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ABSTRACT

It is well known that the probability distribution function (PDF) of galaxy density contrast
is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing
convergence (κWL) is lognormal is less well established. We derive PDFs of the galaxy and
projected matter density distributions via the Counts in Cells (CiC) method. We use maps
of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES)
Science Verification data over 139 deg2. We test whether the underlying density contrast is
well described by a lognormal distribution for the galaxies, the convergence and their joint
PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal
PDF convolved with Poisson noise at angular scales from 10′- 40′(corresponding to physical
scales of 3–10 Mpc). We note that as κWL is a weighted sum of the mass fluctuations along
the line of sight, its PDF is expected to be only approximately lognormal. We find that the
κWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise
at scales between 10′and 20′, with a best-fit χ2/DOF of 1.11 compared to 1.84 for a Gaussian
model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10′. Above 20′a
simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate
lognormal. As a consistency check we compare the variances derived from the lognormal
modelling with those directly measured via CiC. Our methods are validated against maps
from the MICE Grand Challenge N-body simulation.

1 INTRODUCTION

It was first noted by Hubble that the distribution of galaxies in angu-
lar cells on the celestial sphere is well approximated by a lognormal
(Hubble 1934). This has been confirmed observationally (Coles &
Jones 1991, Wild et al. 2005) as well as in N-body simulations
(Bernardeau & Kofman 1995, Bernardeau 1994, Kayo, Taruya &
Suto 2001), which have shown that the underlying mass density
field is expected to be lognormal.

Since the weak lensing convergence field along the line of
sight is a weighted projection of the mass density contrast field,
one might suspect that the lognormal distribution is a reasonable,
if not exact, model of this too. This has been tested on numeri-
cal simulations and a lognormal PDF shown to be a reasonable
model (Taruya, Hamana & Kayo 2002, Hilbert, Hartlap & Schnei-
der 2011). Even better fits to the convergence PDF, particularly in
the tails of the distribution, have been obtained by generalisations
of a lognormal PDF (Das & Ostriker 2006, Takahashi et al. 2011,
Joachimi, Taylor & Kiessling 2011).

The Dark Energy Survey (DES) (Dark Energy Survey Col-
laboration 2005, 2015, 2016) presents an excellent opportunity to
study both of these fields. DES was specifically conceived to pro-
duce cutting edge science from four different cosmological probes
- large-scale structure, weak gravitational lensing, galaxy clusters
and supernovae - using the same instrument. The full survey in-
volves five years of observations, currently in progress. In this pa-
per we focus on data produced during the pre-survey Science Veri-
fication (SV) series of observations.

This early data from DES allowed for the construction of two
types of density fields. One is from luminous matter, i.e. galaxies of
various types, δg , which are biased tracers of the underlying dark
matter field, δm. The other uses the weak lensing of galaxy shapes
to construct a convergence, or κ map (Vikram et al. 2015; Chang
et al. 2015) that is directly sensitive to the integrated dark matter
field out to the lensed galaxies.

Both maps trace the underlying density distribution in the Uni-
verse. Galaxies are biased tracers of matter density, preferentially
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clustering in overdense regions. Galaxy density contrast can then
be considered a biased local tracer of the density field.

Weak lensing convergence on the other hand responds directly
to the underlying density field and is therefore unbiased. However
gravitational deflection of light is a cumulative effect, sensitive to
the integrated matter density along the line of sight from source
galaxy to observer. The convergence field for a given galaxy source
distribution therefore gives us information about the cumulative
density field between observer and source, with the exact contribu-
tion of matter at different distances along the line of sight governed
by the lensing efficiency function.

The purpose of the present study is to analyse the galaxy and
mass maps from DES SV simultaneously, testing the two maps sep-
arately for log-normality, as well as analysing the joint distribution.
To our knowledge this is the first time that the log-normality of the
weak lensing convergence field alone has been tested using data
rather than numerical simulation (Taruya et al. 2002), and the first
time the joint distribution has been tested for log-normality.

The Counts in Cells (CiC) method (e.g. Hubble 1934; White
1979; Gaztanaga 1992; Szapudi 1997; Bernardeau et al. 2002) is
a natural way to measure the individual and joint PDFs. The CiC
technique splits up a particular data set into spatial cells, in two
or three dimensions, and takes an aggregate of the available in-
formation inside each cell. Statistical variation between cells then
provides information on the properties of that cosmological field.

DES observations are ideally suited to this sort of analysis.
The fact that DES provides a joint galaxy survey and convergence
map data set produced from the same observations makes it easier
to ensure consistency between data and to control for systematics.
The SV data we use were taken before the start of the full five year
survey, covers 139 deg2 to full survey depth and forms a test-bed
for the kind of analyses planned on the final DES data. All of the
analyses in this work are done first on galaxy and convergence maps
from MICE simulations in order to test our methodology.

The outline of the paper is as follows. In section 2 we review
the theory and formalism used. We describe the galaxy and weak
lensing convergence maps from MICE simulations and DES used
in section 3, and summarise our CiC method in section 4. In sec-
tion 5 we validate our CiC method on MICE Grand Challenge N-
body simulations, checking that we see the expected lognormality
in MICE δg and the noise-free convergence. In section 6 we present
lognormal fits to the individual DES galaxy and convergence field
distributions as well as their joint distribution. We check the valid-
ity of the log-normal model by measuring the variance of the fields
and comparing this to the variance derived under the assumption of
log-normality. We discuss the results in 7, and in the Appendices
we give the formalism used to calculate moments from CiC, test
the impact of systematic effects, and confirm that assumptions we
make in our method do not significantly affect our results.

2 LOGNORMAL MODELLING OF COSMIC FIELDS

Lognormal distributions are very common in nature, from the sizes
of clouds, pebbles on a beach, or crystals in icecream; the length
of sentences or words in a conversation; to populations of bacte-
ria (see Limpert, Stahel & Abbt 2001, Gaskell 2004 and references
therein). Many of these examples involve multiplicative processes,
of either merging or fragmentation. Any process that can be written
as a product of terms will, if there are many terms, tend to a lognor-
mal distribution. This is because if a process X can be written as a
product of independent terms, then ln(X) will be a sum of indepen-
dent terms, and via the central limit theorem these will be normally

distributed. So ln(X) is normally distributed, or, X is lognormally
distributed.

There are many examples of the hierarchical merging or frag-
menting of structure leading to lognormal distributions, such as:
the initial mass function of field stars, explained in terms of cloud
fragmentation (Zinnecker 1984); X-ray flux variations, suggesting
lognormal distribution of emitting regions (Gaskell 2004); lumi-
nosity functions of central galaxies, explained in terms of BCGs
being formed by steps of mass adding/stripping (e.g. Taghizadeh-
Popp, Heinis & Szalay 2012); and the angular momentum of disc
galaxies (Marr 2015).

