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I. Bertram,39 M. Besançon,15 R. Beuselinck,40 P.C. Bhat,45 S. Bhatia,58 V. Bhatnagar,23 G. Blazey,47 S. Blessing,44

K. Bloom,59 A. Boehnlein,45 D. Boline,64 E.E. Boos,33 G. Borissov,39 M. Borysoval,38 A. Brandt,71 O. Brandt,20

M. Brochmann,75 R. Brock,57 A. Bross,45 D. Brown,14 X.B. Bu,45 M. Buehler,45 V. Buescher,21 V. Bunichev,33
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11LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3,
Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex, France
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de F́ısica d’Altes Energies (IFAE), 08193 Bellaterra (Barcelona), Spain

37Uppsala University, 751 05 Uppsala, Sweden
38Taras Shevchenko National University of Kyiv, Kiev, 01601, Ukaine

39Lancaster University, Lancaster LA1 4YB, United Kingdom
40Imperial College London, London SW7 2AZ, United Kingdom

41The University of Manchester, Manchester M13 9PL, United Kingdom
42University of Arizona, Tucson, Arizona 85721, USA

43University of California Riverside, Riverside, California 92521, USA
44Florida State University, Tallahassee, Florida 32306, USA

45Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46University of Illinois at Chicago, Chicago, Illinois 60607, USA

47Northern Illinois University, DeKalb, Illinois 60115, USA
48Northwestern University, Evanston, Illinois 60208, USA
49Indiana University, Bloomington, Indiana 47405, USA

50Purdue University Calumet, Hammond, Indiana 46323, USA
51University of Notre Dame, Notre Dame, Indiana 46556, USA

52Iowa State University, Ames, Iowa 50011, USA
53University of Kansas, Lawrence, Kansas 66045, USA



3

54Louisiana Tech University, Ruston, Louisiana 71272, USA
55Northeastern University, Boston, Massachusetts 02115, USA
56University of Michigan, Ann Arbor, Michigan 48109, USA

57Michigan State University, East Lansing, Michigan 48824, USA
58University of Mississippi, University, Mississippi 38677, USA

59University of Nebraska, Lincoln, Nebraska 68588, USA
60Rutgers University, Piscataway, New Jersey 08855, USA
61Princeton University, Princeton, New Jersey 08544, USA

62State University of New York, Buffalo, New York 14260, USA
63University of Rochester, Rochester, New York 14627, USA

64State University of New York, Stony Brook, New York 11794, USA
65Brookhaven National Laboratory, Upton, New York 11973, USA

66Langston University, Langston, Oklahoma 73050, USA
67University of Oklahoma, Norman, Oklahoma 73019, USA

68Oklahoma State University, Stillwater, Oklahoma 74078, USA
69Oregon State University, Corvallis, Oregon 97331, USA
70Brown University, Providence, Rhode Island 02912, USA

71University of Texas, Arlington, Texas 76019, USA
72Southern Methodist University, Dallas, Texas 75275, USA

73Rice University, Houston, Texas 77005, USA
74University of Virginia, Charlottesville, Virginia 22904, USA
75University of Washington, Seattle, Washington 98195, USA

(Dated: May 11, 2016)

We measure the forward-backward asymmetries AFB of charged Ξ and Ω baryons produced in pp̄
collisions recorded by the D0 detector at the Fermilab Tevatron collider at

√
s = 1.96 TeV as a

function of the baryon rapidity y. We find that the asymmetries AFB for charged Ξ and Ω baryons
are consistent with zero within statistical uncertainties.

INTRODUCTION

We present a study of the forward-backward asymme-
tries AFB for the production of charged Ξ and Ω baryons
in pp̄ collisions at a center of mass energy

√
s = 1.96 TeV,

recorded by the D0 detector at the Fermilab Tevatron
collider.

