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Abstract. We present an argument that radio galaxies (active galaxies with mis-aligned jets)
are likely to be the primary sources of the high-energy astrophysical neutrinos observed by
IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated
through the interactions of cosmic-ray protons with gas, these interactions can also produce a
population of neutrinos with a flux and spectral shape similar to that measured by IceCube.
We present a simple physical model in which high-energy cosmic rays are confined within the
volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes
of neutrinos and gamma rays. In addition to simultaneously accounting for the observations
of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources
for the highest energy cosmic rays.
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1 Introduction

In 2013, the IceCube Collaboration published the first detection of high-energy astrophysical
neutrinos [1]. Subsequent analyses [2–5] have found IceCube’s events to follow an approximate
power-law spectrum extending from tens of TeV to a few PeV, and with flavor ratios consis-
tent with those predicted from pion decay [6]. Although a variety of astrophysical sources for
TeV-PeV neutrinos have been proposed over the years (for reviews, see Refs. [7, 8]), many of
these source classes now appear to be disfavored. Perhaps most notably, gamma-ray bursts
had long been considered to be among the most promising sources for the ultra-high energy
cosmic rays [9–11] and a likely source of high-energy neutrinos [12–14]. The lack of any de-
tected correlations in time between IceCube’s events and observed gamma-ray bursts has all
but ruled out this possibility, however [15]. Furthermore, a joint analysis of IceCube’s events
with data from the Fermi Gamma-Ray Space Telescope has lead to the conclusion that less
than 20% of IceCube’s flux can originate from blazars [16] (see also Ref. [17]). Similarly, a
recent analysis has demonstrated that star-forming galaxies can generate no more than 28%
of IceCube’s observed spectrum [18].

In light of these and other constraints, radio galaxies (active galaxies with jets that are
not aligned along the line-of-sight) now appear to be, perhaps, the most promising class of
sources for IceCube’s observed neutrino flux [19–21]. In contrast to blazars, which are gener-
ally thought to be the subset of active galaxies whose jets are directed within approximately
14◦ of Earth [22], radio galaxies appear individually less luminous, but are much more nu-
merous. Radio galaxies are further classified according to their morphological characteristics
as either Fanaroff-Riley Type I or Type II galaxies, which are generally interpreted as the
misaligned counterparts of BL Lacs and flat spectrum radio quasars, respectively.

In a recent study [23], it was demonstrated that the isotropic gamma-ray background
(IGRB) measured by the Fermi Gamma-Ray Space Telescope [24] is dominated by emission
from unresolved radio galaxies, along with a smaller but non-negligible contribution from
blazars [25–29] (possibly among other sources, including star-forming galaxies [30, 31], galaxy
clusters [32], millisecond pulsars [33, 34], propagating ultra-high energy cosmic rays [35, 36],
and/or annihilating dark matter particles [37–40])1. This result was made possible by uti-
lizing an empirical correlation that had been previously identified between the radio and

1Previous work has shown that a large fraction of the total extragalactic gamma-ray background is domi-
nated by emission from blazars, in particular at energies above ∼50 GeV [41]. We emphasize that the results of
Ref. [23] are not in conflict with this finding, as the IGRB makes up only about half of the total extragalactic
background at these energies [24].
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gamma-ray luminosities of this class of sources [42, 43]. More quantitatively, Ref. [23] con-
cluded that unresolved radio galaxies account for 83.3+27.4

−10.1% of the Eγ > 1 GeV photons that
make up Fermi’s IGRB. This result is consistent with the findings of other recent work [38–
40, 44–47], including analyses based on cross-correlations of the IGRB with multi-wavelength
data [48–51].

