3)

where J0(x) (J4(x)) is the 0-th order (4-th order) Bessel
function.

The shape of a galaxy can be characterized by a complex
number ǫ which is to first order the sum of the intrinsic shape
ǫs of the galaxy and the distortion caused by gravitational
lensing, i.e. the value γ(ϑ) at the location ϑ of the galaxy,

ǫ = ǫ
s + γ . (4)

In a cosmic shear survey the shapes ǫi of many galaxies
are measured and (cf. Schneider et al. 2002) an estimator
for the correlation function can be constructed as

ξ̂±(θ) =

∑

ij wjwj(ǫt,iǫt,j ± ǫ×,iǫ×,j)∆θ(ij)
∑

ij wjwj∆θ(ij)
, (5)

where we have allowed for some weighting scheme wi for the
shape measurements and where the filter ∆θ(ij) selects all
galaxy pairs (i, j) in the survey whose angular separation lies
in some finite bin around θ. The normalization in equation
5 is the effective number of galaxy pairs in a bin around θ,
which we will abbreviate as

Np(θ) =
∑

ij

wjwj∆θ(ij) . (6)

2.2 Covariance of the Correlation Functions

The covariance matrix of the estimator in equation 5 is de-
fined as

C±,±(θ1, θ2) = 〈(ξ̂±(θ1)− ξ±(θ1))(ξ̂±(θ2)− ξ±(θ2))〉
= 〈ξ̂±(θ1)ξ̂±(θ2)〉 − ξ±(θ1)ξ±(θ2) . (7)
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In order to compute this covariance matrix it is convenient
to split ξ±(θ) into the three different contribution

ξ̂nn
± (θ) =

∑

ij wiwj(ǫ
s
t,iǫ

s
t,j ± ǫs×,iǫ

s
×,j)∆θ(ij)

Np(θ)
,

ξ̂ss± (θ) =

∑

ij wiwj(γt,iγt,j ± γ×,iγ×,j)∆θ(ij)

Np(θ)
,

ξ̂sn± (θ) =

∑

ij wiwj(ǫ
s
t,iγt,j ± ǫs×,iγ×,j)∆θ(ij)

Np(θ)
(8)

which are the autocorrelation of the intrinsic shape noise,
the autocorrelation of the shear signal and their cross cor-
relation. The whole estimator 5 is given in terms of these
as

ξ̂±(θ) = ξ̂nn
± (θ) + ξ̂ss± (θ) + 2 · ξ̂sn± (θ) .

Under the assumption that the shear signal and the shape
noise are independent of each other it is obvious that

〈ξ̂nn
± (θ1)ξ̂

sn
± (θ2)〉 = 0 = 〈ξ̂ss± (θ1)ξ̂

sn
± (θ2)〉 .

If the intrinsic shape of any two galaxies is assumed to be
uncorrelated, we can also conclude that

〈ξ̂nn
± 〉 = 0 for θ > 0 (9)

and hence

〈ξ̂nn
± (θ1)ξ̂

ss
± (θ2)〉 = 〈ξ̂nn

± (θ1)〉 · 〈ξ̂ss± (θ2)〉 = 0 for θ1, θ2 > 0 .

The covariance matrix can thus be split into three different
contributions,

C±,± = Cnn
±,± + Css

±,± + Csn
±,± , (10)

namely

Cnn
±,±(θ1, θ2) = 〈ξ̂nn

± (θ1)ξ̂
nn
± (θ2)〉 ,

Css
±,±(θ1, θ2) = 〈ξ̂ss± (θ1)ξ̂

ss
± (θ2)〉 − ξ±(θ1)ξ±(θ2) ,

Csn
±,±(θ1, θ2) = 4 · 〈ξ̂sn± (θ1)ξ̂

sn
± (θ2)〉 . (11)

The Css
±,± term depends on 4-point functions of the shear

field and is called the cosmic variance term. In order to
evaluate it, further assumptions on the probability distribu-
tion function (PDF) of the shear or the convergence field
are needed and we will discuss two possible models for the
convergence PDF in sections 2.2.1 and 2.2.2 - the Gaussian
and the log-normal model.

The contributions Cnn
±,± and Csn

±,± can be computed
without additional assumptions. In Joachimi et al. (2008)
it is derived that they are given by2

Csn
±±(θ1, θ2) =

σ2
ǫ

πAn̄

∫

dℓ ℓ J0/4(ℓθ1) J0/4(ℓθ2) Pκ(ℓ) ,

Cnn
++(θ1, θ2) = Cnn

−−(θ1, θ2)

=
σ4
ǫ

Np(θ1)
· δθ1,θ2 ,

Cnn
+−(θ1, θ2) = 0 , (12)

where A is the survey area, n̄ is the number density of galax-
ies, σǫ is the dispersion of the intrinsic ellipticity which is
defined as

σ2
ǫ := 〈ǫsǫs∗〉 , (13)

2 as in Schneider et al. (2002) they employ an ensemble average
over the galaxy positions to derive their expressions.

and Pκ is again the convergence power spectrum.

2.2.1 Gaussian Approximation

In the paper series by Schneider et al. (2002),
Kilbinger & Schneider (2004) and Joachimi et al. (2008) the
covariance matrix is studied in the Gaussian approximation,
i.e. assuming that the convergence field has a Gaussian
PDF such that its 4-point correlation functions can be
expressed in terms of its 2-point correlation functions.

For the case where the survey geometry is much larger
than the angular scales considered in the correlation func-
tions, Joachimi et al. (2008) derive the following expressions
for the cosmic variance term:

Css
±±(θ1, θ2) =

1

πA

∫

dℓ ℓ J0/4(ℓθ1) J0/4(ℓθ2) P
2
κ(ℓ) . (14)

However, due to the finite geometry of any given survey
equation 14 generally overestimates the covariance of Gaus-
sian field as was demonstrated in Sato et al. (2011). This fi-
nite area effect according to Sato et al. is not important for
surveys larger than 1000 deg2. For smaller surveys a method
developed in Kilbinger & Schneider (2004) which doesn’t
employ an ensemble average over galaxy positions should
be used to evaluate the Gaussian covariance. This method
was for example used in the analysis of CHFTLenS data in
Kilbinger et al. (2013). The finite area effect is also impor-
tant for internal covariance estimation and will be further
discussed in section 4.4.

2.2.2 Shifted Log-Normal Approximation

As e.g. reported by Taruya et al. (2002), Vale & White
(2003) or by Hilbert et al. (2011) the Gaussian model fails
to describe the true PDF of the convergence and especially
on small separations poorly represents the true covariance
of the cosmic shear 2-point functions.

