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Abstract 
Which gain and phase have to be set for a bunch-by-bunch 

transverse damper, and at which chromaticity it is better to stay? 
These questions are considered for three models: the two-
particle model with possible quadrupole wake, the author’s 
Nested Head-Tail (NHT) model with the broadband impedance, 
and the NHT with the LHC impedance model. Details of 2D 
areas of stability in the chromaticity-intensity and chromaticity-
gain planes and possibilities to use them are discussed. It is 
shown that resistive feedbacks may generate asymmetry of the 
tune shift distribution, which requires positively-shifted stability 
diagrams. 

INTRODUCTION 
How one has to use the bunch-by-bunch damper for the 

most efficient suppression of the transverse instabilities of 
bunched beams? This problem has so many parameters 
and input functions, associated with the beam, impedance 
and damper, that its full treatment seems hardly possible. 
In this situation, analytical studies of especially 
interesting cases by means of available models suggest a 
reasonable way to get a better understanding. This paper 
is an example of that sort of research. 
First, the simplest of all, the two-particle model [1-3], 

is explored, with constant dipole and quadrupole wakes, 
chromaticity and feedback. For all cases considered in 
this paper, the feedback is assumed to see only the bunch 
centroid, and to respond by kicking the bunch as a whole. 
In other words, the damper is assumed to be flat within 
the bunch length. After the two-particle model, the next in 
complexity is the hollow-beam or air-bag one [4], which 
represents the bunch by a circle in the longitudinal phase 
space. In this paper, though, we skip that model, jumping 
directly to its generalization developed by the author, the 
Nested Head-Tail (NHT), which represents the bunch by 
any number of concentric air-bags [5] and takes into 
account intra- and inter-bunch wake fields, as well as the 
damper. Although NHT allows computing Landau 
damping, that sort of analysis is predominantly left 
beyond the scope of this paper, except for some general 
considerations in the last section. 

With the NHT, two impedance models were analyzed: 
the broadband impedance and the LHC model [6]. For 
both of them, it is shown that with the resistive damper 
there is an area of stability in the gain-chromaticity plane, 
centered at slightly negative chromaticity, where the 
multi-bunch beam is stable even without radiation or 
Landau damping. It is shown that the shapes of these 
areas of stability, as well as their limitations by the beam 

intensity, vary a lot. While for the broadband impedance 
this area allows to increase the TMCI threshold by up to a 
factor of four, for the LHC model it disappears almost 
exactly at the same intensity as the no-gain, zero-
chromaticity TMCI onset (addressed below just as the 
TMCI threshold), so one cannot use it close to or above 
this threshold. That is why at sufficiently high intensity of 
separated LHC beams, the optimal strategy is to work at 
high chromaticity and sufficient gain area, or in the valley 
of slow instabilities.    

TWO-PARTICLE MODEL 

Round Chamber 
The two-particle model with a feedback has been 

studied analytically by R. Ruth and S. Myers in the 80s 
[3,7] for a step-like wake, zero chromaticity and round 
vacuum chamber. In this section we are going to 
reproduce their results with some more details.  

Assuming betatron frequency  ω b  to be high compared
with other frequencies and rates, two second-order 

differential equations for the offsets    
x1,2 = a1,2e

−iωbt

reduce to a couple of first-order differential equations on 
the slow amplitudes   

a1,2 :

    

!a1 =−ig(a1 + a2 )+ iwa2Θ(t−T / 2);
!a2 =−ig(a1 + a2 )+ iwa1Θ(T / 2− t);
ω b ≫ω s = 2π / T ,g,w;

(1) 

Here  g  and  w  are the normalized damper gain and the

wake value,  t   is time, T is the synchrotron period,    Θ(t)
is the Heaviside theta-function; the equations are applied 
for   0≤ t≤T . Complex values for the gain and real
values for the wake are assumed. We will analyze 
stability of Eq.(1) for the real and imaginary gains 
independently: in the former case, the damper is called 
reactive, while in the latter it is resistive. For all the cases, 
the problem is solved by means of constructing the 
transfer matrix M , which maps the initial amplitudes 
onto their values after the synchrotron period:  

   A(T ) =M ⋅A(0); A= (a1,a2 )
T . (2) 

For the equations with piecewise constant coefficients, 
this entire transfer matrix is just a product of partial 
transfers. Doing these computations, the determinant and 
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trace of the transfer matrix are found as: 

DetM= e−2 igT ;

TrM=
(2g−w)2 cos g(g−w)T( )−w2

2g(g−w)
e−igT .