In this paper we test the lognormality of the distribution of
matter in the Universe via the galaxy density contrast field, δg , and
via the weak lensing convergence field, κWL. Each approach has
particular observational and astrophysical noise associated with it,
which we discuss and propose models for in this section.

2.1 Galaxies

In the standard picture of gravitational instability, the primordial
density fluctuations that are the precursor of all structure in the uni-
verse are assumed to be a random Gaussian field. Once they en-
ter the non-linear regime, with finite rms fluctuations, their PDF
must deviate from a Gaussian to avoid non-zero probabilities being
attached to regions with negative densities (Fry 1984). The exact
form of the PDFs in this regime is not known but there are vari-
ous phenomenological models that are fully specified statistically
and satisfy the common sense requirement that the matter density,
ρ > 0 (e.g. Saslaw & Hamilton 1984, Suto, Itoh & Inagaki 1990,
Lahav et al. 1993, Gaztanaga & Yokoyama 1993; Suto 1993, Ueda
& Yokoyama 1996).

One such model that is widely used is the lognormal. As
well as being completely specified statistically and always having
ρ > 0, it becomes arbitrarily close to Gaussian statistics at early
times and has the advantage that it can be handled analytically.
The merits of this model in a cosmological context are discussed
extensively in Coles & Jones (1991). They explain possible moti-
vations for using the lognormal model as: empirical; kinematic; an
application of the central limit theorem (as described above); and
importantly, simplicity. It is one of the few random fields for which
interesting quantities such as its moments can be calculated analyt-
ically.

It should be noted that despite these compelling motivations
to use a lognormal in the statistical treatment of density perturba-
tions, it does have shortcomings. In particular, it is not uniquely
specified by its moments; many distributions can lead to the same
set of moments. It must then be the case that information is lost in
going from a lognormal field to its moments, an effect quantified
in Carron (2011). However, it remains a popular and useful tool in
analysis of the mass density contrast field.

Galaxies are biased tracers of the mass density contrast field.
The 1D log-normal distribution of galaxy density contrast δg = (ρ−
ρ̄)/ρ̄ is given by:

f(δg)dδg =
1

w
√

2π
exp

(
−x2

2w2

)
dx (1)

where x = ln(1 + δg) + w2/2 and w2 is the variance of the cor-
responding normal distribution f [ln(1 + δg)]. The offset w2/2 en-
sures that 〈δg〉 = 0. The width w is then the single free parameter
of the 1D lognormal distribution.

If the lognormal distribution correctly describes the data, the
variance of the overdensities will be related to the variance, w, of
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the underlying Gaussian distribution by

〈δgδg〉 = ew
2

− 1. (2)

Due to the discrete nature of galaxies, shot noise is present. Assum-
ing Poisson sampling of galaxies, the shot noise in the measurement
of the distribution of galaxy overdensities can be accounted for by
convolving the log-normal model with a Poisson distribution. The
probability distribution function of the galaxy counts N in a cell of
given size is then given by:

P (N) =

∫ ∞
−1

N̄N (1 + δg)
N

N !
e−N̄(1+δg)f(δg)dδg (3)

This Poisson sampled lognormal distribution has been shown to be
a good fit to different galaxy populations in Coles & Jones (1991),
Blanton (2000) and Wild et al. (2005). In this work the smallest
number of DES galaxies in a cell considered is around 300, so the
shot noise term is important.

2.2 Weak Lensing Convergence

Various expressions for the convergence PDF have been proposed
(Munshi & Jain 2000; Valageas 2000; Kainulainen & Marra 2011).
The lognormal model has the advantage - as in the case of the
matter density contrast - of mathematical convenience, while offer-
ing the chance to extract more information than assuming a purely
Gaussian model for the convergence field. Following a study that
showed that a lognormal transformation of the matter density con-
trast increases the signal to noise (Neyrinck et al. 2009), Seo et al.
(2011) performed an analogous study of the weak lensing conver-
gence. They found that such a transform, when applied to the posi-
tively offset convergence, decorrelated angular frequencies and in-
creased the signal-to-noise in the transformed power spectrum.

The convergence field along a line-of-sight can be expressed
as a weighted projection of the mass density contrast field:

κ(θ) =

∫ χhor

0

dχw(χ)δ[r(χ)θ, χ], (4)

where χ is the comoving distance, χhor is the angular diameter
distance to the horizon and δ[r(χ)θ, χ] is the underlying matter
density contrast field. w(χ) is a geometrical weight function that
depends on the relative separations of sources, lens and the observer
(see e.g. Mellier 1999; Bartelmann & Schneider 2001 for reviews).
It takes the form

w(χ) =
3

2

(
H0

c

)2
χΩ0

a(χ)

∫ χhor

χ

dχ′n(χ′)
χ′ − χ
χ′

, (5)

where n(χ) is the source galaxy distribution.
The distribution of κ is not expected to be exactly lognormal,

even if δ is, since κ is a weighted projection of the mass density
contrast field along line of sight. However, simulations have shown
(Taruya et al. 2002) that the convergence field is well approximated
by a lognormal outside the regime of extremely high κ. Hence we
choose in this work to model the noise free κ field distribution with
a shifted lognormal

P (κ) =


exp

[
−

(ln(κ0 + κ)− µ)2

2σ2

]
ln(κ0 + κ)

√
2πσ

for κ > −κ0,

0 otherwise,

(6)

Figure 1. Demonstration of the Gaussianity of the noise in DES weak
lensing convergence, κ, at a smoothing scale of 20′. Probability density
distributions of the 100 realisations of the κ map, in which shears were
randomised, are shown in blue, with jackknife errors. A Gaussian PDF was
fitted to each, with the mean of the best fitting PDFs shown in magenta. A
Gaussian model is an excellent fit to the noise, with average goodness of fit
χ2/DOF= 0.95± 0.73.

where the shift κ0 = −κmin and is called the ‘minimum conver-
gence parameter’ (Hilbert et al. 2011). The lowest possible value of
κ is given by−κ0 since the lognormal is only defined for a positive
range. The mean is given by

µ = ln(κ0 + 〈κ〉)− σ2/2 (7)

and the second moment

〈κκ〉 = e(2µ+σ2)(eσ
2

− 1). (8)

The value assigned to κ0 is a modelling choice that can be ap-
proached in several ways. The minimum measured value of κ could
be used, but this is a noisy quantity and should not be used unless
one has access to many realisation of κ. Or, treating κ analogously
to δg , we could consider a theoretical minimum corresponding to
the convergence we would see, for a given source distribution, if
the mass distribution was a pure void along the entire line of sight.
For the MICE source distribution used in this work this value is
−0.050, and for the DES source distribution it is −0.053. How-
ever simulations show that there are no empty lines of sight in a
ΛCDM universe (Taruya et al. 2002; Vale & White 2003; Hilbert
et al. 2011). So we choose, where possible, to treat κ0 as a free
parameter and fit it jointly with the lognormal width.