Hilbert et al. (2011) propose a different model for the
convergence PDF, namely that of a zero-mean shifted log-

normal distribution. In this approach the convergence at a
given point on the sky is assumed to be of the form

κ(θ) = exp[n(θ)]− κ0 (15)

where n(θ) is a Gaussian random field (not necessarily with
a vanishing mean) and the minimal convergence parameter

κ0 is chosen such that 〈κ〉 = 0. Hilbert et al. (2011) show
that from the corresponding PDF a model for the shear-
shear contribution to the covariance matrix can be derived.
Considering only the most important terms they also pro-
vide a simplified log-normal covariance, which reads

Css
±±(θ1, θ2) =

1

πA

∫

dℓ ℓ J0/4(ℓθ1) J0/4(ℓθ2) P
2
κ(ℓ)

+
8π

κ2
0A

ξ±(θ1)ξ±(θ2)

∫ θA

0

dθ θ ξκ(θ) ,(16)

where θA represents the ’radius’ of the survey, given by

θA =

√

A

π
. (17)

Comparing equation 16 to equation 14 on can see that the
simplified log-normal approximation to Css

±± consists of only
one correction term to the Gaussian model. In our paper, we

c© 0000 RAS, MNRAS 000, 000–000
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will simulate log-normally distributed convergence fields and
use equation 16 to compute the cosmic variance part of our
model covariance.

2.2.3 Finite bin width

The expressions presented above for the covariance of ξ̂±
are derived under the assumption of small angular bins
(Schneider et al. 2002). However, in order to reduce the
number of data points, in a likelihood analysis one will
usually choose thick angular bins (see e.g. Kilbinger et al.
(2013), Becker et al. in Preparation). Hence, in section 5.2 we
will also investigate situations where the relative bin width
is ∼ 0.3, i.e. where the assumption of small bins does not
hold.

In order to still get a good model for the covariance of
our simulations we proceed as follows: We compute the log-
normal model for the covariance, eqn. 16, for a set of very
small angular bins θ̃i, i = 1, . . . , Ñ . Then we apply a linear
transformation that takes the large data vector of the small
angular bins to a smaller data vector by putting together p
neighbouring bins of the old data vector,

θi =

p·(i+1)−1
∑

j=p·i

θ̃jNp(θ̃j)/

p·(i+1)−1
∑

j=p·i

Np(θ̃j)

ξ̂(θi) =

p·(i+1)−1
∑

j=p·i

ξ̂(θ̃j)Np(θ̃j)/

p·(i+1)−1
∑

j=p·i

Np(θ̃j) ,

(18)

where Np(θ̃j) is the number of pairs in the jth bin of the
finer data vector.

The same linear transformation is then applied to the
covariance matrix of the large data vector to get the covari-
ance matrix of the compressed data vector. We find that
for ξ̂+ this makes almost no difference. However, for ξ̂− it
decreases the mixed- and cosmic variance part of the covari-
ance by & 30%. (The Cnn

±± term of the covariance is correct
for any bin width).

3 LOG-NORMAL SIMULATIONS

It was shown by Hilbert et al. (2011), using the Millennium
simulation, that the log-normal model gives a much more re-
alistic description of the covariance of the cosmic shear 2-pt.
functions than the Gaussian model. Hence in our paper we
are simulating cosmic shear fields, for which the underlying
convergence field has a log-normal PDF, in order to present
a realistic test of internal covariance estimators.

Simon et al. (2004) described a quick method to sim-
ulate cosmic shear surveys based on a Gaussian conver-
gence field for any given convergence-power-spectrum. On
a quadratic grid in 2D-Fourier space they generate at each
point ℓ of the grid a value of the convergence

κ̂(ℓ) = κ1(ℓ) + iκ2(ℓ)

where the components κi(ℓ) are drawn from a Gaussian dis-
tribution with zero mean and variance

σ2
ℓ =

1

2V
Pκ(ℓ).

Here Pκ is the desired convergence power-spectrum and V
is given in terms of the grid spacing3 ∆ℓ as

V =

(

2π

∆ℓ

)2

.

In order to achieve a convergence field that is real valued in
angular space one has to impose the condition

κ̂(ℓ) = κ̂∗(−ℓ)

and in Fourier space the shear field is related to the conver-
gence field by the equation4

γ̂(ℓ) =
ℓ21 − ℓ22 + 2iℓ1ℓ2

ℓ2
κ̂(ℓ) . (19)

A Fourier transform then gives the shear field in angular
space.

To generate a log-normally distributed convergence field
we have to recall that in the shifted log-normal approxima-
tion κ(θ) is of the form

κ(θ) = exp[n(θ)]− κ0 (20)

where n(θ) is a Gaussian random field with mean µ and
variance σ2 and κ0 is chosen such that 〈κ〉 = 0. The main
idea in generating such a random field is to generate the
Gaussian field n(θ) with the method of Simon et al. (2004)
and transform it into κ(θ) via equation 20.

According to Martin et al. (2012); Takahashi et al.
(2014) the power spectrum of n, Pn, can be computed from
Pκ as follows: First the 2-pt. function of κ is related to the
2-pt. function of n via (see e.g. equation B.8 of Hilbert et al.
2011):

ξκ(θ) = κ2
0 · (exp[ξn(θ)]− 1) . (21)

Using also equation 3 (and its inverse) one can compute Pn

from Pκ in the following steps:

ξκ(θ) =
1

2π

∫ ∞

0

dℓ ℓ Pκ(ℓ) J0(ℓθ)

→ ξn(θ) = ln
(

ξκ(θ)/κ
2
0 + 1

)

→ Pn(ℓ) = 2π

∫ ∞

0

dθ θ ξn(θ) J0(ℓθ) . (22)

This way n will have a mean value of zero and the appro-
priate mean value,

µ = κ0 − σ2

2
, (23)

has to be added in order to have 〈κ〉 = 0. With equation 19
one can then compute the Fourier modes of the shear field.

We use the simulations described above to generate
shear fields. Our power spectrum is computed using the
nicaea code5 and it follows the cosmology of the Millenium
simulation that was also used by Hilbert et al. (2011). In
harmonic space our grid has a spacing of ∆ℓ = 2 and a total
number of (216)2 grid points. Out of the Fourier transformed
grid in angular space we cut a region of (70 deg)2, onto which
we place galaxies with a density of 20arcmin−2 (we will use

3 V is the volume of the grid in angular space.
4 see equation 25 of Simon et al. (2004) or equation 8 of
Joachimi et al. (2008)
5 by Kilbinger et al., www.cosmostat.org/software/nicaea/
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0.0001

1 10 100

Figure 1. Comparison of the mean correlation functions from
1000 simulations (red dots) and the input model (blue line). The
the red error bars show the standard deviation of the mean and
the green errorbars show the standard deviation of the single cor-
relation function measurements. We used the redshift distribution
of Hilbert et al. (2011) to compute the input power spectrum and
we also used their value of κ0 to generate the log-normal conver-
gence. Note that in section 5.2 we will use a different configura-
tion.

different densities in section 5.2). The shear grid is interpo-
lated to the position of each galaxy and a Gaussian random
shape noise of ellipticity dispersion σǫ = 0.3 is added to get
the total shape of the galaxy. Note that we simply added
the shear signal and intrinsic ellipticity, hereby ignoring the
effects of reduced shear.

We simulate the mock survey 1000 times to test its
statistical properties against the expectation from our log-
normal input model. In order to speed up the computations
we decrease the number of galaxies with respect to our jack-
knife analysis by a factor of 5 while also decreasing the ellip-
ticity dispersion by a factor of

√
5. This way the covariance

expressions in equation 16 stay unaffected.