  (3)

From here, the eigenvalues of the 2⊗2 matrix M can be
obtained from a quadratic equation:  

λ1,2 =
TrM
2

±
(TrM)2

4
−DetM .  (4) 

The instability growth rate then follows: 

   
τ−1 = max k ln |λk |( ) / T  . (5) 

For reactive dampers, with real g, the stability condition 

 τ
−1≤ 0 can be presented as TrM / DetM ≤ 2 , or [3]:

   

g
g−w

+
g−w

g
+2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟sin

2 g(g−w)T / 2( )≤ 4  (6)

Fig. 1: Two-particle growth rate versus gain g and 
constant wake value w for reactive damper and zero 
chromaticity. All the values are in the units of the inverse 
synchrotron period 1/T.   

Plots for the growth rate for reactive and resistive 
dampers are presented in Figs. 1-3.  

Looking at these results, it could be concluded that the 
reactive damper is more efficient than resistive. While in 
the former case the instability threshold can be increased 
many times, in the latter the intensity threshold is zero for 
non-zero gains, which is seen in Fig.3. However, S. 
Myers pointed out [7] that at PEP experiment “at high 
gain the resistive feedback produced a larger 
enhancement of the threshold current than the reactive 
feedback. This is in contradiction to the results obtained 
from theory and is not fully understood.”  

Fig. 2: The same as Fig. 1, but for the resistive damper 

Fig. 3: Low gain, low wake area for the resistive damper. 

We should not forget, however, the extreme simplicity of 
the two-particle model at zero chromaticity. Below, when 
we will take into account both the chromaticity and the 
variety of head-tail modes, this contradiction disappears.   

Flat Chamber 

For the vertical instability and the resistive wall Yokoya 
factor [8], Eqs.(1) are modified as

    

!a1 =−ig(a1 + a2 )+ iw(a2 + a1 / 2)Θ(t−T / 2);
!a2 =−ig(a1 + a2 )+ iw(a1 + a2 / 2)Θ(T / 2− t).

  (7)

The determinant and trace of the transfer matrix are 
computed as following: 



 

   

DetM= e−2 igT+iwT /2;

TrM=
8(2g−w)2 cos T g 2−gw+ w2 /16( )−6w2

16g 2−16gw+ w2 e−igT+iwT /4 .

 

  
Growth rate plots for the reactive and resistive dampers 
are barely distinguishable from the similar cases of the 
round chamber, so that there is no reason to present them; 
the TMCI threshold is only a few percent higher. 
 
For the horizontal degree of freedom, the equations of 
motion are written as

    

!a1 =−ig(a1 + a2 )+ i w
2

(a2−a1)Θ(t−T / 2);

!a2 =−ig(a1 + a2 )+ i w
2

(a1−a2 )Θ(T / 2− t).
  (8) 

From here 

   

DetM= e−2 igT−iwT /2;

TrM= 2cos(gT−wT / 4)e−igT−iwT /4 .
  (9) 

In this case there is no instability at all, neither for the 
reactive, nor for the resistive dampers. 
 
 

 
Fig. 4: Growth rates in units of 1/T for the round chamber 
and zero gain. 
 

Nonzero chromaticity  
 
Chromaticity is taken into account by adding to the right 
hand sides of the equations of motion the chromatic terms 

   ±iω sχ cos(ω st) , where χ  is the chromatic factor 
known as the head-tail phase (see e.g. Ref. [4], p. 199). 
Above the transition, for the leading particle the sign is +, 
and for the trailing one it is the opposite. With the 
addition of these chromatic factors, the two-particle 
problem can be numerically solved.  The results for zero 
gain are presented in Figs. 4-6. Note that all the systems 
are unstable except for some special values of the 
chromaticity below certain intensity thresholds. As we 
may remember, the TMCI thresholds are almost identical 
for the round and vertical cases, while for the horizontal 

case the system is stable at this chromaticity for any 
wake.   

 
Fig. 5: Same for the vertical case. Note that stability at 
zero chromaticity is re-established at   w≥ 22   (mode 
decoupling).  
 

 
Fig. 6: Same for the horizontal.  
 
Now let’s see the effectiveness of the resistive and 
reactive dampers for nonzero chromaticity; typical 
examples are shown in Figs.7 and 8.   
 

 
 
Fig. 7: Round chamber, reactive damper,   gT =1.  
 