As for galaxies, we need to modify the lognormal to account
for noise. The DES κ map is constructed (see section 3.2) from
measurements of shear, which is the change in the ellipticity of
galaxies resulting from weak gravitational lensing. Since galaxies
are intrinsically elliptical (i.e. in the absence of lensing), the ob-
served shear is the sum of this intrinsic ellipticity and the shear
caused by lensing. The variance of the intrinsic ellipticity, called
shape noise, is the dominant source of noise in shear measurements,
typically by a factor of more than an order of magnitude. An esti-
mate of the shape noise in the DES κ map is provided by the 100
noise realisations described in section 3.2.

To analyse the shape of the noise distribution we construct
PDFs via CiC (as described in section 4) on each of the 100 maps.
The resulting distributions appear Gaussian, as shown in figure
1, where the thick blue curve is made up of 100 superimposed
noise distributions with jackknife error bars, and the magenta line
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shows the mean bestfit Gaussian PDF. A Gaussian model provides
an excellent fit, with average goodness of fit over the 100 maps
χ2/dof = 0.95± 0.73.

We therefore propose that the 1D probability distribution for
the weak lensing convergence field is then given by a convolution
of a lognormal distribution with a noise contribution modelled as
Gaussian:

f(κ) =
1√

2πσn

∫ ∞
−κ0

exp
[
− (κ′ − κ)2

2σ2
n

]
P (κ′)dκ′ (9)

where P (κ) is the noise free log-normal distribution given in equa-
tion 6, and σn is the Gaussian width of the shape noise. In this
work, σn is determined from the 100 noise realisations.

2.3 Joint Galaxy and Weak Lensing Convergence Field

We can try to model the joint distribution of galaxy density con-
trast δg and weak lensing convergence κWL as a bivariate lognor-
mal with PDF f(δg, κWL). Following the notation used in Coles &
Jones (1991); Wild et al. (2005), this is given by

f(δg, κ) =
|V |−1/2

2π
exp

[
− (g̃2

δ + g̃2
κ − 2rLNg̃δ g̃κ)

2(1− r2
LN)

]
, (10)

where gx = ln(x)−〈ln(x)〉, with x = (1+δg) and x = (1+κ/κ0)
for the galaxy and convergence fields respectively, and g̃x = gx/ωx
where ωx is the variance of the underlying Gaussian field ln(x).

The lognormal correlation coefficient rLN is given by

rLN =
〈gδgκ〉
ωδωκ

≡ ω2
δκ

ωδωκ
(11)

and |V | is the determinant of the covariance matrix

V =

(
ω2
δ ω2

δκ

ω2
δκ ω2

κ

)
. (12)

Note that rLN and V are defined in log-density space, and so rLN is
not the same as the (linear) Pearson correlation coefficient ρ. The
conditional probability

f(δg|κ) =
f(δg, κ)

f(δg)
(13)

=
wδ

(2π|V |)1/2
exp

[
− (g̃δ − rLNg̃κ)2

2(1− r2
LN)

]
. (14)

Since f(δg, κ) = f(κ)f(δg|κ) we can combine equations 9 and 13
to give the joint probability distribution function f(δg, κ). Includ-
ing the convolutions with Poisson shot noise and Gaussian shape
noise then gives

P (N,κ) =

∫ ∞
−1

∫ ∞
−κ0

1√
2πσn

exp
[
− (κ′ − κ)2

2σ2
n

]
f(κ)

× N̄N (1 + δg)
N

N !
e−N̄(1+δg)f(δg|κ)dδgdκ

′ (15)

3 THE DATA

This paper uses the DES Science Verfication (SV) galaxy and shape
catalogues. The SV data were gathered between November 2012
and February 2013, shortly after DECam (Flaugher et al. 2015)
commissioning, and before the beginning of the (five year) DES
survey proper in August 2013. The operation of the camera, survey

Figure 2. Redshift kernels of the observables considered in this paper: the
galaxy redshift distribution of the DES Benchmark galaxy sample using the
best-fit Skynet photo-z estimation (black line), and the lensing efficiency
function of the sources used to make the DES κmap (red line). Also shown
is the redshift distribution of the source galaxies (shaded region). Each is
shown with an arbitrary normalisation to make comparison easier.

planning, data analysis and reduction were all tested in preparation
for starting year one of DES itself. The SV goal was to reproduce
the properties of the full five-year DES survey over a much smaller
sky area.

Five optical filters (grizY ) are used, with exposure times of
90 seconds for griz and 45 seconds for Y . The final median depth
in our region of interest, per band, was g ∼ 24.0, r ∼ 23.9, i ∼
23.0 and z ∼ 22.3.

In total the SV data covered ∼ 250 deg2 at close to the nom-
inal depth of the full DES survey. The observing footprint was di-
vided into regions to maximise overlap with other surveys and with
several small fields used for SNe searches.

In this paper we concentrate on a large contiguous region
of ∼139 deg2 called the SPT-E field due to its overlap with the
South Pole Telescope CMB survey. This amount of contiguous data
makes the SV SPT-E field a powerful data set in its own right,
particularly for weak gravitational lensing where it rivals the full
CFHTLenS (Erben et al. 2013) and is only slightly shallower.

3.1 DES Galaxy Sample

We use a particular subset of the DES SV galaxy catalogue known
as the “Benchmark” sample (Crocce et al. 2015). First a catalogue
of galaxies suitable for LSS analysis was constructed from the SV
data and dubbed the “Gold” sample (Rykoff et al. 2016). Objects
were included if detected in all five of the DES photometric bands.
This covered ∼244 deg2, restricted to dec > −61 to avoid the
Large Magellenic Cloud and R Doradus regions. In addition the
Gold catalogue included masking of satellite trails and other ar-
tifacts, removal of regions where colors are severely affected by
stray light and the application of additional stellar locus correction
(Kelly et al. 2014).