In figure 1 we show the mean measured correlation func-
tions in the simulation. The correlation function measure-
ment was carried out using the TreeCorr tree code6 using
35 logarithmic bins from θmin = 1′ to θmax = 150′. The mea-
sured correlation functions and those derived from the input
model agree well. However, at small angular scales the mea-
sured value of ξ− differs significantly from the input modes.
The reason is the artificial cut-off at high ℓ-values in our
Fourier grid which both in the model and the simulation
introduces artefacts - as can be seen from the oscillatory
behaviour of ξ−. If the grid spacing ∆ℓ was increased this
would instead introduce artefacts at high angular scales, as
was also reported by Simon et al. (2004). Hence we stay with
the set-up descibed above but for our jackknife analyses in
section 5 we will only consider those bins in ξ− that have
θ & 4.5′. For ξ+ we continue to use a range of 1′ < θ < 150′.

Figure 2 compares the sample covariance of the 1000
simulations to the predictions from equation 16. For ξ+ there
seems to be a significant deviation between the measured
variance and the log-normal model. However, the sample
variance values at different angular scales are highly corre-
lated. When transforming the covariance matrices into the
eigenbasis of the model covariance (right-hand panel of fig-
ure 2), the variance values become uncorrelated and the sys-
tematic deviations disappear. Only for the smallest eigen-
values of the model covariance matrix (i.e. for large i) a
systematic deviation remains. This is probably due to im-
perfections in our simulations or in our expressions for the
log-normal model itself.

4 INTERNAL COVARIANCE ESTIMATION

FOR TWO-POINT CORRELATION

FUNCTIONS

Suppose the correlation functions ξ± have been measured in
finite bins around a set of angular distances θi, i = 1, . . . , d.
Let ξ̂ be either one of the data vectors [ξ±(θ1), . . . , ξ±(θd)]
or the joint data vector of both correlation functions.

If ξ[π] is a model for the measurement ξ̂ which de-
pends on a set of parameters π, then a common statistic
for constraining the possible values of π is the χ2 statistic
(Kilbinger & Schneider 2004), i.e.

χ2[π] = (ξ̂ − ξ[π])TC−1 (ξ̂ − ξ[π]) , (24)

where C is the covariance matrix of ξ̂. One way to get the co-
variance matrix is to model it theoretically. As we have seen
in section 2.2 the modelling of the covariance depends cru-
cially on the PDF of the convergence field (Schneider et al.
2002; Hilbert et al. 2011; Sato et al. 2011) and neither the
Gaussian nor the log-normal approximation match a real-
istic convergence PDF. Also, the model covariance matrix
will depend on cosmological parameters itself which has, at
least for small surveys, has to be taken into account when
deriving parameter constraints (Eifler et al. 2009).

A way to get around modelling the covariance matrix
directly is to use the sample covariance of measurements
of the correlation functions in a set of independent N-body
simulations (Taylor et al. 2013) which however still depends

6 by Jarvis et al., github.com/rmjarvis/TreeCorr
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6 O. Friedrich, S. Seitz, T. F. Eifler, D. Gruen

Figure 2. Left: sample variance from 1000 independent simulations compared to the log-normal input model. The errorbars are assuming
a Wishart distribution, note however that the different sample variance values are correlated. Right: in the diagonal basis of the model
covariance matrix the sample variance values should independently follow a χ2-distribution. The model and the simulations are consistent
for the ≈ 20 largest eigenvalues of the model covariance matrix.

on the model parameters, i.e. on the assumption of a partic-
ular cosmological model. Another alternative to modelling
the covariance matrix is to estimate it from the data itself.
In the following we will introduce three different internal
covariance estimation methods - the sub-sample covariance,
the delete-one-jackknife and the bootstrap (cf. Norberg et al.
2009; Loh 2008).

4.1 Subsample Covariance

Let us split the area A of our cosmic shear survey into N
equally shaped and sized subregions of the area AS = A/N .
In each subregion α = 1, . . . , N , a measurement of the data
vector ξ̂

α
can be carried out. Assuming that each sub-region

has approximately the same number of galaxies and that the
correlation functions are measured on scales much smaller
than

√
AS the measurement of ξ̂ in the whole survey is given

c© 0000 RAS, MNRAS 000, 000–000
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by

ξ̂ ≈ ξ̄ :=
1

N

N
∑

α=1

ξ̂
α
, (25)

i.e. it is the mean values of the measurements in the sub-
regions. If the measurements ξ̂

α
are independent, then the

ij-th element of their covariance matrix could be estimated
by

〈∆ξ̂
α

i ∆ξ̂
α

j 〉 ≈
1

N − 1

N
∑

β=1

(ξ̂
β − ξ̄)i (ξ̂

β − ξ̄)j , (26)

where ∆ξ̂
α
is the difference between ξ̂

α
and its expectation

value

ξ = 〈ξ̂α〉 = 〈ξ̂〉 . (27)

Accordingly, if the assumption of independent sub-regions
were true, the covariance of the total measurement ξ̂ could
be estimated by

ĈSSC =
1

N(N − 1)

N
∑

α=1

(ξα − ξ̄)T (ξα − ξ̄) . (28)

We will call the estimator in equation 28 the sub-sample

covariance (Norberg et al. 2009).

4.2 Jackknife

Another method of covariance estimation that
Norberg et al. (2009) investigate is the delete-one-jackknife.
Instead of estimating the covariance of the measurements
ξα and rescaling it to the size of the whole survey the
jackknife is considering the measurements

ξ̂∗α± (θ) =

∑

{i,j not in α}(ǫ
i
tǫ

j
t ± ǫi×ǫ

j
×) ·∆θ(|θi − θj |)

∑

{i,j not in α} ∆θ(|θi − θj |)
,

(29)
i.e. the jackknife-sample α is generated by cutting out the
subregion α and measuring the correlation functions in the
rest of the survey - see also figure 5. The jackknife esti-
mate for the covariance matrix is then given by (Efron 1982;
Norberg et al. 2009)

Ĉjack =
N − 1

N

N
∑

α=1

(ξ∗α − ξ̄
∗
)T (ξ∗α − ξ̄

∗
) , (30)

where ξ̄
∗
is the mean of all jackknife measurements.

If we again assume that all subregions have the same
galaxy density and that the correlation functions are mea-
sured on scales much smaller than the sub-region size then
ξ∗α is approximately given by

ξ
∗α ≈ 1

N − 1

∑

β 6=α

ξ̂
β
. (31)

From this it also follows that

ξ
∗α − ξ̄

∗ ≈ N · ξ̄ − ξ̂
α

N − 1
− 1

N

∑

β

ξ
∗β

=
N · ξ̄ − ξ̂

α

N − 1
− 1

(N − 1) ·N
∑

β

∑

γ 6=β

ξ̂
γ

=
1

N − 1

∑

β 6=α

ξ̂
β − N − 1

(N − 1) ·N ξ̂
γ

=
N · ξ̄ − ξ̂

α

N − 1
− ξ̄

=
ξ̄ − ξ̂

α

N − 1
. (32)

Inserting this into the definition of Ĉjack gives exactly the
subsample covariance ĈSSC, i.e. on small angular scales the
two methods are approximately equivalent7.