While the growth rates are reduced at low wakes, they are 
never zero, as it is the case for the resistive damper, see 
Fig. 9 and compare Fig. 10 with Fig. 11.   



 
 
Fig. 8: Same as Fig. 7, but    gT =10. 
 

 
 
Fig. 9: Growth rates for the round chamber and resistive 
damper with the gain   gT =1. 
 
A special interest of this paper is the character of stability 
areas in the gain-chromaticity plane: they can be 1D or 
2D, small or large, open or closed. To characterize them, 
we will use geographic terminology, calling these areas as 
rivers (1D), lakes (closed 2D), bays and fjords (semi-open 
2D) and seas (huge open 2D).   
 
Mutual comparison of reactive and resistive dampers at 
nonzero chromaticity shows an advantage of the latter, 
which provides seas of stability for intensity higher than 
the TMCI threshold. However, a question can be asked 
about the validity of this conclusion. In reality, there are 
many more bunch modes than the two-particle model 
allows and a variety of wake functions; thus, the real 
situations can be suspected to be very different. More 
realistic analysis is suggested in the following sections.  

 Fig. 10: Growth rate for the round chamber and resistive 
damper for   w = 8  (twice above the TMCI threshold). 
Seas of stability are huge. 
 
 
 
 

 
Fig. 11: Same for the reactive damper. There are no seas 
or lakes of stability, only rivers.  

NHT WITH BROADBAND IMPEDANCE 
Nested Head–Tail (NHT) is a Vlasov Solver for 
transverse oscillations of bunched beams [5] that allows 
to take into the account azimuthal, radial and multibunch 
degrees of freedom, influenced by wake fields, feedback 
and Landau damping. In this section, we discuss the main 
features of single-bunch instabilities for broadband 
impedance, taking the ring and bunch parameters of the 
Advanced Photon Source (APS) of Argonne National 



Laboratory, a storage ring of 1.1km circumference and 
electron beam energy of 7GeV [9]. We will assume the 
synchrotron tune    Qs =ω s /ω 0 = 0.008 , rms bunch 
length    σ z =1.5cm , and rms momentum spread 

   δ p / p = 0.001 . The computations are done for a 
broadband impedance model  

 

  
Z⊥ (ω ) =

ω r

ω
Rr

1+ iQr ω r /ω −ω /ω r( )  , (10) 

with   Qr =1 ,    ω r / (2π ) = 3GHz , and the weighted 
shunt impedance   Rrβ =10MΩ , where β  is the average 
beta-function. The vacuum chamber is assumed to be 
round.  
 
For the given beam and impedance, NHT computes the 
entire beam spectrum; the total number of modes is 
limited by two modelling factors: first, by a number of 
radial rings representing the bunch longitudinal 
distribution, and second, by the truncating azimuthal 
harmonic. For these calculations, the former was taken to 
be 5, and the latter was limited by ±10; thus, the total 
number of intra-bunch modes is   (10+10+1) ⋅5=105 .  
 
Growth rate of the fastest growing mode is presented in 
Figs. 12 and 13 as a function of beam intensity and 
reactive damper gain; the chromaticity is zero. The 
intensity parameter    ImpF = N / N0

 (impedance factor) 
is defined as a ratio of the bunch population N to its value 

  N0 = 4 ⋅1010  taken as the nominal. The gain  g  as well 
as the growth rate   Im q*

 are measured in the units of the 
angular synchrotron frequency  ω s

. To compare the NHT 
results with the corresponding two-particle ones, it has to 
be taken into account, that, by definition, NHT gain units 
are π times larger than the two-particle ones of the 
previous section, and the NHT growth rate unit is 2π 
times higher than the unit accepted for the two-particle 
model. When comparing units of the intensity parameters, 
 ImpF  of this section with  w  of the two-particle model, 
one should take into account that the TMCI threshold for 
the two-particle model    wth = 4 , while the same value for 
the impedance factor was computed for the broadband 
case as    ImpFth =1.6  (see Fig. 16). Thus, for the sake of 
comparison of the two models, we may assume that 
 ImpF  unit of this section is 2.5 times larger than that of 
 w .          
To facilitate this comparison, the scale of independent 
variables,  g  and  ImpF , of Fig. 12 are taken in the 
correspondence with  g  and  w  of Fig. 1. One can see that 
the two figures are rather similar, both in their 
dominating, merging double-cone structures and the 
smaller instability areas around. It is worth noting that the 
growth rate is not a monotonic function of the gain, 

neither in its focusing nor defocusing direction. At a small 
gain,    | g |≤1, the positive (focusing) sign allows to 
double the instability threshold, while the defocusing one 
may reduce the threshold up to a factor of three. 
However, a further increase of the gain value makes the 
situation worse in both directions, up to    g≈−2.5  when 
the instability threshold jumps more than 4 times 
compared to its zero-gain value of 1.6, saturating there for 
higher defocusing gain values, as one can see in Fig.12. 
To reach the same threshold for the focusing damper, gain 
three times higher is needed, while the saturation 
threshold for the focusing sign is only ~20% higher than 
for the defocusing one.  