The realization that radio galaxies dominate the IGRB has important implications
for IceCube and their observed flux of high-energy astrophysical neutrinos. In this paper,
we demonstrate that if the gamma-ray emission observed from radio galaxies is generated
through the interactions of cosmic-ray protons with gas, then one should expect these sources
to also produce a spectrum of neutrinos that is qualitatively similar to that observed by Ice-
Cube. Given the large fraction of the IGRB that originates directly from these sources, we
argue that any diffuse contribution from electromagnetic cascades must be suppressed, for
example by very-high energy photon scattering taking place within or near the radio galaxies
themselves, or through non-negligible synchrotron losses. Although scenarios in which Ice-
Cube’s neutrinos are produced within the jets or lobes of active galactic nuclei (AGN) are
possible, we instead consider a simple model in which high-energy cosmic rays are confined
within the volumes of radio galaxies, where they interact with gas to generate the observed
neutrino and gamma-ray fluxes (similar to earlier work within the context of starburst galax-
ies [52] and galaxy clusters [53]). This model predicts a cut-off in the neutrino spectrum at
energies above approximately Eν ∼ 1-100 PeV, resulting from the transition between Kol-
mogorov diffusion and effective free-streaming. If we extrapolate the spectrum of cosmic
rays that are accelerated by radio galaxies from ∼108 GeV to ∼1011 GeV, we find that these
sources can also generate the observed flux and spectrum of the ultra-high energy cosmic
rays. It is possible that cosmic rays and/or neutrinos could be detected from individual
radio galaxies in the future, making the most nearby and luminous examples of such sources
(including Centaurus A, Centaurus B, and M 87) particularly promising targets of study.

2 Gamma Rays and Neutrinos From Radio Galaxies

The sum of the emission from all unresolved radio galaxies leads to a gamma-ray flux that
is given by:

dFγ
dEγ dΩ

=

∫
dz

d2V

dz dΩ

∫
dFγ
dEγ

dLγ
Lγ log(10)

ργ(Lγ , z)(1− ω(Fγ(Lγ , z))) exp(−τγ(Eγ , z)),

where d2V/dz dΩ is the co-moving volume element, and dFγ/dEγ is the spectrum of gamma-
rays from a radio galaxy of luminosity Lγ and located at redshift z. The function ω represents
Fermi’s point source detection efficiency [54], which accounts for the fact that resolved radio
galaxies do not contribute to the diffuse gamma-ray background2. The attenuation of the
gamma-ray spectrum from scattering with the extragalactic background light is characterized
by the optical depth, τγ(Eγ , z), for which we adopt the model of Ref. [55].

In a recent study [23], we refined the empirical correlation between the radio and gamma-
ray emission detected from radio galaxies (see also Refs. [42, 43]) and combined this informa-
tion with the measured radio luminosity function and redshift distribution [56] to determine
the gamma-ray luminosity function of radio galaxies, ργ(Lγ , z), and ultimately the total con-
tribution from all unresolved radio galaxies to the diffuse gamma-ray background. In doing

2In the case of radio galaxies, this calculation depends very little on the precise form of ω, as only a very
small fraction of the total gamma-ray flux originates from above or near threshold sources.
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Figure 1. Left Frame: The contribution to the diffuse gamma-ray background from unresolved ra-
dio galaxies, as determined previously [23] (solid black and surrounding grey band), and compared
to power-law spectra (prior to attenuation) with three values of the spectral index (dashed black,
solid red, long-dashed green). We also show the measurement of the isotropic gamma-ray background
(IGRB) as reported by the Fermi Collaboration [24]. The error bars in this figure include both the
statistical uncertainty and the systematic uncertainties associated with the effective area and cosmic
ray background subtraction, while the light blue shaded band reflects the systematic uncertainties
associated with the modeling of the Galactic foreground emission. Right Frame: The (all-flavor)
neutrino spectrum from the same radio galaxy models shown in the left frame, assuming that 1)
the gamma-ray emission is generated through proton-proton collisions, and 2) the spectrum of this
emission can be extrapolated to the energy range measured by IceCube. The fact that these ex-
trapolated models are able to approximately accommodate the diffuse neutrino flux reported by the
IceCube Collaboration [2] is suggestive of a scenario in which high-energy protons in radio galaxies
are responsible for both the majority of the observed isotropic gamma-ray background and the diffuse
high-energy neutrino flux.

so, we found that this class of sources dominates the unresolved extragalactic gamma-ray
flux, accounting for 83.3+27.4

−10.1% of the isotropic gamma-ray background (IGRB) observed by
Fermi [24] above 1 GeV.

At this time, it is not entirely clear whether the gamma-ray emission observed from radio
galaxies results from hadronic (pion production) or leptonic (inverse Compton) processes. If
hadronic processes are responsible, however, then high-energy neutrinos will accompany the
observed gamma-rays. In this section, we will focus on models in which gamma rays and
neutrinos are generated through the interactions of cosmic-ray protons with gas, and the
subsequent decays of charged and neutral pions (π+ → e+νeνµν̄µ, π− → e−ν̄eνµν̄µ, π0 → γγ).
The spectra of these gamma rays and neutrinos are generally predicted to have a common
shape (prior to attenuation), and with relative fluxes given by Fν/Fγ = 2 × (3/4) = 3/2,
where the factors of 2 and 3/4 result from the ratio of charged-to-neutral pions that are
produced in such interactions and from the fact that three of the four decay products of a
charged pion are neutrinos.