4.3 Bootstrap Covariance

The so called block bootstrap estimator of the covariance also
divides the data into sub-samples. If the data is split into N
sub-regions, then a number of Nboot bootstrap re-samplings
of the data are generated by randomly drawing with replace-
ment N of the sub-samples and combining then into one re-
sampled data set (Norberg et al. 2009; Nordman & Lahiri
2007; Loh 2008; Efron 1982). If the correlation function mea-
sured in the re-sampled data i (i = 1, . . . , Nboot) is called
ξboot,i, then the bootstrap estimate of the covariance is given
by

Ĉboot =
1

Nboot − 1

Nboot
∑

i=1

(ξboot,i − ξ̄
boot

)T (ξboot,i − ξ̄
boot

) ,

(33)

where ξ̄
boot

is now the mean of all ξboot,i.
The question arises, whether one should consider the

single galaxies or the galaxy pairs as the actual data (cf.
section 4.5). In what we will call galaxy-bootstrap one sim-
ply adds a copy of all galaxies in a sub-region α to the re-
sampled data set i each time the sub-region α gets drawn.

In the pair-bootstrap one adds all pairs in sub-region
α to the list of pairs that is used to compute ξboot,i. The
difference between the two bootstrap schemes is mainly the
following: if the sub-region α gets drawn n times, then each
pair in α gets a weight of n in the pair-scheme and a weight
n2 in the galaxy-scheme.

Note that the pair-bootstrap is very similar to what Loh
(2008) describes as marked point bootstrap, the only differ-
ence being, that we chose to split pairs between sub-regions
evenly among these regions (a more detailed explanation is
given in section 4.5).

We will see in section 5 that the galaxy-bootstrap
severely overestimates the covariance. The other covariance
estimators perform very similar to each other and suffer from
similar systematics. We will explain them in the following.
Since it will be shown in section 5, that all internal covari-
ance estimators perform very similar, we will focus the rest
of this section on the jackknife method.

7 This is no general statement on the jackknife method. It holds
only in our particular situation.
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Figure 3. Left: Different variance estimates for ξ̂+ (solid lines) and ξ̂− (dotted lines) in a mock catalog without shape noise. The red
lines show the galaxy-jackknife estimate (c.f. section 4.5), the blue lines show the pair-jackknife estimate and the black lines show the
log-normal input model. Right: Jackknife estimates of the variance of ξ̂+ in a mock catalog that only consists of shape noise. It is only
in this situation (and in the pair-jackknife scheme) that jackknife estimation of the covariance yields unbiased results.

4.4 Correlation of sub-samples

The jackknife method (and also the sub-sample covariance

and the bootstrap covariance) relies on the assumption that
the sub-samples into which the data are split are indepen-
dent, i.e. that there is no correlation of the measurements of
the correlation functions in the different sub-samples,

〈∆ξ̂
α

i ∆ξ̂
β

j 〉
!
= 0 , for α 6= β . (34)

If they are instead correlated, the true covariance
matrix will be underestimated by internal estimators
(Nordman & Lahiri 2007).

In a sense, if the sub-regions are correlated the mea-
surements ξ̂

α
’don’t vary enough’ to yield the true covari-

ance of ξ̂. However, the more adequate way to think about
this is as follows: Both jackknife and sub-sample covariance
(and bootstrap) assume that the covariance matrix of ξ̂ is
inversely proportional to the survey area A. Hence they es-
timate the covariance of sub-regions of the size AS within
the data and then rescale it to the total area,

C =
AS

A
· CS =

1

N
· CS , (35)

where N is again the number of sub-regions. But already
from the log-normal model for the cosmic variance part of
the covariance it can be seen, that this rescaling is not valid:

Css
±±(θ1, θ2) =

1

πA

∫

dℓ ℓ J0/4(ℓθ1) J0/4(ℓθ2) P
2
κ(ℓ)

+
8π

κ2
0A

ξ±(θ1)ξ±(θ2)

∫ θA

0

dθ θ ξκ(θ) .

(36)

The second term in this equation may be proportional to
1/A, but the upper integral boundary also depends on the

survey diameter θA. As A increases, the covariance there-
fore decreases slower than 1/A. Hence assuming 1/A scaling
when extrapolating from the covariance in the smaller sub-
fields to the covariance in the larger full area, as is typically
done in internal covariance estimation, underestimates the
full covariance. Note, that this is equivalent to saying that
close sub-regions are correlated and that this is also the rea-
son for the finite area effect that was discussed before.

In figure 3 we demonstrate this effect. The left-hand
panel shows jackknife estimates of the variance of ξ̂± in a
simulated survey where the shape noise was put to zero.
Both the variance of ξ̂+ and ξ̂− are severely underestimated
by the delete-one-jackknife and the situation is very similar
for the sub-sample and the pair-bootstrap covariance (which
are not shown here, see figure 6 for a comparison). An ex-
ception are large angular scales, at which at least for ξ̂−
an overestimation of the variance happens. Here, another
effect comes into play which will be discussed in the next
subsection.

On the other hand, the shape noise in the sub-regions is
completely uncorrelated. Hence the shape noise component
of the covariance can be internally estimated without bias
as can be seen from the right-hand panel of figure 3 where
a pure shape noise catalog was generated.

The fact that sub-samples should be as uncorrelated
as possible is also the reason why the jackknife re-sampling
of the data should be done in coherent patches. If instead
the data would be randomly divided into sub-samples then
the shear correlations in the sub-samples would be almost
identical. Hence, only the shape-noise contributions to the
covariance would be measured by such an estimator.
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Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions 9

4.5 Galaxy pairs crossing between sub-samples

A problem specific to the internal covariance estimation for
two-point correlation functions is the question of what to do
with pairs of galaxies where each galaxy lies in a different
sub-region of the data.

In fact the pieces of information in a cosmic shear sur-
vey are not the individual galaxy shapes but the pairs of
galaxy shapes. But each such pair of shapes will be left out
twice (instead of once) if the jackknife re-sampling is done
with respect to the individual galaxies (cf. figure 5). This
increases the variance between the jackknife samples and
hence the covariance estimate.

The situation becomes more clear for the sub-sample
covariance: Here, the pairs crossing between sub-regions are
completely ignored. Hence, one is re-sampling a data set
that has less information than the total measurement of ξ±
and a larger variance. Note, that this does not only influ-
ence the shape-noise part of the covariance but - as can be
seen from the left-hand panel of figure 3 - also the cosmic
variance part. The reason is that galaxies at the edge of a
sub-region contribute less terms to the correlation function
measurement than galaxies in the center of the sub-region
(c.f. figure 4), i.e. the area of the sub-patch is not uniformly
probed by the galaxy pairs and the measured shear corre-
lations are dominated by the inner parts of the patch. In
contrast to the correlation of sub-samples discussed before,
this increases the cosmic variance between the sub-samples
and can bias the covariance estimate high on large angular
scales.

This effect can in principle be resolved by re-sampling
the set of pairs (instead of the set of galaxy shapes), i.e. by
defining the sub-measurement ξ̂

α
as

ξ̂α±(θ) =

∑

pairs in α(ǫ
i
tǫ

j
t ± ǫi×ǫ

j
×) +

∑

half of cross pairs(ǫ
i
tǫ

j
t ± ǫi×ǫ

j
×)

Npairs
.