 
Fig. 12: NHT result for the growth rate    Im q* = (ω sτ )−1  
versus gain g and intensity parameter    ImpF = N / N0

 
for reactive damper and zero chromaticity. Gain is in 
units of  ω s

; its positive sign corresponds to focusing.   
     

 
Fig. 13: Same, for a larger range of the variables 
 
As we have seen with the two-particle model, the reactive 
damper is not very effective for non-zero chromaticity. 
This conclusion is confirmed by Figs. 14 and 15: outside 



of a very narrow range of chromaticity, the ravine around 
zero, the reactive damper is insignificant.  
 
Before going into details of the resistive damper, it is 
instructive to see the growth rate versus intensity and 
chromaticity for the no-damper case as it is shown in 
Fig.16. Similar plots for the resistive case with   g =1  and 

  g =10  are presented in Figs. 17 and 18. Figure 19 
shows how the growth rate depends on the chromaticity 
for various resistive gains, to compare with the similar 
results for the reactive damper presented in Fig.15. Figure 
20 demonstrates that at a high resistive gain and proper 
chromaticity, the threshold saturates approximately at a 
four times higher value than the TMCI threshold.  

 
Fig. 14: The growth rate versus chromaticity and reactive 
gain for intensity twice exceeding zero-gain zero-
chromaticity TMCI threshold, i.e. for    ImpF = 3.2 .  
 

 
Fig. 15: Same, for three selected gains. 
 

 
Fig. 16: Growth rate versus intensity and chromaticity; 
the damper is off.  
 
 

 
Fig. 17: Same for resistive   g =1 . 
 

 
Fig. 18: Same for resistive   g =10 .  
 



 
Fig. 19: Same as Fig.15, but for the resistive damper. 
Note the fjord of stability.  
 
For the reactive damper with any gain, the growth rate 
can be zero only at zero chromaticity. Contrary to that, for 
the resistive damper there is a fjord of stability, as one can 
see in Figs. 17-19. Above the transition energy, this area 
typically corresponds to small negative values of the rms 
head-tail phase, centered at  

 
    
χ rms =

ξ(δ p / p)rms

Qs

!−(0.1÷0.2) .  (11) 

 
Fig.20: The growth rate for  ξ =−1  vs. intensity for 
selected resistive gains. At high gains, the threshold 
saturates approximately at four times higher value than its 
damper-off value (6.4:1.6).  
 
The reason for this was in fact explained in Ref. [10]. At 
slightly negative head-tail phase and below TMCI 
threshold, impedance makes all the modes stable except 
the zeroth one, corresponding to an almost rigid bunch 
motion. Since the zeroth mode is perfectly seen by the 
damper, the feedback’s damping rate goes almost entirely 
to the zeroth mode. All other modes are poorly seen by 
the damper at small chromaticity, but there is no need in 
that since they decay due to impedance (see e.g. Ref.[4] 
p.351). Thus, at low and negative head-tail phase and 
below the TMCI threshold, the resistive damper stabilizes 
the only unstable mode and almost does not influence 
stability of other modes, which are already stable. How 
far above the TMCI threshold this area of stability may 
exist is one of the questions of this paper.   
 
 

 
 
Fig. 21: Growth rate for zero chromaticity and almost 
reactive damper, which phase declines towards resistive 
by 18°. 
 
Figures 21 and 22 demonstrate sensitivity of effectiveness 
of the reactive damper to its small phase variation. These 
figures show the growth rate versus intensity and gain for 
zero chromaticity and an almost reactive damper, when its 
phase declines to the resistive direction by 18°.  
 
Let’s imagine, for example, that common action of 
radiation and Landau damping provides damping rate 
0.02, and that available gain cannot be higher than 3.0. 
Then, as we can see from Fig. 22, this feedback allows 
increasing the intensity threshold at best by 25%, from 1.6 
to 2.0. If the gain deviates from its optimal value in one or 
another direction, the benefit from the feedback would be 
even smaller. In this respect, the resistive damper is much 
more robust also, as one can see from Figs. 23 and 24, 
where 50% phase deviation towards the reactive one 
creates almost no effect.  
 