In the left frame of Fig. 1, we show the contribution to the diffuse gamma-ray back-
ground from unresolved radio galaxies as determined in Ref. [23] and compare this to Fermi’s
measurement of the IGRB [24]. In Ref. [23], the total gamma-ray spectrum from radio galax-
ies (prior to attenuation) was calculated as a weighted sum of power-laws. For simplicity (and
to facilitate a more straightforward extrapolation), we will instead consider spectra that are
described by a single power-law. In the left frame of Fig. 1, we find that a power-law in-
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dex of Γ ' 2.1 provides a reasonable match to that obtained in Ref. [23], especially in the
energy range best measured by Fermi (∼0.7-10 GeV). In each case, we have accounted for
gamma-ray attenuation using the infrared background model described in Ref. [55].

In the right frame of Fig. 1, we show the (all-flavor) neutrino spectrum for the same
three power-law models, normalized as in the left frame, and assuming that the power-law
spectra extend to the energy range measured by IceCube. When these extrapolated spectra
are compared to the results reported by the IceCube Collaboration [2] (see also Refs. [1, 3–5]),
we find reasonable agreement. This result is suggestive, and provides support for scenarios
in which high-energy protons in active galaxies are responsible for both Fermi’s observed
isotropic gamma-ray background and IceCube’s high-energy neutrino flux.

Radio galaxies not only produce gamma rays directly, but also through the electromag-
netic cascades that result from the scattering of very-high energy photons with radiation. The
intensity of any diffuse cascade emission is significantly limited by the results of Ref. [23],
however, which allow for only a relatively small fraction of the IGRB to originate from cos-
mologically induced cascades. The predicted intensity of the cascade contribution depends
on the redshift distribution of the very-high energy gamma-ray sources, and on the maximum
energy to which their (unattenuated) spectrum extends. If the neutrino and gamma-ray spec-
tra injected from radio galaxies does in fact extend up to ∼PeV energies or above, one might
expect the resulting cascade emission to constitute a significant fraction of the IGRB [57–60],
in possible conflict with the findings of Ref. [23].

In Fig. 2, we plot the contributions to the IGRB from radio galaxies and from the
corresponding cascade emission (for details regarding the cascade calculation, see Refs. [61–
65]), for three values of the spectral index and for two choices of the maximum gamma-
ray energy, Ecut. Even for the minimum value of Ecut = 10 TeV,3 the contribution from
electromagnetic cascades is in some tension with Ref. [23], although concordance may be
possible if Γ >∼ 2.15. This tension is made significantly worse, however, if the gamma-ray
spectrum from these sources extends to Ecut ∼ PeV, as would be required to accommodate
IceCube’s measured neutrino spectrum (see Fig. 3).

This tension can be relieved, however, if a non-neglibile fraction of the high photons
initiating electromagnetic cascades do so within or nearby the location of their parent radio
galaxy. If this is the case, much of the cascade emission will point in the direction of the source
radio galaxy, and will thus simply be included as part of the emission that we label in Fig. 2
as being from “unresolved radio galaxies” (as opposed to that from “cascade emission”).
Photons with an energy of ∼1 PeV or more are predicted to scatter with radiation before
escaping a galaxy, even in the case of Milky Way-like systems [72–74]. In active galaxies,
with higher densities of infrared radiation, such interactions will be more efficient, plausibly
leading to the scattering of most of the gamma-rays with Eγ >∼ 10 TeV. We also mention that
synchrotron cooling could reduce the energy in some electromagnetic cascades, suppressing
the total amount of energy in diffuse gamma-rays (for a discussion of synchrotron and inverse
Compton energy losses, see Ref. [75]).