(37)

How this resampling of galaxy pairs can be done is illus-
trated in figure 5. Especially one has to make sure that
each galaxy pair enters exactly one of the ξ̂

α8. We call this
procedure the pair-jackknife while we will call the standard
jackknife procedure galaxy-jackknife. The pair-jackknife is
preferable in surveys whose covariance is shape noise domi-
nated. On the right-hand panel of figure 3 you can see that
it estimates the shape noise part of the covariance very ac-
curately, while the galaxy-jackknife overestimates this con-
tribution. A downside of the pair-jackknife is that the shear
signals in the sub-measurements ξ̂

α
become even more cor-

related, as can also be seen from the left-hand panel of figure
3.

It should be mentioned that both jackknife schemes can
be most easily implemented in the marked point formalism
for re-sampling that was given by Loh (2008).

8 respectively: each galaxy pair is left out in exactly one of the
jackknife re-samplings ξ̂

∗α

4.6 Stability and Inversion of the Covariance

Estimate

All effects that bias the internal covariance estimate can in
principle be minimized by dividing the data into very large
sub-regions. This decreases both the correlation of the differ-
ent sub-regions and the influence of pairs crossing between
sub-regions. However, this also decreases the possible num-
ber of re-samplings and hence increases the variance of the
covariance estimator itself!

In order to derive constraints on the number of re-
samplings let us assume that we are in the limit were the cor-
relations between sub-regions are small. Small here means
that

〈∆ξ̂
α

i ∆ξ̂
β

j 〉 ≪ 〈∆ξ̂
α

i ∆ξ̂
α

j 〉 , for α 6= β . (38)

As explained before, this is the only limit in which internal
covariance estimation is valid! In this limit the pair-jackknife
is exactly equivalent to the pair-version of the sub-sample
covariance, i.e. to equation 28 when ξ̂

α
is computed with

equation 37. Furthermore, in this limit the sub-sample co-
variance is just a rescaled version of the sample covariance
of the sub-regions. Hence - in the limit considered here and
under the assumption that the underlying field is Gaussian
- the internal covariance estimates are distributed according
to a Wishart distribution (cf. Taylor et al. 2013).

The most important consequence of this is that the in-
verse of the covariance matrix estimate will be a biased es-
timate of the true inverse covariance matrix, and the bias
is approximately given by (Hartlap et al. 2007; Taylor et al.
2013):

〈Ĉ−1
SSC〉 ≈

N − 1

N − d− 2
C−1

true , (39)

where N is the number of sub-regions and d is the number of
data points in ξ̂. Especially, this factor has to be accounted
for when computing the χ2 statistic, eq. 24, i.e. it has an
influence on the constraints derived on cosmological param-
eters when using internal covariance estimation.

Taylor et al. (2013) also give constraints on N with re-
spect to d when a certain accuracy in the final parameter
constraints is demanded. However, their results were derived
for covariance estimates with an exact Wishart distribution.
Furthermore, they are ignoring the impact that the variance
in the inverted covariance estimate has on parameter con-
straints, which is investigated by Taylor & Joachimi (2014).
Nevertheless we take the criterion of Taylor et al. (2013),

N
!
>

2

ǫ2
+ (d+ 4) , (40)

where ǫ is the required fractional accuracy on parameter
constraints, as a guideline also for internal covariance esti-
mation.
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Figure 4. Galaxies at the edge of a sub-region (in red) contribute
less pairs to the measurement of the correlation functions (i.e. to
equation 5 applied to the sub-sample) than galaxies in the center
of the sub-region (in blue). Consequently, the area of the sub-
patch is not uniformly probed by the galaxy pairs. This increases
the cosmic variance between sub-regions and biases the covari-
ance estimates high. Hence, it has an opposite effect than the
correlation of sub-samples, which biases the covariance estimates
low. As you can see from the left-hand panel of figure 3, at large
angular scales this can (in the galaxy-scheme, c.f. also figure 5)
even lead to an overestimation of the cosmic variance of ξ̂−.

Figure 5. Two basic jackknife schemes for a set of galaxy pairs
given by the top panel. In the galaxy-jackknife scheme (lower
right) ξ∗α is computed by cutting out all galaxy pairs that have at
least one galaxy in the sub-region α. In the pair-jackknife scheme
(lower left) half of the pairs that cross from α to another region
(drawn in green) are taken into account for computing ξ∗α, while
only the other half (red) is discarded.

5 TESTING INTERNAL COVARIANCE

ESTIMATORS ON SIMULATED COSMIC

SHEAR SURVEYS

We will now use the simulations described in section 3 to test
the performance of internal covariance estimators. The cos-
mology will be kept fixed to that of Hilbert et al. (2011),
i.e. a flat ΛCDM universe with (Ωm,Ωb, σ8, h100, ns) =
(0.25, 0.045, 0.9, 0.73, 1.0). First, we simulate a survey of
(70 deg)2 and the redshift distribution of Hilbert et al.
(2011),

p(z) =
3z2

2z30
e
−
(

z
z0

)

3/2

, where z0 =
1.0

1.414
. (41)

Figure 6. A comparison of the different internal estimation
schemes when splitting the survey into N = 225 sub-regions.
Green: galaxy-bootstrap, purple: pair-bootstrap, red: galaxy-
jackknife, blue: pair-jackknife and cyan: sub-sample covariance
compared to the analytical covariance (black line). We show the
sub-sample covariance only in the galaxy-scheme because in the
pair-scheme it is almost identical to jackknife and bootstrap. As
explained in section 4, at large angular scales the different treat-
ment of galaxy pairs crossing between sub-region leads to an over-
estimation of the variance by the galaxy-scheme and an underes-
timation of the variance by the pair-scheme.
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Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions 11

This distribution has a median redshift of 1.0. Hilbert et al.
(2011) give a value of κ0 = 0.032 for this redshift distribu-
tion which we hence also employ to generate our log-normal
fields. A total number of 352.8 Mio. galaxies is placed onto
the survey corresponding to a source density of 20 arcmin−2.
Shape noise with an ellipticity dispersion per component of
σǫ = 0.3 is then added to each galaxy.

We carry out 50 independent realizations of this survey.
In each survey we measure the correlation functions in the
range and binning that was explained in section 3. We then
estimate the covariance of the measured correlation func-
tions using the different internal estimation schemes that
were introduced in section 4. Throughout this section - ex-
cept for subsection 5.2 - we consider the log-normal model
that was explained in section 2.2 as the true covariance of
the simulated surveys. This is justified by the fact that our
results don’t change if we instead use the sample covariance
of 1000 independent realisations that was presented in sec-
tion 3.

In figure 6 we compare the sub-sample, jackknife and
bootstrap estimates of the diagonal elements of the covari-
ance matrix (both in the galaxy- and pair-scheme) when
splitting the survey into N = 225 sub-regions. In the pair-
scheme all three internal estimators perform almost iden-
tical. This is not surprising, because in that scheme the
bootstrap is just an approximation to the sub-sample co-
variance and sub-sample and jackknife covariance are by
definition very similar. In the galaxy-scheme the bootstrap
severely overestimates to variance. This demonstrates that
not the single galaxies but the pairs of galaxies have to be
considered as the pieces of information in a cosmic shear
survey, and hence bootstrap re-sampling has to be carried
out with respect to the pairs. As explained in section 4.5,
in the galaxy-jackknife scheme the two effects of correlated
sub-regions and false re-sampling of pairs partly cancel each
other. Hence the galaxy-jackknife comes closest to the true
variance at large scales. The performance of the sub-sample
covariance (in the galaxy-scheme) only slightly differs from
that.