From this Gold sample, the Benchmark sample was selected
for cosmological analysis by imposing the additional conditions:

• 18.0 < i < 22.5
• 0 < g − r < 3, 0 < r − i < 2 and 0 < i− z < 3.
• wavg spread model > 0.003 (star-galaxy separation)
• 60 < ra < 95 and −62 < dec < −40 (SPT-E),

where i refers to SExtractor’s MAG_AUTO quantity. The cuts
on position restrict our analysis to the SPT-E region. The redshifts
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Lognormality of DES galaxies and weak lensing convergence 5

used in this paper come from the Skynet photo-z pipeline (Bonnett
et al. 2015, Graff & Feroz 2013). The galaxy redshift distribution is
shown in figure 2. The redshift range we use throughout this paper
is 0.1 < z < 1.5, chosen as in this region the galaxy redshift
distribution overlaps with the lensing efficiency function used to
make the DES κWL map (see next section).

3.2 DES κ Map

Shear measurement on DES SV galaxy images was performed with
two independent pipelines: IM3SHAPE1 (Zuntz et al. 2013) and NG-
MIX2 (Sheldon 2014).

Extensive testing of both codes was carried out by the DES
collaboration (see Jarvis et al. 2015 for details) and both pipelines
passed all requirement tests for measurement of cosmic shear with
the SV data set. A number of cuts were applied to both catalogues
to remove stars, spurious detections, poor measurements and other
effects that could bias shear measurement; these are also described
in Jarvis et al. (2015).

Shear measurements for a given galaxy are headless vectors
and the cosmic shear field is therefore a spin-2 quantity. To al-
low us to perform our CiC analysis on a scalar quantity we work
with maps of weak lensing convergence, κ, a spin-0 field. This
κ-reconstruction was performed using the Kaiser-Squires method
(Kaiser & Squires 1993), and the production and initial analysis of
these κ maps is described in detail in Vikram et al. (2015).

The Kaiser-Squires reconstruction method uses the relation of
the Fourier transform of the observed shear, γ̂, to that of the con-
vergence, κ̂,

κ̂` = D∗` γ̂`, (16)

D` =
`21 − `22 + 2i`1`2

|`|2 , (17)

where `i are the Fourier counterparts of the angular coordinates,
θi, i = 1, 2. The inverse Fourier transform of equation 16 gives
the convergence for the observed field in real space. In the absence
of noise, systematics and masking, the convergence will be a real
(spin-0) quantity. In reality these effects produce a non-zero imag-
inary component. It is most convenient to express the real part of
the convergence map as a map of curl free E-modes, and the imag-
inary part as divergence free B-modes. The κ maps have pixels of
size 2′. For use in this analysis the original flat sky κ maps are
transformed into HEALPix (Gorski et al. 2005) maps at resolution
Nside=4096. This is done by dividing each pixel of the flat sky maps
into 25 sub-pixels, and creating a HEALPix map by combining
these sub-pixels. This procedure reduces inaccuracies in changing
from one mapping system to another, and in tests gives the same
angular power spectrum measurements as the flat sky map to well
within the errors.

The source galaxy selection used to construct the κ map used
in this paper took galaxies with redshifts in the range 0.6 < z <
1.3. The resulting redshift efficiency function is shown in figure 2.
The lensing efficiency function peaks at z ∼ 0.3, and our selection
of galaxies at 0.1 < z < 0.5 overlaps significantly with the range
of redshifts to which the κ map is sensitive.

In addition to the E-mode κ map we make use of a number

1 The open source code can be downloaded at:
https://bitbucket.org/joezuntz/im3shape/
2 The open source code can be downloaded at:
https://github.com/esheldon/ngmix

Figure 3. Standard deviations of the κE , κB signal (magenta) and 100
realisations in which the shears have been randomised (blue) at a cell size
of 20′. The random realisations of κE give an estimate of the shape noise
contribution to κE ; this accounts for 80% of the κE signal. The κB signal
is also a good estimate of the shape noise, with the standard deviation of
the κB signal agreeing with the rms standard deviation of κE random re-
alisations within 2%. These standard deviations are calculated via CiC and
errors are from jackknife sampling.

of other products made in the course of the DES mass-mapping
analysis. A B-mode map was constructed by rotating the measured
galaxy ellipticities by 45 degrees. The physical process of weak
gravitational lensing does not induce B-modes in the convergence
field so the B-mode map is a test of systematic effects in our ob-
servations, shear measurement and κ-reconstruction; it should be
consistent with zero within our reconstruction noise. We will refer
to the B-mode reconstructed map as κB .

In addition to the E- and B-mode maps we also make use
of a series of noise-only realisations, made by taking the galaxy
shape catalogue and rotating the measured shape of each galaxy
by some random angle. κ maps were then constructed from each
randomised catalogue in the usual way. This has the effect of de-
stroying all cosmological information in the resulting maps, while
retaining the same noise properties as the data (because the distri-
bution of galaxies on the sky and in redshift remains the same, as
does the overall ellipticity distribution across the sample). 100 of
these noise realisations were made and we use them to estimate the
noise contribution in our measurement, as described in more detail
in section 2.2.

Fig. 3 shows the standard deviations of the κE , κB signal (ma-
genta) and 100 noise realisations (blue) for a cell size of 20′. This
shows that the shape noise (given by the random realisations of κE)
accounts for 80% of the κE signal, underlining the importance of
accounting for shape noise in our modelling (as described in section
3.2). The shape noise dominates the signal most at small scales, ac-
counting for 89% of the signal at 10′ and dropping to 64% at 40′.
We can see that the κB signal is also a good estimate of the shape
noise, with the standard deviation of the κB signal agreeing with
the rms standard deviation of κE random realisations within 2%.
These standard deviations are calculated via CiC (see section 6.3
for a prescription for calculating moments from CiC) and errors
are from jackknife sampling (see section 4).
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Figure 4. Distribution of MICE κWL at an angular scale of 10′when DES-
like shape noise is added. An estimate of the width of the shape noise dis-
tribution is obtained by fitting a Gaussian to the 100 random realisations
of DES κWL. A noise contribution drawn from a Gaussian of this width is
added to MICE κWL at the level of the cells used to construct the CiC dis-
tribution. The darker, narrow histogram is that of the shape noise free MICE
κWL; the lighter histogram shows the distribution once the Gaussian shape
noise is added; the black dashed line shows the observed distribution of
DES κWL. The Gaussian width of the DES shape noise estimate, σn is
0.0099 at this scale, which is 89% of the width of the resulting noisy MICE
κWL distribution.

3.3 MICE Simulations

We validate our measurement of CiC from DES SV data using a
special set of mock catalogues produced from N-body simulations
for the DES collaboration. These come from the Marenostrum In-
stitut de Ciències de l’Espai Grand Challenges (MICE-GC here-
after) lightcone N-body simulation and associated halo catalogue.