With this in mind, we plot in the upper two frames of Fig. 4 the gamma-ray spectrum
from unresolved radio galaxies and from their corresponding cascade emission, in scenarios
in which 50% or 25% of the total cascade energy goes into diffuse gamma rays (those not
directed at their source). In both cases, we have taken Ecut =4 PeV, enabling these sources
to generate the neutrino spectrum observed by IceCube (as shown in the lower frame of

3As a number of radio galaxies have been observed by ground-based gamma-ray telescopes at energies of
∼10 TeV (see, for example, Refs. [66–71]) we take this to be the minimum acceptable value of Ecut.

– 4 –



10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.05, Ecut = 10 TeV

Total

Unresolved Radio Galaxies

Cascade Emission

10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.05, Ecut = 4 PeV

Total

Unresolved Radio Galaxies

Cascade Emission

10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.1, Ecut = 10 TeV

Total

Unresolved Radio Galaxies

Cascade Emission

10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.1, Ecut = 4 PeV

Total

Unresolved Radio Galaxies

Cascade Emission

10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.15, Ecut = 10 TeV

Total

Unresolved Radio Galaxies

Cascade Emission

10−1 100 101 102

Eγ (GeV)

10−8

10−7

10−6

E
2 γ
d
N
/d
E
γ

(G
eV
/c

m
2
/s
/s

r)

Fermi IGRB

Γ = 2.15, Ecut = 4 PeV

Total

Unresolved Radio Galaxies

Cascade Emission

Figure 2. The contribution to the diffuse gamma-ray background from unresolved radio galaxies, and
from the emission generated in the electromagnetic cascades initiated by very-high energy photons.
We show results for three choices of the spectral index, and for two choices of the cut-off energy in the
initial (unattenuated) gamma-ray spectrum, Ecut. The total flux in each frame is normalized to the
measured intensity of the IGRB. Here, we assume that 100% of the total energy in electromagnetic
cascades goes into the production of diffuse gamma rays (fcas = 1).

this figure). From this comparison, we conclude that Fermi’s IGRB and IceCube’s diffuse
neutrino spectrum can be simultaneously generated by radio galaxies in scenarios in which
a significant fraction of the electromagnetic cascades are initiated in or nearby their source
galaxy (fcas ∼ 0.1− 0.5).
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Figure 3. The (all-flavor) neutrino spectra for the models shown in Fig. 2, for the case of Ecut = 4
PeV and fcas = 1.
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Figure 4. Upper frames: As in Fig. 2, but assuming that 50% or 25% of the total energy in
electromagnetic cascades goes into diffuse gamma rays (fcas = 0.5, 0.25). In each case, we have taken
Γ = 2.1 and Ecut = 4 PeV. Lower Frame: The (all-flavor) neutrino spectra for the same range of
models, with three values of fcas. Fermi’s IGRB (including the fraction that originates directly from
radio galaxies [23]) and IceCube’s diffuse neutrino spectrum can be simultaneously accommodated in
this class of scenarios.
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3 Toward a Physical Model for Cosmic Ray Diffusion and Scattering in
Radio Galaxies

Active galaxies have long been considered to be one of the most promising classes of sources
for the highest energy cosmic rays, with magnetic fields and geometries that make them
potentially capable of accelerating protons and/or nuclei up to the highest observed ener-
gies [76]. While within the jet of an active galactic nuclei (AGN), cosmic rays may or may
not efficiently scatter with radiation fields, depending on the spectrum and energy density
of the target photons (for additional discussion, see Ref. [21]). Interactions between cosmic
rays and gas are generally not expected to be important within AGN jets (for exceptions, see
the models described in Refs. [19, 77]). Thus, as long as the radiation fields are not overly
dense, we expect most of the cosmic rays accelerated in these environments to escape into
the surrounding galaxy.

After leaving the jet, high-energy protons will diffuse through the volume of their parent
galaxy (or galaxy cluster), moving under the influence of the magnetic fields in a way that
resembles a random walk. Over a time, t, a typical particle will be displaced by a distance
of ddif ∼ 2

√
D(Ep)t, where D(Ep) is the energy dependent diffusion coefficient. Adopt-

ing a Kolmogorov spectrum of magnetic inhomogeneities, the diffusion coefficient takes the
following form:

D(Ep) =
1

3
c lc

(
rL
lc

)1/3

(3.1)