Because of its severe overestimation of the variance
we will ignore the galaxy-bootstrap from now. Since the
other estimators perform very similar within the pair- and
jackknife-scheme, we will furthermore restrict the following
analyses to the pair-jackknife and the galaxy-jackknife. We
now investigate the influence of sub-region size on internal
covariance estimation. Hence we split the surveys into 3 dif-
ferent numbers of sub-regions: 102, 152 and 202.

In figure 7 we compare the mean value of the 50 jack-
knife estimates of the variance of ξ̂± (the diagonal elements
of the covariance matrix) to the true underlying log-normal
model. The errorbars represent the standard deviation of the
50 jackknife estimates, i.e. they illustrate the noise of the
internal estimators. You can see in this figure the biases in
the jackknife estimates that we explained in the previous sec-
tion. For ξ+, both jackknife schemes underestimate the vari-
ance. At large scales, this is in the galaxy-jackknife scheme
partly compensated by the false re-sampling of galaxy pairs.
For ξ−, the pair-jackknife underestimates the variance while
the galaxy-jackknife overestimates it. ξ− is a much more lo-
cal measure in the sense that the different sub regions are
less correlated in ξ̂− and that the covariance matrix is much
more dominated by the shape noise contributions. Hence,

the severe systematic underestimation of the variance that
can be seen for ξ+ does not appear as strongly for ξ−.

When increasing the number of sub-regions for the jack-
knife estimators, the noise in the variance estimates becomes
smaller but the deviations from the true variance also be-
come stronger. This is because for smaller sub-regions the
estimated ξ̂

α
become more correlated and because there will

be more galaxy pairs crossing from one sub-region to an-
other.

5.1 Constraints on cosmological Parameters

We will now take the 50 simulations as mock observations
and try to constrain the dark matter density parameter Ωm

and the power spectrum normalization σ8. To do so we
sample the Ωm-σ8 plane on a fine grid while keeping the
other cosmological parameters fixed. Following a Bayesian
approach we take the probability density in the parameter
space to be proportional to the likelihood,

p(π) ∼ L(π) ∼ exp

(

−1

2
χ2[π]

)

, (42)

where we assume our data vector ξ̂ to be Gaussian such that

χ2[π] = (ξ̂ − ξ[π])TC−1 (ξ̂ − ξ[π]) . (43)

Here ξ[π] are our model predictions for 〈ξ̂〉 which we again
compute with the nicaea package. We are assuming a prior
of Ωm ∈ [0.1, 0.4] and σ8 ∈ [0.8, 1.1], which is well centered
around our input cosmology. For C we will either insert the
log-normal model covariance or the jackknife estimates of
the covariance. We will de-bias the inverse of the latter in the
way explained in section 4.6. Note that the reasoning in sec-
tion 4.6 is in principle only valid for the pair-jackknife. And
also for the pair-jackknife it is only valid in the case of almost
uncorrelated sub-regions. We will nevertheless carry out the
de-biasing in the same way for both jackknife schemes. Fur-
thermore, we will also ignore the variance of the inverted
covariance estimate (Taylor & Joachimi 2014), as explained
in the end of section 4. Our data vector ξ̂ will be either
ξ̂+ or ξ̂− or the joint data vector of both correlation func-
tions, in which case we will also take into account the cross
covariance between the two.

For each mock observation ξ̂ and for each avail-
able covariance matrix we use equation 42 to compute
marginalised 1σ constraints on Ωm and σ8, i.e. we consider
the marginalised probability densities

pΩ(Ωm) =

∫

dσ8 p(Ωm, σ8)

pσ(σ8) =

∫

dΩm p(Ωm, σ8) (44)

and we define 1σ confidence interval to be that interval
around the best fit parameter value which encloses ∼ 68% of
the probability and which has equal values of the probability
density at each interval boundary9.

Because of the strong degeneracy between Ωm and σ8

(Kilbinger et al. 2013; Kilbinger & Schneider 2004), even

9 Without the last statement the definition of the 1σ confidence
interval would be ambiguous.
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1 10 100 10 100

Figure 7. Mean values of 50 jackknife estimates of the variance of ξ+ (left) and ξ− (right). Galaxy-jackknife was used for the red points
while pair-jackknife was used for the blue points. The black line corresponds to the log-normal input model of the simulations.
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little uncertainties in the modelling of ξ[π]10 or in our simu-
lations could shift the best-fit values of the parameters along
the degeneracy. Fortunately, this does not affect our analy-
sis because we only have to compare the constraints derived
from the jackknife covariance estimates to the constraints
obtained from the true (log-normal) covariance matrix. Fur-
thermore, our results don’t change noticeably, if instead of
the log-normal covariance matrix we use the sample covari-
ance estimated from 1000 simulations (c.f. section 3). Hence
in any case, our analysis provides a fair test of internal co-
variance estimators.

In figure 8 we show the mean values of the upper and
lower boundaries on Ωm and σ8 as well as their mean best
fit value for different numbers of jackknife re-samplings (red
points and errorbars). The mean is taken with respect to
all 50 confidence intervals we computed from the 50 mock
observations. We also compare the jackknife constraints to
those we get when using the true covariance matrix (blue
lines). These figures only show the results for the galaxy-
jackknife, which in the situation considered here yields the
best agreement with the true covariance.

We compare galaxy-jackknife and pair-jackknife in fig-
ure 9. Here we show the mean width of the confidence in-
tervals obtained with galaxy-jackknife, pair-jackknife and
the true covariance matrix. For ξ−, the width of the con-
fidence intervals agrees well with the confidence intervals
obtained from the true covariance matrix. In fact, even for
the pair-scheme and even for 400 jackknife re-samplings the
width of the confidence intervals from ξ− alone is not un-
derestimated. This seems to contradict figure 7, where the
pair-scheme systematically underestimates the covariance.
One reason for this is probably, that the variance in the
inverted covariance estimate increases parameter uncertain-
ties (Taylor & Joachimi 2014). Note especially, that this is
not the same effect as the de-biasing in eqn. 4.6. For ξ+, the
strong underestimation of the covariance matrix by jackknife
also leads to an underestimation of the uncertainties on Ωm

and σ8. Again one can see that the variance in the width
of the confidence intervals (the errorbars in figure 9) be-
comes smaller, when more jackknife re-samplings are used.
In turn, this increases the overall underestimation of the un-
certainties. If both correlation functions are combined and
225 re-samplings are used, the parameter uncertainties are
underestimated by ∼ 10%.

We have not shown results from the pair-jackknife esti-
mates in figure 8, but the best fit values of Ωm and σ8 agree
very well between the two jackknife schemes (i.e. within the
green errorbars in figure 8), if only ξ̂+ or ξ̂− are used to
constrain the parameters. In figure 10 we compare the pair-
jackknife and galaxy-jackknife best fit values when using the
full data vector. Here the pair-jackknife seems to yield a bias
of the best fit values with respect to the true covariance.

The above results indicate that internal covariance es-
timation can reproduce the constraints on parameters from
the true covariance quite well, especially when the galaxy-
jackknife scheme is used. However, these results are not gen-
eralizable. In general, internal estimation of the covariance
works best if the covariance matrix is shape noise dominated.