 
 
Fig. 22: Same as the previous figure, for selected 
intensities. 
 



 
Fig. 23: Growth rate for the resistive feedback and 
chromaticity  ξ =−1 . 
 
Thus, for the single bunch and the broadband impedance 
we may conclude about definite advantage of the resistive 
damper over reactive one. While in both cases the 
instability threshold, in principle, could be increased up to 
4-5 times, tolerance to the offsets of chromaticity and the 
feedback phase is much better for the former than for the 
latter.  
   In the following section we will see how different are 
the results for the LHC impedance model and how 
significant can the coupled-bunch contribution be. 

 
Fig. 24: Same for the feedback phase π/4, i.e. 50% 
resistive and 50% reactive. Comparison with the previous 
figure shows how robust the resistive damper is against 
the phase variations at the proper chromaticity.  
 

NHT FOR LHC 
Transverse instabilities of the LHC beams have been 
studied with the NHT code in Ref. [5] for the Run I 
parameters. In this section that is reworked with new 
details for the Run II beam with the energy of 6.5TeV, the 

bunch separation of 25ns, the synchrotron tune 

   Qs = 2.1⋅10−3 , the rms length of a Gaussian bunch 

   σ z = 7.5cm , the nominal bunch population 

   N0 = 2.2 ⋅1011 , and with the same resistive-wall-like 
impedances [6].  
 
Figure 25 shows the highest growth rate for a single 
bunch and no feedback. The TMCI threshold is at 
   ImpF = 2.4 .  Figure 26 demonstrates a decent lake of 
stability for the resistive damper and the full 25ns beam, 
with the impedance factor    ImpF =1.5 , or 62.5% of the 
TMCI threshold. Note a difference with Fig.18: while for 
the LHC impedance its area of stability is a lake, for the 
broadband one it is a fjord. Figure 27 demonstrates one 
more specific feature of the LHC: the lake of stability 
disappears almost at the TMCI threshold,    ImpF = 2.4 . 
Thus, by itself the resistive damper cannot increase the 
instability threshold for the LHC impedance, even for the 
single bunch. Variation of the damper phase does not help 
much: for intermediate resistive-reactive phases the lake 
disappearance threshold could be increased only by 
~15%.  
 

 
Fig. 25: Growth rate for a single bunch LHC beam and no 
feedback. The TMCI threshold is at    ImpF = 2.4  
 
Sufficiently below the TMCI threshold, when the lake is 
wide enough, the resistive damper tuned to the lake 
presents an attractive option. Near and above this 
threshold the only reasonable option for the LHC is to 
work at the high chromaticity valley of slow instabilities, 
relying on Landau damping for the suppression of these 
relatively slow instabilities that remain there when the 
damper effect is saturated, see Fig. 27, 28, 29.  
 
Figure 30 makes clear that the reactive damper is almost 
as effective for the LHC as it is for the broadband case: 
operated at its proper zero chromaticity, for the single 
bunch it allows to increase the instability threshold more 
than three times. However, the reactive damper helps very 



little for the suppression of coupled-bunch instabilities, 
which all are maximally powerful at zero chromaticity, 
see Fig. 31. Thus, for the LHC, with its huge number of 
bunches, the reactive feedback would not be reasonable. 

 
Fig. 26: Growth rate for 25ns LHC beam with the 
resistive feedback and    ImpF =1.5 . Coupled bunch 
interaction is included. Note the lake of stability; for the 
multi-bunch regime, the lake is limited by    ImpF =1.7 . 
 

 
Fig. 27: Single bunch growth rate for the resistive damper 
and TMCI threshold intensity    ImpF = 2.4 . Note that the 
lake of stability (shown upside down) almost vanished.   
 

 
Fig. 28: The same damper phase and bunch intensity for 
the full 25ns beam.  

 
Fig. 29: Threshold current of the Landau octupoles, in 
Amperes, for the same case as Fig. 28, computed 
according to Ref. [5].   

 
Fig. 30: Growth rate for the single LHC bunch, reactive 
damper and zero chromaticity. Compare with Fig. 12 for 
the broadband impedance and Fig.1 for the two-particle 
model.  
 
 



 
Fig. 31: Same as above, but for the full 25ns beam. The 
average linear slope towards higher intensity reflects 
contribution of the coupled-bunch motion. It can be 
approximated as    Im q* ≈ 0.075ImpF .   