We previously performed a study of AFB for Λ and Λ̄
production [1], where AFB is defined as the relative excess
of Λ (Λ̄) baryons produced with longitudinal momentum
pz in the p (p̄) direction. These results are in agreement
with the observations in a wide range of proton colli-
sion experiments that the Λ̄/Λ production ratio follows
a universal function of the “rapidity loss” yp − y between

∗with visitors from aAugustana College, Sioux Falls, SD 57197,
USA, bThe University of Liverpool, Liverpool L69 3BX, UK,
cDeutshes Elektronen-Synchrotron (DESY), Notkestrasse 85, Ger-
many, dCONACyT, M-03940 Mexico City, Mexico, eSLAC, Menlo
Park, CA 94025, USA, f University College London, London WC1E
6BT, UK, gCentro de Investigacion en Computacion - IPN, CP
07738 Mexico City, Mexico, hUniversidade Estadual Paulista, São
Paulo, SP 01140, Brazil, iKarlsruher Institut für Technologie (KIT)
- Steinbuch Centre for Computing (SCC), D-76128 Karlsruhe, Ger-
many, jOffice of Science, U.S. Department of Energy, Washing-
ton, D.C. 20585, USA, kAmerican Association for the Advance-
ment of Science, Washington, D.C. 20005, USA, lKiev Institute for
Nuclear Research (KINR), Kyiv 03680, Ukraine, mUniversity of
Maryland, College Park, MD 20742, USA, nEuropean Orgnaization
for Nuclear Research (CERN), CH-1211 Geneva, Switzerland and
oPurdue University, West Lafayette, IN 47907, USA. ‡Deceased.

the beam proton and the produced Λ̄ or Λ baryon which
does not depend significantly on

√
s or on the nature of

the target p, p̄, Be, or Pb (see Ref. [1] and references
therein). These results support the view that a strange
quark produced directly in the hard scattering of point-
like partons, or indirectly in the subsequent showering,
can coalesce with a diquark remnant of the beam particle
to produce a Λ baryon with a probability that increases
as the rapidity difference between the incoming proton
and outgoing Λ baryon decreases.

If this hypothesis is correct, we also expect AFB > 0 for
Λc (Λ̄c), and Λb(Λ̄b) production in which a c or b quark
can coalesce with a diquark form the proton. For the B
mesons and Ξ and Ω baryons, we expect AFB ≈ 0 since
these particles do not share a diquark with the proton.
Previous D0 measurements include AFB(B−, B+) [2] and
AFB(Λb, Λ̄b) [3].

In this article, we present measurements of the
forward-backward asymmetries of Ξ∓ and Ω∓ produc-
tion, where we use the notation Ξ+ ≡ Ξ− and Ω+ ≡ Ω−.
The Ξ− and Ξ+ baryons are defined as “forward” if their
pz points in the p or p̄ direction, respectively. The asym-
metry AFB is defined as

AFB ≡ σF(Ξ−) − σB(Ξ−) + σF(Ξ+) − σB(Ξ+)

σF(Ξ−) + σB(Ξ−) + σF(Ξ+) + σB(Ξ+)
, (1)

where σF and σB are the forward and backward cross
sections of Ξ− or Ξ+ production, and similarly for Ω∓

baryons. The measurements include Ξ∓ and Ω∓ baryons
that are either directly produced or decay products of
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heavier hadrons. The measurement strategy for the
asymmetry AFB of Ξ∓ and Ω∓ baryons presented here
closely follows the analysis method used to determine
AFB for Λ and Λ̄ baryons in Ref. [1].

DETECTOR AND DATA

The D0 detector is described in detail in Refs. [4–7].
The collision region is surrounded by a central tracking
system that comprises a silicon microstrip vertex detec-
tor and a central fiber tracker, both located within a
1.9 T superconducting solenoidal magnet [4], surrounded
successively by the liquid-argon/uranium calorimeters, a
layer of the muon system [5], comprising drift chambers
and scintillation trigger counters, the 1.8 T magnetized
iron toroids, and two additional muon detector layers af-
ter the toroids.
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FIG. 1: Invariant mass distributions of reconstructed Ξ− →
Λπ− (circles) and Ξ+ → Λ̄π+ (triangles) for pp̄ → µΞ∓X
data.

The longitudinal momentum pz and the rapidity y ≡
ln [(E + pz)/(E − pz)]/2 are both measured with respect
to the proton beam direction in the pp̄ center of mass
frame where E is the energy of the baryon. We present
results for the full integrated luminosity of 10.4 fb−1,
collected from 2002 to 2011, using two data sets (i) pp̄ →
Ξ∓X , and (ii) pp̄ → µΞ∓X . The first data set is unbiased
since it is collected using a pre-scaled trigger on beam
crossing (“zero bias events”) or with a pre-scaled trigger
on energy deposited in the forward counters (“minimum
bias events”). The second data set is selected with a suite
of single muon triggers which implies that most events
contain heavy-quark (b or c) decays. This data set is
defined using the same muon triggers and muon selections
as in Ref. [8, 9]. The muon data provides a sizable data
set that adds additional statistics for the analysis. For
Ω’s there are fewer events, so we only present results for
the set pp̄ → µΩ∓X .
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FIG. 2: Invariant mass distributions of reconstructed Ω− →
ΛK− (circles) and Ω+ → Λ̄K+ (triangles) for pp̄ → µΩ∓X
data.