≈ 1.5× 1030 cm2/s

(
Ep

PeV

)1/3( lc
kpc

)2/3(µG

B

)1/3

,

where lc is the coherence length of the magnetic field and rL is the Larmor radius of the
propagating cosmic ray. We note that for l2c/B ' kpc2/µG, this diffusion coefficient matches
the value measured for GeV-TeV cosmic rays in the Milky Way [78, 79]. The expression
given in Eq. 3.1 is expected to be valid only in the limit of rL � lc, corresponding to
Ep � 0.9 EeV × (lc/kpc)(B/µG) [80]. At energies around or above this value, the diffusion
coefficient increases rapidly, enabling cosmic rays to effectively free-stream out of their parent
galaxy. We thus anticipate that the spectrum of cosmic rays confined within such a galaxy
will undergo a sharp cutoff at an energy on the order of Emax

p ∼ 0.1−1 EeV×(lc/kpc)(B/µG).
From the above diffusion coefficient, we can estimate the length of time that a typical

cosmic ray-proton will remain confined within the volume of its parent galaxy:

tesc ∼
d2

dif

2D(Ep)
(3.2)

∼ 7.9× 1013 s×
(

ddif

10 kpc

)2(PeV

Ep

)1/3(kpc

lc

)2/3( B

µG

)1/3

.

Over this period of time, the probability that a given proton will scatter with the
ambient gas is P (Ep) = 1− e−τpp(Ep), where the optical depth is given by:

τpp(Ep) = σpp(Ep) c tesc ngas (3.3)

≈ 0.054×
(

ngas

0.3 cm−3

)(
ddif

10 kpc

)2(PeV

Ep

)1/3(kpc

lc

)2/3( B

µG

)1/3

.
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Here, ngas represents the average number density of target nucleons within the volume of the
diffusion region. From this equation, we learn that for Ep >∼ 102 GeV, τ is less than one, and

the probability of scattering can be approximated by P (Ep) ' τpp(Ep) ∝ E−1/3
p .

In the energy range of interest, the average number of pions produced in a proton-proton

collision scales as Nπ ∝ E
1/4
p , while the average fraction of energy carried by a given pion

scales as 〈Eπ〉/Ep ∝ E−1/4
p [19, 81].4 The neutrinos and gamma rays generated in the decays

of these pions are further reduced in energy by factors of 4 and 2, respectively, following from
the number of particles in their decays. If we consider a power-law spectrum of protons,
dNp/dEp = ApE

−Γp
p , it follows that the resulting neutrinos and gamma-rays will take on

power-law spectra with an index of Γν,γ = −(4/3)Γp + (2/3) [19].
Together, this leads to the following spectra for neutrinos and gamma rays:

dNγ

dEγ
≈ Aγ ×

(
ngas

0.3 cm−3

)(
ddif

10 kpc

)2(kpc

lc

)2/3( B

µG

)1/3( Eγ
GeV

)− 4
3

Γp+ 1
3

, (3.4)

and

dNν

dEν
≈ Aγ ×

3

2
×
(

ngas

0.3 cm−3

)(
ddif

10 kpc

)2(kpc

lc

)2/3( B

µG

)1/3( Eν
GeV

)− 4
3

Γp+ 1
3

,

where Aγ is related to Ap by
∫
ApE

−Γp+1
p τpp(Ep)dEp = (5/3)

∫
AγE

(−4/3)Γp+(4/3)
γ dEγ . These

power-laws are expected to extend up to energies of Eγ ∼ (8−80) PeV×(lc/kpc)(µG/B) and
Eν ∼ (4− 40) PeV× (lc/kpc)(µG/B), above which rL >∼ lc and protons diffuse with D ∝ E2

p ,
leading to a steepening of the resulting gamma-ray and neutrino spectra by an additional

power of E
−5/3
γ,ν [80]. We note that the spectral cut-off predicted in this scenario is distinct

from that found for the model described in Ref. [19], where it was argued that the detection
of such a feature would disfavor radio galaxies as the sources of IceCube’s neutrinos.

To accommodate the required spectral index for gamma rays and neutrinos, Γγ '
2.1 (see Sec. 2), Eq. 3.4 indicates that protons must be injected into their parent galaxies
with an index of Γp ' 1.8. This value is within the range favored to explain the observed
ultra-high energy cosmic ray spectrum, as is the measured redshift distribution of radio
galaxies [35, 83, 84].