These simulations have been used to produce mock galaxy cat-
alogues for ∼200 million galaxies over 5000 deg2 up to a redshift
of z = 1.4. There are also shear estimates for each galaxy made
by ray-tracing through the N-body simulations. Every galaxy has a
κWL value assigned from the integrated dark matter field.

The simulations are made with 40963 particles of mass
2927M�h

−1 in a box of side 3072 h−1Mpc. The MICE-GC has
an assumed flat ΛCDM cosmology: Ωm = 0.25, Ωb = 0.044,
ΩΛ = 0.75, σ8 = 0.8, h = 0.7, ns = 0.95. The MICE-GC DES
mocks approximately reproduce the magnitude limits of the DES
survey and are complete down to apparent magnitude i < 22.0 at
z = 0.5.

For use in this paper we have reduced the effective number
densities in the mock galaxy and shear catalogues to reflect the
statistics of the DES SV samples as well as normalising the redshift
to reflect the distribution shown in Fig. 2. Each mock catalogue is
projected onto a HEALPix map of Nside = 8192, which is then
degraded to match the resolution of our data maps where appropri-
ate.

In order to be able to compare the distribution of DES κWL

(which we know has a significant shape noise contribution) with
simualtions, we create a second MICE κWL sample that has DES-
like shape noise added. An estimate of the width of the shape noise
distribution is obtained by fitting a Gaussian to the 100 random
realisations of DES κWL. A noise contribution drawn from a Gaus-

sian of this width is added to MICE κWL at the level of the cells
used to construct the CiC distribution.

Figure 4 shows the effect of adding shape noise to MICE κWL

in this way at an angular scale of 10′. The darker, narrow histogram
is that of the shape noise free MICE κWL; the lighter histogram
shows the distribution once the Gaussian shape noise is added; and
the black dashed line shows the distribution of DES κWL. At a
smoothing scale of 10 arcmin the Gaussian width of the DES shape
noise estimate is 0.0099, which is 89% of the width of the resulting
noisy MICE κWL distribution; this falls to 63% at 40′.

4 METHOD

4.1 Constructing PDFs via Counts-in-Cells

The CiC approach is a relatively simple way to measure the distri-
bution of galaxies in a survey, but it is a surprisingly powerful tool.
A general CiC distribution for galaxies can be denoted by f(N,V ),
the probability of finding N galaxies in a volume of space V . This
can be a 3D volume or, as is the case in this paper, a 2D area on
the sky where we count over a population projected along the line
of sight. Repeating this procedure with cells of varying radii, r,
gives us the distribution fr(N), where the moments of fr(N) are
related to the volume integrals of the correlation functions of our
underlying observable (Peebles 1980; Fry 1985; Saslaw 2000; Fry
& Gaztanaga 1994).

We perform our CiC analysis on the galaxy density contrast
and weak lensing covergence maps with HEALPix pixelisation of
resolution Nside = 4096, which corresponds to an average pixel
size of 0.9′. For galaxies, to construct the PDF we sum the galaxy
counts,N , inside 2D circular cells of fixed radius r in the range 10–
40′. At the median redshift, z = 0.3, of the sources considered this
corresponds to physical scales of 3–10 Mpc. The smallest cells used
are 10 times larger than the HEALPix pixels in order to minimise
edge effects, and this also avoids any difference in counts across
our survey area due to the changing geometry of the HEALPix
pixels (see Appendix C for a discussion of this assumption). We
chose to use randomly positioned circular cells rather than using the
HEALPix pixels themselves as this allows us to repeat the analysis
straightforwardly at any smoothing scale, rather than using only the
fixed scales of HEALPix pixels. The criterion for accepting a cell
is that 80% of its area should fall in unmasked regions (again see
Appendix C for discussion of this choice). We want to use enough
cells that all pixels in the map are covered at least once, and find
that this is achieved when the total area of the cells is 20 times that
of the survey. We use a coverage of 100 times the total area.

Histograms of the counts give us the distribution f(N), and
this procedure is repeated with cells of different radii to obtain the
distribution fr(N). Double counting of pixels is accounted for by
jackknife errors on the height of each bin in the resulting histogram
of counts. We divide the survey area into 152 approximately equal
area (1 deg2) jackknife patches. For a fixed set of randomly gener-
ated cells, and removing one patch at a time, we re-make the galaxy
and convergence PDFs and re-calculate the statistics of interest in
order to produce covariances.

We repeat our CiC analysis on the DES reconstructed κmaps.
The ‘count’ in each cell is now the average of the weak lensing
convergence κ in pixels contained in that cell.

In Appendix B we test the impact of spatially varying system-
atic effects on the DES δg and κWL CiC distributions.

It is straightforward to generalise our CiC method to more than
one observable. We simply throw the same circles onto each map
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Figure 5. Correlation matrix of bin heights for a histogram of DES κWL,
at a smoothing scale of 10′. Derived from jackknife sampling of the DES
κWL map.

(using the same mask for each), allowing us to compare counts at
the same position for different observables.

4.2 Fitting the PDFs

We fit the lognormal models described in section 2 to these distribu-
tions. For the MICE and DES galaxy density contrast distributions
we fit a Poisson sampled lognormal using equation 3. For MICE
κWL, which has no shape noise, we fit a plain lognormal model
(equation 6). For the κWL distributions which include shape noise
(i.e. DES κWL and the MICE κWL to which we add shape noise),
we use equation 9.

The histogram bins in δg or κWL are correlated. This is
demonstrated in figure 5, which shows the correlation matrix of
bin heights of DES κWL at a smoothing scale of 10′. In fitting the
lognormal model we take into account these correlations by min-
imising

χ2 = (~f − ~d)C−1(~f − ~d)′. (18)

Here f is the data vector of the lognormal fit at the bin centres,
d is the data vector of bin heights, and C is the covariance matrix.
We remove weak eigenvectors of the covariance matrix via singular
value decomposition.

5 VALIDATING METHODS ON MICE

In this section we verify the methods used to test the lognormality
of DES δg and κWL fields. After checking that the MICE δg field
is lognormal as we would expect, we see if this is true of the noise-
less convergence field.

To enable easier comparison with the DES κWL results we
also look at the distribution of the simulation κWL for the MICE
sample with number of galaxies and n(z) matched to our DES sam-
ple, and with DES-like shape noise added. We then look at the joint
distribution of δg and κWL, for the cases with and without shape
noise.

As an additional check of the validity of the lognormal model,
we compare the second moments of the distributions as calculated
via CiC with those derived under the assumption of lognormality.