FEEDBACKS AND LANDAU DAMPING 
Generally speaking, there are three factors, which may 
contribute to beam stability: radiation, Landau damping, 
and feedbacks. The first of them is efficient only for 
electron beams; it is determined by the beam orbit, 
focusing, and by sizes of a vacuum chamber shielding 
coherent synchrotron radiation. This damping is 
independent of feedbacks, and can be added separately to 
the total sum of the stabilizing factors. Landau damping is 
a mechanism of dissipation of a collective mode due to a 
transfer of its energy to incoherent degrees of freedom of 
individual particles that happened to be in resonance with 
this mode. Landau damping is determined by the phase 
space density of the resonance particles, i.e. both by the 
separation between the coherent tune and the centre of the 
incoherent spectrum as well as by the tails of the 
incoherent spectrum. If the beam is sufficiently 
relativistic, the space charge effects can be neglected. In 
such a case, which is the only one considered in this 
paper, the collective spectrum is determined by the wakes 
and feedbacks, while the incoherent one is a function of 
the optics’ nonlinearity. Thus, since feedbacks play a role 
in shaping of beam collective modes, they modify Landau 
damping also.   
 
With the exception of extremely long bunches or very 
broadband feedbacks, typical bunch-by-bunch dampers 
react only on the bunch centroid, kicking the bunch as a 
whole. As a result, for sufficiently high resistive gain, the 
bunch center of mass is blocked, while all other 
possibilities of the bunch motion are not affected by the 
damper.  For round vacuum chambers, as well as for the 
vertical direction in flat chambers, tunes of modes with 
significant motion of the center of mass are shifted down 
for typical wakes [4]. Since these center-of-mass 
dominated modes are normally most unstable, one should 

expect a certain asymmetry of the modes on the complex 
tune shift plane. First, with the damper off, this chart of 
unstable modes should be dominated by the left-hand-
sided, or by the negative tune-shifted. When a significant 
gain is applied, the left-hand-sided modes should be 
significantly suppressed, while the right-hand-sided, if 
there are such, most likely should not improve, and might 
even become worse. That sort of behavior of the chart of 
unstable modes can be seen in Figs. 32 and 33, for the 
LHC and broadband impedance respectfully.   
 

 
Fig. 32: Tune shifts of unstable modes for the full 25ns 
LHC beam at chromaticity  ξ =18 ,   ImpF = 2 , damper 
off (blue, 1), and with resistive gain    g =1.4 (red, 2). 
Both with and without damper, there are no unstable 
modes with positive tune shifts. Seventeen representative 
coupled-bunch mode numbers are depicted. 
  

 
 
Fig. 33: Tune shifts of unstable modes for the APS single 
bunch broadband impedance model at chromaticity 

 ξ =10 ,   ImpF = 2 , damper off (blue, 1), and with 
resistive gain    g =1.4 (red, 2).  
  
We see here a pronounced dependence of the asymmetry 
on a sort of impedance. With the damper off, both Fig. 32 
and Fig. 33 dominate by the left-hand-side modes. 
However, when it is on, one of them remains to be left-
hand sided, while another becomes right-hand-sided. This 



asymmetry is especially important for electron machines 
where one of the emittances, the horizontal one, is much 
higher than another, the vertical. Due to that, transverse 
nonlinearity makes the stability diagram one-sided too, 
scaled by the horizontal emittance only, since the vertical 
emittance is too small to play a role. That is why, for the 
electron rings, one has to choose whether the diagram has 
to be designed as right- or left-hand-sided. The correct 
answer depends, as we just saw, on the type of 
impedance. Another approach to this problem of the one-
sidedness of the stability diagram of electron beams is to 
provide electrons with the missing sign of the tune shift 
by means of the second order chromaticity which sign is 
made opposite to the one of the horizontal nonlinearity.      
 

CONCLUSIONS 
Possible strategies of beam stabilization by means of a 
feedback were considered with three models: two-particle 
model, NHT broadband impedance model and NHT with 
the LHC impedance model. Advantages, challenges and 
limitations for reactive and resistive dampers are 
formulated. Existence and details of the 2D area of 
stability in the gain-chromaticity and intensity-
chromaticity planes is shown to depend on the type of 
impedance. One-sidedness of the mode tune shifts, as 
well as stability diagrams is pointed out as a source of 
instability. Possible solutions for this problem are 
outlined.  
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