We observe Ξ baryons through their decays Ξ− → Λπ−

and Ξ+ → Λ̄π+, and Ω baryons through their decays
Ω− → ΛK− and Ω+ → Λ̄K+, with Λ → pπ− and
Λ̄ → p̄π+ in both cases. The Λ and Λ̄ candidates are
reconstructed from pairs of oppositely curved tracks with
a common vertex (V 0). Each track is required to have
a non-zero impact parameter in the transverse plane
(IP) with respect to the pp̄ interaction vertex with a
significance of at least two standard deviations. The
proton (pion) mass is assigned to the daughter track
with larger (smaller) total momentum since the decay
Λ → pπ is just above threshold. The invariant mass of
the (p, π−) or (p̄, π+) pair is required to be in the interval
1.105 < M(pπ) < 1.125 GeV [1]. We require Λ and Λ̄
candidates with 1.5 < pT < 25 GeV and pseudorapid-
ity |η| < 2.2 [10], and their IP must be non-zero with a
significance greater than two standard deviations.

The Λ (Λ̄) candidate is combined with a negatively
(positively) charged-particle track with separation in the
transverse plane from the primary vertex with signifi-
cance greater than three standard deviations and a good
vertex with the Λ (Λ̄) candidate. This track is assigned
the pion mass for Ξ’s or the kaon mass for Ω’s. The Ξ∓ or
Ω∓ candidates are required to have an IP consistent with
zero within three standard deviations. The observed de-
cay lengths in the transverse plane of the Λ and Ξ− or
Ω− (or Λ̄ and Ξ+ or Ω+) are required to be greater than
4 mm. The invariant mass for the Ξ∓ candidate is re-
quired to be in the interval 1.2 < M(Λπ) < 1.5 GeV
and 1.55 < M(ΛK) < 1.85 GeV for Ω∓ candidates. The
kinematic selections for the Ξ∓ and Ω∓ candidates are
pT > 2.0 GeV and |η| < 2.2. The pion or kaon track and
the two daughter tracks of the Λ baryon are required to
be different from any track associated to a muon. The
invariant mass distributions for the decays Ξ− → Λπ−

and Ξ+ → Λ̄π+ are shown in Fig. 1 and for the decays
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Ω− → ΛK− and Ω+ → Λ̄K+ in Fig. 2.

RAW ASYMMETRIES AND DETECTOR

EFFECTS

We obtain the numbers NF(Ξ∓) and NB(Ξ∓) of re-
constructed Ξ∓ baryons in the forward and backward
categories in each bin of |y| by counting Ξ∓ candidates
in the signal region, 1.305 < M(Λπ) < 1.335 GeV,
and subtracting the counts in two sideband regions, de-
fined by 1.2775 < M(Λπ) < 1.2925 GeV and 1.3475 <
M(Λπ) < 1.3625 GeV. The signal region for Ω∓ can-
didates is 1.6575 < M(ΛK) < 1.6875 GeV, and the
sideband regions are 1.630 < M(ΛK) < 1.645 GeV and
1.700 < M(ΛK) < 1.715 GeV.

The normalization factor N and the three raw asym-
metries A′

FB, A′
NS, and A′

Ξ are defined by

NF(Ξ−) ≡ N(1 + A′
FB)(1 − A′

NS)(1 + A′
Ξ),

NB(Ξ−) ≡ N(1 − A′
FB)(1 + A′

NS)(1 + A′
Ξ),

NF(Ξ+) ≡ N(1 + A′
FB)(1 + A′

NS)(1 − A′
Ξ),

NB(Ξ+) ≡ N(1 − A′
FB)(1 − A′

NS)(1 − A′
Ξ), (2)

and similarly for Ω. The raw asymmetries A′
FB, A′

NS,
and A′

Ξ have contributions from the physical asymme-
tries AFB, ANS, and AΞ, and from detector effects. The
forward-backward asymmetry AFB measures the relative
excess of Ξ− (Ξ+) baryons with pz in the p (p̄) direction.
The asymmetry ANS is given by the relative excess of
the sum of Ξ− and Ξ+ baryons with pz in the p̄ beam
direction (north) with respect to the p beam direction
(south). The asymmetry AΞ is the relative excess of neg-
atively charged over positively charged baryons.