In light of these features, radio galaxies appear to be excellent candidates for the sources
of the ultra-high energy cosmic rays. The famous calculation by Waxman and Bahcall can
be used to relate the fluxes of ultra-high energy cosmic rays and neutrinos (for the case of
proton-proton collisions and an E−2 spectral shape) [85, 86]:

[E2
νΦν ]WB ≈ ξZ τpp tH

c

8π
E2

CR

dṄCR

dĖCR

≈ 8.0× 10−8 GeV cm−2 s−1 sr−1 ×
(
ξZ
4.8

)(
τpp

0.054

)
. (3.5)

In this expression, ξZ is a factor which accounts for redshift dependent source evolution. For
the observed redshift distribution of FR-I type radio galaxies [56], we calculate ξZ ' 4.8. tH
is the Hubble time and E2

CRdṄCR/dĖCR ≈ 1044 erg Mpc−3 yr−1 is the (local) injection rate

4For useful parameterizations of the neutrino and gamma-ray spectra from proton-proton collisions, based
on fits to accelerator data, we direct the reader to Ref. [82].
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of ultra-high energy (> 1019 eV) cosmic ray sources. For the optical depth given in Eq. 3.3,
we find excellent agreement with IceCube’s measured flux. In other words, if we were to
simply extrapolate the cosmic ray spectrum from radio galaxies from energies of ∼1017 eV
(as required to generate IceCube’s observed flux) to ∼1020 eV, this spectrum would provide
a reasonable match to that of the ultra-high energy cosmic rays.

4 Discussion and Conclusions

At this point in time, it has become possible to make some rather far-reaching and model-
independent statements regarding the origin of IceCube’s neutrino flux. Of particular im-
portance is Fermi’s measurement of the isotropic gamma-ray background (IGRB), which
significantly restricts the range of scenarios that could potentially be responsible for the ob-
served neutrinos. For a wide range of spectral shapes, source distributions, and interactions
(γp, pp), it has been shown that models capable of generating the spectrum measured by
IceCube also generate a diffuse flux of gamma rays that approximately saturates or exceeds
that observed by Fermi. And although this conclusion can be mitigated, to some extent, by
considering sources that are not entirely transparent to very-high energy gamma rays [59] (as
we did in Sec. 2, by considering in-galaxy pair production), this argument appears to favor
a common origin for both IceCube’s neutrino flux and the majority of the IGRB.

This connection is particularly powerful in light of the recent results of Ref. [23], which
found that the IGRB is dominated by emission from unresolved radio galaxies. We have
argued in this paper that radio galaxies – active galaxies with mis-aligned jets – are likely
to also be the primary source of the astrophysical neutrinos observed by IceCube. We have
presented a simple physical model in which cosmic rays are confined by magnetic fields within
radio galaxies for timescales of tesc ∼ 2.5 Myr× (PeV/Ep)

1/3, during which they scatter with
gas to generate the observed diffuse fluxes of gamma rays and neutrinos. For cosmic rays
accelerated by AGN with a spectral index of Γp ' 1.8, we can simultaneously accommodate
the characteristics of Fermi and IceCube’s observations, while also providing an attractive
class of sources for the ultra-high energy cosmic rays.

Smoking gun signals that would confirm the class of scenarios discussed here include
the detection of neutrinos or ultra-high energy cosmic rays from indivdual, likely nearby,
radio galaxies. From this perspective, the radio galaxy Centaurus A (Cen A) is particu-
larly interesting. At a distance of 3.8 Mpc, Cen A is the nearest radio galaxy, as well as
the brightest at GeV energies (see Table 1 of Ref. [23]). Furthermore, in 2010, the Auger
Collaboration reported a modest excess of events above 55 EeV from directions within ∼20◦

of Cen A [87, 88]. Given the estimated 4% chance probability of such an excess appearing
randomly, however, further data will be required to confirm the authenticity of this signal.

Cen A is also a promising source for detection with future high-energy neutrino tele-
scopes [17]. The gamma-ray flux from Cen A represents approximately 0.1% of the total
IGRB, and if we assume that the neutrino flux from Cen A is also equal to 0.1% of Ice-
Cube’s total astrophysical flux, we estimate that this source should generate a neutrino flux
of ∼ 1.3 × 10−9 GeV cm−2 s−1, which is a factor of ∼20 below the upper limits currently
placed by the IceCube Collaboration [89]. Radio galaxies located in the northern hemisphere
(including Cen B, NGC 6251, NGC 2484, 3C 264 and M 87) also represent promising targets
for future point source searches with IceCube.
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