5.1 Testing Lognormality of MICE Density and Convergence
Fields

5.1.1 One-dimensional PDFs and log-normal fits

We first construct a simple histogram of δg from the CiC to esti-
mate the 1D PDF of δg . The histogram uses 50 bins and we calcu-
late jackknife errors on the bin heights as described in the previous
section. The result for cells of radius of 10, 15 and 30′ is shown in
the upper panel of Fig. 6. We fit a Poisson sampled lognormal dis-
tribution as described in eqn. 1 with w as the single free parameter.
The best-fit lognormal, which minimises χ2, is shown as a solid
black line and the best fit Gaussian (magenta) is shown for com-
parison. At a cell size of 10′ (corresponding to about 3 Mpc at the
median redshift z = 0.3) it is clear that the lognormal model fits
the data better, reflecting the non-linear clustering at this scale. The
counting of information inside a cell can be thought of as a form of
smoothing where the cells form a top-hat filter with a fixed size. As
the size of our cells increases we average information on increas-
ingly large scales and lose sensitivity to the effects of non-linear
clustering on small scales.

The lognormal distribution is designed to capture some of the
information present as a result of non-linear evolution, so we would
expect it to become less pronounced as the effective smoothing
scale increases. This is indeed the case: at a cell radius of 10′ the
lognormal model is highly favoured, with a χ2/DOF = 1.13,
compared to 9.66 for the Gaussian. At a cell size 30′ (correspond-
ing to a physical scale of 8Mpc at the median redshift) the distribu-
tion has become much more Gaussian with best-fit χ2/DOF for the
Gaussian model now 1.50. The lognormal model is still favoured at
this scale, with best-fit χ2/DOF = 0.95.

The result for the MICE κWL PDF is shown in the middle
panel of fig. 6. Since there is no shape noise in the simulation we fit
a plain lognormal, shown by the black line. As discussed in section
2.2, in order to fit a lognormal model to κWL one must assign a
value to κ0, the minimum convergence parameter in equation 6. At
10′ we jointly fit κ0 and the lognormal width in equation 6, finding
best-fit κ0 = 0.021. For larger scales we find that it is not possible
to jointly constrain κ0 and the width of the lognormal as they are
degenerate. We therefore use the theoretically derived κ0 = 0.050,
described in section 2.2.

Since the convergence is the weighted sum of the mass fluctu-
ations along the line of sight we expect it to be only approximately
lognormal. At a smoothing scale of 10′ the lognormal is a good fit,
with χ2/DOF= 1.19, and it is significantly preferred to the Gaus-
sian model, which has a best-fit χ2/DOF= 14.43. This lognormal-
ity of κWL at small scales is in line with Taruya et al. (2002) who
found that a lognormal model was a good fit to simulated κWL at
angular scales of 2 - 4′. Increasing the cell radius above 10′ re-
moves the clear preference for the lognormal, and the lognormal
and Gaussian models fit the data equally well at cell radii of 30′.
The fixed, theoretically derived κ0 = 0.050 allows the lognormal
model with a single free parameter to fit the distribution well at 15′,
but at larger cell radii this model does very slightly worse than the
Guassian model. This suggests that this value of k0 may not be a
good estimate for the minimum κ in the CiC PDF for larger cells.
This makes sense as this κ0 corresponds a pure void along the line
of sight, which is a decreasingly likely observation as the cell radius
increases.

The final row of figure 6 shows the distribution of κ using
the sub-sample of MICE with DES-like galaxy density and n(z),
and to which DES-like shape noise has been added, as described in
section 3.3. The shape noise dominates the resulting distribution,
particularly at smaller scales. The width of the distribution of shape
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Figure 6. UPPER ROW: measured 1D PDF of MICE galaxies at a smoothing scales of 10, 15 and 30′. The Poisson sampled lognormal fit (black) provides
a better fit to the galaxy CiC distribution than the Gaussian (magenta) at a scale of 10′. The distribution becomes increasingly Gaussian at larger scales.
MIDDLE ROW: same as above but for the MICE κWL PDF. Again the lognormal provides a good fit at the smallest scale, with the κWL distribution
becoming more Gaussian at larger scales. BOTTOM ROW: Fits to κWL using the sub-sample of MICE with DES-like galaxy density and n(z), and to which
DES-like shape noise has been added. This shape noise makes the distribution of κWL more Gaussian at all scales. All χ2 are per degree of freedom.

noise is 74% of the width of the noisy κ distribution at 40′, and at
10′ it accounts for 89%. We model the noisy κ distribution with a
lognormal convolved with Gaussian noise as described in section
2.2, using equation 9. Again we find that it is not possible to jointly
constrain κ0 and the width of the lognormal at scales above 10′

as they are degenerate. We therefore use the theoretically derived
κ0 = 0.049. It can be seen from figure 6 that at all scales the shape
noise makes the noisy κ distribution much more Gaussian.

Despite the low signal to noise, at 10′ the lognormal convolved

with Gaussian noise provides a better fit than the simple Gaussian,
with χ2/DOF= 1.06 and 1.56 respectively. At scales larger than
this the Gaussian model performs as well as the lognormal. As with
the noise free convergence distribution, the theoretically derived κ0

seems to be a less suitable choice at larger scales as the Gaussian
model provides a better fit for scales above 30′.
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5.1.2 Joint galaxy-convergence distribution

In this sub-section we study the joint distribution of galaxy over-
densities and weak lensing convergence and determine to what ex-
tent it can be described as a bivariate lognormal distribution. We
look at joint distributions using both the full MICE sample, and the
subsample with DES-like galaxy density and n(z) and the addition
of DES-like shape noise. As in the 1D case, the full sample with
higher galaxy density allows us to better capture any lognormal be-
haviour, and the DES-like sample allows us to compare the results
for DES data given in the next section with simulations.

We can make a simple quantitative estimate of the relative cor-
relation of δg and κWL by calculating the Pearson product-moment
correlation coefficient, r, for the joint PDF, where

ρX,Y =
Cov(X,Y )

σXσY
=

〈
(X − X̄)(Y − Ȳ )

〉
σXσY

. (19)

We begin with the joint distribution of δg and κWL with no
shape noise, which is shown in the upper panel of Fig. 7 for a
smoothing scale of 15′. The blue contours in the top right section
of this plot show the joint PDF, and the dashed magenta contours
show the bivariate lognormal fit. Since there is no shape noise in
this case the bivariate fit is given by equation 15 but omitting the
Gaussian convolution. We expect the correlation coefficient ρ to be
high (close to one) since the galaxies considered are responsible
for the lensing. This is indeed what we see: the Pearson correla-
tion coefficient is 0.81 at a smoothing scale 10′ and 0.89 at 40′. We
do not see full correlation because the relevant window functions -
the lensing efficiency function of the source sample and the galaxy
redshift distribution of the galaxy sample - do not overlap precisely.