The initial pp̄ state is invariant with respect to CP
conjugation, which changes the sign of ANS and AΞ, while
AFB remains unchanged. A non-zero value of ANS or AΞ

would indicate CP violation.
The asymmetry A′

NS is mainly due to differences in
the product of the acceptance and efficiency between the
northern hemisphere of the DØ detector with respect to
the southern hemisphere. The difference in reconstruc-
tion efficiencies of Ξ− and Ξ+ baryons caused by the dif-
ferent inelastic interaction cross-sections of p and p̄ with
the detector material creates the additional asymmetry
A′

Ξ [1].
The raw asymmetries including terms up to second-

order in the asymmetries are given by

A′
FB = A′

NSA′
Ξ

+
NF(Ξ−) − NB(Ξ−) + NF(Ξ+) − NB(Ξ+)

NF(Ξ−) + NB(Ξ−) + NF(Ξ+) + NB(Ξ+)
, (3)

A′
NS = A′

FBA′
Ξ

+
−NF(Ξ−) + NB(Ξ−) + NF(Ξ+) − NB(Ξ+)

NF(Ξ−) + NB(Ξ−) + NF(Ξ+) + NB(Ξ+)
, (4)
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FIG. 3: Distributions of pT , pz, and y of reconstructed Ξ−

(circles) and Ξ+ candidates (triangles) with pT > 2 GeV, for
the minimum bias data sample pp̄ → Ξ∓X.

A′
Ξ = A′

FBA′
NS

+
NF(Ξ−) + NB(Ξ−) − NF(Ξ+) − NB(Ξ+)

NF(Ξ−) + NB(Ξ−) + NF(Ξ+) + NB(Ξ+)
. (5)

The polarities of the solenoid and toroid magnets were
reversed about once every two weeks during data-taking
to collect approximately the same number of events for
each of the four solenoid-toroid polarity combinations.
We apply weights to equalize the sums of Ξ− and Ξ+ can-
didates reconstructed for each of the four polarity com-
binations. This averaging over magnet polarities cancels
contributions from the detector geometry to A′

FB and A′
Ξ,

but not to A′
NS [1].

The raw asymmetry A′
FB has negligible contributions

from detector effects after averaging over solenoid and
toroid magnet polarities. The raw asymmetries A′

NS and
A′

Ξ are dominated by detector effects [1]. The quadratic
term A′

NSA′
Ξ in Eq. (3) corrects A′

FB for the detector
effects A′

NS and A′
Ξ on the particle counts NF(Ξ∓) and

NB(Ξ∓). We can therefore set A′
FB = AFB where AFB is

defined in Eq. (1).
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TABLE I: Forward-backward asymmetry AFB of Ξ∓ baryons with pT > 2 GeV in minimum bias events, pp̄ → Ξ∓X, and muon
events pp̄ → µΞ∓X, and AFB of Ω− and Ω+ baryons with pT > 2 GeV in muon events pp̄ → µΩ∓X. The first uncertainty is
statistical, the second is systematic due to the detector asymmetry A′

NSA′
Ξ.

|y| AFB × 100 (Ξ∓, min. bias) AFB × 100 (Ξ∓, with µ) AFB × 100 (Ω∓, with µ)
0.0 to 0.5 −2.78 ± 3.20 ± 0.34 −0.20 ± 0.72 ± 0.01 −3.43 ± 2.90 ± 0.13
0.5 to 1.0 5.23 ± 2.85 ± 0.55 −0.13 ± 0.66 ± 0.03 3.25 ± 2.78 ± 0.10
1.0 to 1.5 2.61 ± 3.75 ± 0.45 1.55 ± 0.77 ± 0.05 0.46 ± 3.52 ± 0.14
1.5 to 2.0 5.09 ± 9.00 ± 1.64 −1.14 ± 2.05 ± 0.27 5.75 ± 10.86 ± 5.70
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FIG. 4: Asymmetries A′
FB = AFB, A′

NS and A′
Ξ of recon-

structed Ξ− and Ξ+ candidates with pT > 2 GeV, as a func-
tion of |y|, for the minimum bias data sample pp̄ → Ξ∓X.
The uncertainties are statistical.