10 In our modelling we are for example not considering the finite
bin width in our measurement of ξ̂.

Figure 8. Mean 1σ constraints on Ωm and σ8 using galaxy-
jackknife (red errorbars). The green errorbars show the standard
deviation of the mean best-fit values (i.e. the standard deviation
of the best fit values divided by

√
50). The blue lines indicate the

constraints that are obtained when the true covariance is used
in each mock catalog. Note that the error bars are very symmet-
ric. For surveys as big as our simulations the constraining power
becomes large enough to turn the - usually banana shaped - de-
generacy between Ωm and σ8 into almost elliptical contours in
the parameter plane (c.f. appendix A)
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Figure 9. Mean width of the 1σ uncertainty on Ωm and σ8 us-
ing pair-jackknife (blue) and galaxy-jackknife (red). The error-
bars show the standard deviation the 50 estimated confidence
intervals. The black dotted line indicates the mean width of the
confidence intervals when the true covariance is used in each mock
catalog.

Hence, the answer to what is the best estimation scheme and
how well it can reproduce the true errorbars on cosmological
parameters depends on the depth of the considered survey.
A shallower survey not only has a smaller source density and
hence a bigger shape noise. It also has a smaller convergence
power spectrum which in turn reduces the cosmic variance
part of the covariance.

The procedure we presented above to investigate the

Figure 10. Mean best fit values of Ωm and σ8 using pair-
jackknife (blue) and galaxy-jackknife (red). The errorbars show
the standard deviation of the mean, as estimated from the 50 best
fit values. The black dotted line indicates the mean best fit value
when the true covariance is used in each mock catalog.

performance of internal covariance estimators thus has to
be re-run for each survey under consideration. One can con-
sider the log-normal model as a good model for the true
covariance of our simulations for mock catalogs with an
area of & 1000 deg2 and a simple, connected geometry. For
smaller surveys the finite-area-effect should not be ignored
(Sato et al. 2011; Kilbinger et al. 2013). However, these sur-
veys can be simulated fast enough with our public code to
generate a large sample of independent realisations of the
mock data which provides a good sample covariance esti-
mate of the true covariance matrix. This estimate can then
be compared to an ensemble of internal covariance estimates
as we have done it above.

5.2 Matching the procedure to DES science

verification and year 5 Data

We will now present an application of our method. Our at-
tempt is to determine the performance of internal covariance
estimation for
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• Dark Energy Survey science verification data (DES-SV)
• DES year five data (DES-Y5) assuming a low source

density of 6 arcmin−2

• DES year five data assuming a source density of
10 arcmin−2.

A source density of 10 arcmin−2 is forecasted for the final
DES data while a density of ∼ 6 arcmin−2 roughly cor-
responds to the current status of DES science verification
data.

Using a mask similar to that of the science verification
data of the Dark Energy Survey (DES-SV) we will simulate
mock shape catalogs to see whether internal covariance esti-
mation can be successfully applied to that data. We keep the
cosmology and the shape noise dispersion as they were be-
fore. The source redshift distribution of equation 41 will be
adjusted to a value of z0 = 0.495 which corresponds to a me-
dian redshift of zmed = 0.7 and a mean redshift of z̄ = 0.745.
We put the mean redshift into an empirical relation κ0(z)
provided by Hilbert et al. (2011) and arrive at a value of
κ0 ≈ 0.019 for the convergence field of this shallower sur-
vey. The source density is adjusted to ∼ 6/arcmin2 which
is comparable to the current density of DES-SV. It leads to
an overall number of ∼ 2.9 million galaxies that fall into the
mask.

We adjust our data vector to that used by Becker et al.
(2015), i.e. for both ξ+ and ξ− we now use 15 logarithmic
bins ranging from θ = 2 arcmin to θ = 300 arcmin. We
will cut the survey into 100 sub-regions which, according
to equation 40, can in principle suffice to get an accuracy
of ∼ 20% in parameter uncertainties. Note that this way
our biggest angular scales by far exceed the diameter of our
subregions. Hence, this can be considered an on-the-edge
test of internal covariance estimators. A good tool to define
sub-regions in an irregular survey geometry is the kmeans

algorithm11.
To simulate Y5 data we will stick to the same set-up but

increase the area of the survey to 5000 deg2 and test two
different source densities as mentioned above. We will keep
the shape of these simulations as a simple square. Because
of the larger area we furthermore decide to split the survey
into 225 sub-regions. This should give a more stable estimate
of the covariance while still yielding much larger sub-regions
than in the SV-case.

In figure 11 we compare the internal variance estimates
to the true covariance. The latter is taken to be the log-
normal model for the Y5 simulation and a sample variance
computed from 1000 independent realisations for the SV
simulations. As you can see, for ξ̂− the pair-jackknife now
becomes the best estimator of the variance. For ξ̂+ the situa-
tion is similar to what we have seen before, i.e. both schemes
mostly underestimate the variance and the galaxy-jackknife
is overall closer to the true variance. However, these state-
ments only hold for the diagonal elements of the covariance
matrix. A convenient way to compare the complete covari-
ance estimates is to derive likelihood contours from them in
the desired parameter space.

We carry out a likelihood analysis in the Ωm-σ8 plane
for the 10 simulations that have a Y5-like area and a

11 implemented by Erin Sheldon for python,
www.github.com/esheldon/kmeans radec

source density of 6 arcmin−2 which is the highest den-
sity currently achieved in DES science verification data
(Becker et al. 2015). In figure 12 we show the likelihood
contours obtained from one of the simulations when using
galaxy-jackknife, pair-jackknife and the log-normal model
for the covariance matrix. The contours were obtained from
Monte-Carlo-Markov-Chains (150.000 steps) using the COS-
MOLIKE package by Eifler et al. (2014). We present the
likelihood contours from the other 9 independent simulations
in appendix A. As expected, jackknife estimation underes-
timates the uncertainties. The input cosmology lies within
the 1-σ contour in 6 of 10 simulation, when the log-normal
covariance is used. It lies within the 1-σ contour in 5 of 10
simulation, when the covariance is estimated with jackknife
(either scheme).

In table 1 we show the average ratio of the volume in the
Ωm-σ8 plane enclosed by the 1σ- and 2σ-contours when us-
ing jackknife to that when using the true covariance matrix.
Since the 1σ- and 2σ-ellipses obtained from jackknife and
from the true covariance lie well on top of each other, this ra-
tio can be considered as the fraction of the true uncertainties
that is recovered by the jackknife covariance matrices. You
can see from table 1 that the volume inside contours of con-
stant likelihood in the Ωm-σ8 plane estimated with galaxy-
jackknife is on average & 85% of the true volume while the
volume estimated with pair-jackknife recovers only & 70%
of the true volume. This agrees with the impression (from
figures A1 and A2) that the contours obtained with galaxy-
jackknife match better to the contours obtained from the
true covariance. Note also, that the ellipses obtained from
pair-jackknife have in some cases a strong off-set along the
degeneracy between Ωm and σ8 compared to the true covari-
ance and the galaxy-jackknife estimates. This is probably
because pair-jackknife strongly underestimates the variance
of ξ̂± at large angular scales, which causes even small fluc-
tuations at these scales to shift the contours considerably.