The lower panel of this figure shows the case where MICE
κWL has had shape noise added. This noise reduces the correlation
of the κWL with δg , smearing out the joint distribution (shown on
the top right of the figure) versus the shape noise free case. The
Pearson correlation coefficient is reduced to 0.45.

5.2 Comparison of Moments

We can use the second moments to check the validity of the log-
normal modelling by comparing the moments derived directly from
the CiC with those derived by fitting a lognormal model to the CiC
PDF. The second moments of the MICE galaxy and convergence
fields 〈δ2

g〉 and 〈κ2〉 can be calculated from the CiC (as described
in Appendix A). The moments derived under lognormal modelling
are given by equations 2 and 8.

First we calculate the variance of the MICE galaxy PDF,
shown in the first panel of Fig. 8. Blue data points show the ra-
tio of the variance

〈
δ2
g

〉
from fitting a lognormal to the CiC PDF

and that calculated directly from the CiC. Errors on
〈
δ2
g

〉
directly

from CiC are produced by jackknife sampling; errors on the
〈
δ2
g

〉
derived from the lognormal fit are from the 1σ width of the likeli-
hood of the lognormal width.

The lognormal model gives a good estimate of the variance of
the MICE galaxy density contrast distribution (with Poisson shot
noise accounted for) at all scales. It gives a better estimate of the
variance than a Gaussian model at all scales, and particularly at 10′.
The lognormal model also gives a good estimate of the variance of
the weak lensing convergence distribution at scales up to 20′. The
poorer estimates at 30 and 40′ are due to the fact that we fix κmin
to the theory value at these scales.

These results suggest that within the ranges of scales dis-
cussed, the lognormal model can be used to estimate the two point
statistics of both the galaxy density contrast and weak lensing con-
vergence distributions to reasonable accuracy in these simulations.

Figure 7. UPPER PANEL: Joint CiC distribution of weak lensing con-
vergence and galaxy density contrast for MICE simulation at a smoothing
scale of 15′. The top right plot shows the bivariate lognormal fit to MICE
simulations. Contours for the simulation are given by the solid blue lines,
with dashed magenta contours for the fit. Also shown are the 1D PDFs for
1+ δg and 1+ κ̂WL individually. PDFs are calculated via the CiC method
with cells of radius 15′. As in the rest of this paper, galaxies are selected
over the redshift range 0.1 < z < 0.5 and WL sources are restricted to
the range 0.6 < z < 1.3. This joint distribution has a Pearson correlation
coefficient of r = 0.83. LOWER PANEL: Same but with DES-like shape
noise added to κWL. The Pearson correlation coefficient drops to 0.45 with
the addition of this shape noise.
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Figure 8. UPPER PANEL: comparison of second moments of MICE
galaxy density contrast as a function of smoothing scale, directly measured
via CiC and from lognormal and Gaussian fits to the CiC PDF. Blue data
points show the ratio of the variance

〈
δ2
g

〉
from our fits to the 1D lognormal

distribution to that calculated directly from the CiC PDF; black data points
show the same but for the Gaussian fit. Data points are offset slightly in
scale for clarity. LOWER PANEL: same but for shape noise free MICE
weak lensing convergence.

6 TESTING LOGNORMALITY OF DES DENSITY AND
CONVERGENCE FIELDS

Here we repeat the analysis of the previous section with DES
galaxy and convergence maps, looking first distributions individ-
ually and then at their joint distribution.

6.1 One-dimensional PDFs and log-normal fits

Fig. 9 shows 1D CiC PDFs for the DES galaxy density contrast (top
row) and κWL (second row) fields for different cell radii. The log-
normal fit is again shown in black, and for comparison a Gaussian
fit is shown in magenta.

For the δg PDF at 10′ the lognormal model is clearly favoured,
with χ2/DOF= 1.28 compared to 6.55 for the Gaussian model.
This confirms the expected lognormal behaviour at non-linear
scales, indicating that our CiC procedure is capturing non-linear
clustering information beyond the Gaussian assumption at smaller
radii. As in the simulations the δg PDFs clearly appear more Gaus-
sian at larger cell radii, although the lognormal model still provides
a better fit than the Gaussian even at 30′, with χ2/DOF of 0.97 and
1.82 respectively.

The best-fit values of the free parameters of the lognormal fits
to the DES galaxy density contrast distribution, the χ2, the number
of degrees of freedom (DOF) and the second moment of the best-
fit lognormal PDF are given in table 1, for smoothing scales of 10 -
40′.

The second row of Fig. 9 shows the DES κWL distribution. We
find that it is possible to jointly constrain κ0, the minimum conver-
gence parameter in equation 6, and the width of the lognormal at

r, arcmin σ χ2
G χ2

LN DOF 〈δgδg〉 × 10−2

10 0.184 72.05 14.08 11 3.44± 0.30

15 0.156 27.61 15.18 11 2.46± 0.28

20 0.146 21.48 12.36 12 2.15± 0.29
30 0.126 30.94 16.49 17 1.60± 0.16

40 0.122 22.88 18.48 22 1.26± 0.17

Table 1. Best-fit parameters and derived statistics from lognormal fits to
CiC PDFs of DES galaxy density contrast, for varying cell radii. First first
column gives the cell radius, and the second column is the width of the best
fitting Poisson-sampled lognormal. The following columns are the mini-
mum χ2 for Gaussian and Poisson sampled lognormal fits, and the number
of degrees of freedom. The final column is the second moment of the best-
fitting lognormal PDF, derived from the lognormal width, with 1σ errors
given by the likelihood of the lognormal width.

r, arcmin κ0 σ χ2
G χ2

LN DOF 〈κκ〉 × 10−5

10 0.021 0.235 18.41 11.10 10 2.44± 0.45
15 0.017 0.248 19.17 9.09 9 1.59± 0.34

20 0.016 0.238 10.92 4.63 10 1.46± 0.29

30 0.009 0.314 11.66 6.27 11 0.84± 0.21
40 0.008 0.300 14.82 8.58 13 0.71± 0.19

Table 2. Same as Table 1 but for DES weak lensing convergence. The log-
normal fit accounts for shape noise, so the statistics quoted are for the
de-noised κWL distribution. The additional information given vs. Table
1 , in the second column, is the best-fit minimum convergence parameter
κ0 = −κmin.

all smoothing scales. The best-fit values of κ0 as well as the log-
normal width σ, best-fit χ2 and the second moment of the best-fit
lognormal PDF are given in table 2. The best-fit κ0 = 0.021 and
σ = 0.235 at cell radius 10′ are in good agreement with the results
from the MICE simulation at this scale, which are 0.023 and 0.226
respectively. Note that for larger scales we fix κ0 at the theory value
of 0.05 in the simulations, so would not expect close agreement of
the best-fit lognormal width with that of the data at the these scales.