MINIMUM BIAS SAMPLE EVENTS pp̄ → Ξ∓X

The minimum bias sample contains 3.7 × 103 recon-
structed Ξ∓ candidates with pT > 2 GeV. Distributions
of pT , pz, and y for the Ξ∓ candidates are shown in Fig.
3 and the corresponding raw asymmetries A′

FB = AFB,
A′

NS and A′
Ξ in Fig. 4. These asymmetries are calculated

using Eqs. 3-5, neglecting the quadratic terms since they
are small compared to the statistical uncertainties. The
correction A′

NSA′
Ξ needed to obtain A′

FB = AFB is mea-
sured to be consistent with zero within statistical uncer-
tainties, see Figs. 4 (b) and (c). Thus, we choose not
to apply this correction, but rather take the full mea-
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µ- data

FIG. 5: Distributions of rapidity y for reconstructed Ξ− (cir-
cles) and Ξ+ candidates (triangles) in events with a (a) posi-
tively or (b) negatively charged muon for Ξ∓ candidates with
pT > 2 GeV.

sured detector asymmetry A′
NSA′

Ξ as the systematic un-
certainty on the measurement of AFB. The results are
summarized in Table I.

MUON SAMPLE EVENTS pp̄ → µΞ∓X AND

pp̄ → µΩ∓X

To study the asymmetries using a larger data set, we
consider pp̄ → µΞ∓X and pp̄ → µΩ∓X events taken
from the single muon trigger sample. Charged particles
with transverse momentum in the range 1.5 < pT < 25
GeV and |η| < 2.2 are considered as muon candidates.
Muon candidates are further selected by matching central
tracks with a segment reconstructed in the muon system
and by applying tight quality requirements aimed at re-
ducing false matching and background from cosmic rays
and beam halo. To ensure that the muon candidate tra-
verses the detector, including all three layers of the muon
system, we require either pT > 4.2 GeV or |pz| > 5.4
GeV [8, 9]. The inclusive muon sample contains 2.2×109
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FIG. 6: Asymmetries A′
FB = AFB, A′

NS and A′
Ξ of recon-

structed Ξ− and Ξ+ candidates with pT > 2 GeV, as a func-
tion of |y|, for pp̄ → µΞ∓X events. The uncertainties are
statistical.

reconstructed muons and 7.7×104 reconstructed Ξ− and
Ξ+ candidates with pT > 2 GeV, as well as 1.4 × 104

reconstructed Ω− and Ω+ candidates.

Rapidity distributions for reconstructed Ξ− and Ξ+

candidates are shown in Fig. 5. From these distribu-
tions we observe that (i) the detection efficiency for Ξ−

baryons is larger than for Ξ+ baryons as explained above,
and (ii) there are more Ξ∓µ± than Ξ∓µ∓ events. An ex-
ample of a process with a correlated Ξ−µ+ pair is the
decay Ξ0

c → Ξ−µ+X . We find that the asymmetry A′
FB

obtained with events containing a µ+ is consistent with
the corresponding asymmetry with µ− within statistical
uncertainties. We therefore combine the µ+ and µ− sam-
ples to obtain the asymmetries presented in Figs. 6 and
7.

The pT , pz, and y distributions for pp̄ → µΩ∓X events
are shown in Fig. 8, and the corresponding asymmetry
AFB is presented in Fig. 9. The Ξ∓ and Ω∓ asymmetries
are summarized in Table I.
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FIG. 7: Asymmetry A′
FB = AFB as a function of |y| for

pp̄ → µΞ∓X events with (a) 2.0 < pT < 4.0 GeV, (b)
4.0 < pT < 6.0 GeV, and (c) pT > 6.0 GeV. The uncertainties
are statistical.

CONCLUSIONS

We have measured the forward-backward asymmetries
AFB in pp̄ → Ξ∓X , pp̄ → µΞ∓X , and pp̄ → µΩ∓X
events using 10.4 fb−1 of integrated luminosity recorded
with the D0 detector. We find that AFB for Ξ∓ and Ω∓

are consistent with zero within uncertainties.
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