Finally, we want to see how well jackknife matrices re-
cover the uncertainties perpendicular to the degeneracy be-
tween Ωm and σ8. To do so, we consider the parameter com-
bination

Σ8 :=
σ8

0.9

(

Ωm

0.25

)0.5

. (45)

Contours of constant Σ8 are roughly parallel to the degen-
eracy that can be seen in figures 12, A1 and A2. For each
of our 10 realisations we bin our MCMC’s in Σ8 to estimate
its probability density. Table 2 displays the average ratio of
the 1σ and 2σ uncertainties obtained from jackknife to the
uncertainties obtained from the true covariance. This time,
we find that galaxy-jackknife on average yields ∼ 90% of the
true uncertainties while pair-jackknife yields ∼ 85%. Hence,
when the degeneracy between Ωm and σ8 is broken by other
probes (such as the power spectrum of temperature fluctua-
tion in the cosmic microwave background) the performance
of jackknife covariance matrices slightly improves.

Judging from the above numbers and from the contours
in appendix A we deem that & 85% of the true uncertainties
on Ωm and σ8 in a 2D cosmic shear analysis can be recov-
ered without the use of large suits of N-body simulations
or covariance models. When other probes like the CMB are
used to break the degeneracy between the two parameters,
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Figure 11. Variance estimates for DES-SV like data (left), DES-Y5 like data with a low density (middle) and with a high density
(right). Red dots show the galaxy-jackknife estimates and blue dots the pair-jackknife estimates. For the Y5 case the lognormal model
together with eqn. 18 was taken as a reference covariance (black lines) while for the SV case we estimated the true covariance from 1000
independent realizations of the mock data in order to account for the finite-area-effect. The errorbars indicate the standard deviation of
the single estimates as obtained from 10 independent measurements.

the performance of jackknife even increases, because the de-
viations from the true covariance mostly take place along
the direction of degeneracy between Ωm and σ8.

6 CONCLUSIONS

We have explored the performance of internal covariance es-
timation for cosmic shear 2-pt. correlation functions. We
devised two different jackknife schemes and explained in
detail when these schemes underestimate the true covari-
ance and when overestimation takes place. Furthermore,
we explained why the sub-sample covariance and the boot-
strap covariance yield results that are very similar to jack-
knife estimation of the covariance matrix. Based on the
pair-jackknife scheme we have argued that the Anderson-
Hartlap-Kaufman (Kaufman 1967; Hartlap et al. 2007) de-
biasing factor should also be applied when inverting jack-
knife covariance matrices. Based on empirical findings we
also recommend the use of this factor for the galaxy-
jackknife scheme.

We have demonstrated our findings in an exemplary
study using log-normal simulations of the convergence field
and the corresponding shear fields. We compared the per-
formance of the different internal covariance estimators and
found that the galaxy-bootstrap severely overestimates the
covariance. This points to the fact that pairs of galaxies -
and not individual galaxies - are the pieces of information
in a cosmic shear survey and hence these pairs should be
re-sampled. Since in the pair-scheme both bootstrap and

jackknife perform very similarly, we restricted our following
analyses to the jackknife estimators.

For the investigated cases, jackknife covariance matrices
could accurately reconstruct the constraints on cosmologi-
cal parameters that where achieved using the true covariance
matrix of our simulations. From ξ− alone, the pair-jackknife
scheme reconstructs the parameter constraints most faith-
fully (cf. figure 8). From ξ+ alone and when combining the
two correlation functions, we find that the parameter con-
straints are best reconstructed by the galaxy-jackknife. This
is because two systematic errors (cf. sections 4.4 and 4.5)
cancel each other partly in the galaxy-scheme. The pair-
jackknife suffers from only one of these systematics and
hence always yields lower (absolute) values for the covari-
ance then the galaxy-jackknife and always underestimates
the (absolute) values of the true covariance matrix.

Our results can not be generalized to arbitrary surveys.
Our paper is rather to be understood as demonstrating a
general method for finding a good covariance estimation
scheme for any particular survey. In making our simulation
code public we provide our readers with a tool to re-do the
presented analyses for their desired set-up. As an applica-
tion example we tested jackknife estimation of the covari-
ance for a 2D cosmic shear analysis of the Dark Energy
Survey. We found that for the complete, 5-year DES survey
internal covariance estimators can provide reliable parame-
ter constraints in a 2D cosmic shear analysis. We recommend
a scheme of ∼ 15× 15 jackknife re-samplings to yield a sta-
ble covariance matrix. Judging from figures 12, A1 and A2,
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Figure 12. 1-σ and 2-σ contours in the Ωm-σ8 plane obtained
from the two jackknife schemes (read and blue) and the true co-
variance (log-normal covariance, black). The input cosmology lies
within the 1-σ contour in 6 of 10 simulation, when the log-normal
covariance is used. It lies within the 1-σ contour in 5 of 10 sim-
ulation, when the covariance is estimated with jackknife (either
scheme). In appendix A we show the contours obtained from the
other simulations. The underestimation of the uncertainties by
jackknife mainly takes place along the direction of the degener-
acy between Ωm and σ8.

we find as before that the likelihood contours in the Ωm-σ8

plane are best reconstructed by the galaxy-jackknife scheme,
if both correlation functions ξ+ and ξ− are combined. This
way, on average & 85% of the true uncertainties are captured
by the internally estimated covariance matrix. If the degen-
eracy between Ωm and σ8 is broken, this value increases to
∼ 90%. Hence, up to ∼ 90% of the true uncertainties in a
2D cosmic shear analysis can be provided from internally
estimated covariance matrices.

galaxy-jackknife pair-jackknife

V1σ,jack/V1σ,true 0.86± 0.08 0.72± 0.09
V2σ,jack/V2σ,true 0.87± 0.08 0.74± 0.09

Table 1. Ratio of the volume within the 1σ and 2σ contours in
the Ωm − σ8 plane obtained from jackknife and true covariance.
The errors are given by the standard deviation of a sample of 10
independent simulations. The combined data vector of ξ+ and ξ−
was used.

galaxy-jackknife pair-jackknife

∆Σ8 1σ,jack/∆Σ8 1σ,true 0.91± 0.08 0.86± 0.10
∆Σ8 2σ,jack/∆Σ8 2σ,true 0.90± 0.08 0.85± 0.09

Table 2. Ratio of the 1σ and 2σ uncertainties on Σ8 ∼ σ8Ω0.5
m

obtained from jackknife and true covariance. The errors are given
by the standard deviation of a sample of 10 independent simula-
tions. Again, the combined data vector of ξ+ and ξ− was used.
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APPENDIX A: LIKELIHOOD CONTOURS

Figures A1 and A2 show the 1- and 2-σ contours in the Ωm-
σ8 plane computed with COSMOLIKE when using galaxy-
jackknife and pair-jackknife to estimate the covariance ma-
trix (red and blue lines) and compare them to the same
contours obtained from the true covariance matrix (black
lines). The simulations are configured to mimic the com-
plete, 5 year Dark Energy Survey (cf. section 5.2). The green
dots represent the input cosmology of the simulations.
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Figure A1. 1- and 2-σ contours in the Ωm-σ8 plane obtained from the first 6 simulations.
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Figure A2. 1- and 2-σ contours in the Ωm-σ8 plane obtained from the remaining 4 simulations.
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