The κWL distribution appears quite Gaussian at all scales due
to the Gaussian shape noise, the distribution of which has a width
of 70-90% of the width of the κWL distribution. Despite this low
signal to noise, as in the case of simulated κWL, we find that the
lognormal model with Gaussian shape noise (black line) provides
a better fit than the simple Gaussian model (magenta line) at small
scales. At 10′ the lognormal model has χ2 = 1.11 and the Gaussian
1.84, corresponding to p-values of 0.35 for the lognormal model
(i.e. within one σ) and 0.07 for the Gaussian model. At 15′ the
advantage of the lognormal model over the Gaussian is clear, with
best-fit χ2/DOF of 1.01 and 2.13 respectively. At scales larger than
this the Gaussian model provides a good fit with best-fit χ2/DOF
of 1.09, 1.06 and 1.14 at 20, 30 and 40′. The lognormal model is
over-fitting the data at these scales, with χ2/DOF of 0.46, 0.57 and
0.66 at the same scales, so the Gaussian model is sufficient in this
regime.

6.2 Joint galaxy-convergence distribution

The joint distribution of DES galaxy density contrast and weak
lensing convergence data at an angular scale of 15′ is shown in the
top right panel of fig. 10. The data are shown by the blue contours,
and the bivariate fit is shown by the dashed magenta contours. The
individual 1D PDFs for 1 + δg and 1 + κ/κ0 are also shown.
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Figure 9. UPPER ROW: measured 1D PDF of DES galaxies at a smoothing scales of 10, 15 and 30′. At 10′ the Poisson sampled log-normal fit (black)
provides a much better fit than the Gaussian (magenta), demonstrating the log-normality of the galaxy CiC distribution at this scale. At larger scales the
distribution becomes more Gaussian. LOWER ROW: same but for κWL. Here the lognormal model includes Gaussian shape noise, which provides a good
fit at all scales. Error bars on the counts PDFs are jackknife errors. All χ2 are per degree of freedom.

Before we account for shot noise in the galaxies and shape
noise in the convergence, the galaxy counts and κWL have a Pear-
son correlation coefficient of 0.45. This is in line with what we see
in the MICE simulations once DES-like shape noise is added (bot-
tom row of Fig. 7).

Once we account for these sources of noise, the correlation
coefficient is 0.82, again in line with the noise-free MICE simula-
tions, where the Pearson correlation coefficient was 0.83 (top row
of Fig. 7).

6.3 Comparison of Second Moments

In this section we check the validity of the lognormal model by
comparing second moments derived from the log-normal assump-
tion with those measured directly from the data.

The variance of the DES galaxy PDF is shown in the first panel
of Fig. 11. Blue data points show the ratio of the variance

〈
δ2
g

〉
from

our fits to the 1D lognormal distribution to that calculated directly
from the CiC PDF. Errors on

〈
κ2
〉

directly from CiC are produced
by jackknife sampling; errors on

〈
κ2
〉

derived from the lognormal
fit are from the 1σ width of the likelihood of the lognormal width.
The second panels shows the same for DES κWL. The lognormal
model with appropriate noise contribution gives an estimate of the
variance that is consistent with that calculated directly from the
CiC, for both galaxies and κWL, at all scales from 10 - 40′.

For the galaxy density contrast distribution, the Gaussian
model provides a less accurate estimate of the variance calculated

directly from the CiC at all scales. For the convergence distribution
the Gaussian model again gives variance estimates less accurate
than the lognormal model at all scales.

For both galaxies and weak lensing convergence, the Gaussian
and lognormal approaches underestimate the variance as compared
to measuring it directly from the CiC. This is because in construct-
ing the CiC PDF to which we fit the lognormal model, we bin the
cell counts. We account for noise via singular value decomposition,
and one of the things this removes is contributions to the fit from
the outermost bins, which have very few cell counts. This makes the
effective distribution narrower, with lower second moment, than if
these noisy data points were included. In calculating the variance
directly from the CiC (as described in Appendix A) this binning is
not necessary and all cells, including those with the most extreme
values of δg or κWL, are included in the calculation, resulting in a
larger variance in δg or κWL. This effect is less stark in the MICE
simulations where there are a greater number of galaxies than in the
DES data, so fewer bins are discarded due to low counts of cells.
This underestimation of the variance, however, is not significant
within the errors.

7 DISCUSSION

We have tested the lognormality of the DES galaxy density contrast
and weak lensing convergence PDFs at angular scales of 10 - 40′

(corresponding to physical scales of 3 - 10 Mpc at median redshift
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r, arcmin 〈δgδg〉 〈κκ〉 〈 κκ〉SN

10 (3.70± 0.22)× 10−2 (2.52± 0.41)× 10−5 (1.00± 0.03)× 10−4

15 (2.76± 0.20)× 10−2 (1.69± 0.32)× 10−5 (4.68± 0.18)× 10−5

20 (2.26± 0.18)× 10−2 (1.39± 0.25)× 10−5 (2.60± 0.16)× 10−5

30 (1.65± 0.14)× 10−2 (9.84± 1.66)× 10−6 (1.18± 0.06)× 10−5

40 (1.38± 0.16)× 10−2 (8.40± 1.30)× 10−6 (6.75± 0.44)× 10−6

Table 3. Second moments of DES galaxy density contrast and weak lensing convergence, as calculated by CiC, for different cell radii. Shot and shape noise
have been accounted for, and these are the de-noised moments. The final column gives our estimate the shape noise of the weak lensing convergence. This is
derived from the 100 realisations of the κWL map with randomised shears, which we find to agree with the second moment of the κWL B-mode within 2%.

Figure 10. Joint distribution of weak lensing convergence and galaxy den-
sity contrast for DES at smoothing scale 15′. Upper right panel: Fit of bi-
variate lognormal to DES SV data. Contours for the data are given by the
solid blue lines, with dashed magenta contours for the fit. Also shown are
the individual 1D PDFs for 1 + δg and 1 + κ̂WL. DES Benchmark galax-
ies are used, selecting the redshift range 0.1 < z < 0.5 and WL sources
from the imshape catalogue are used over the range 0.6 < z < 1.3. All
redshifts are best-fits from the Skynet pipeline. PDFs are calculated via the
CiC method with cells of radius 15′. This joint distribution has a Pearson
correlation coefficient of r = 0.45.

z = 0.3). In the context of this work, estimating the CiC PDF
is a way of quantifying the non-linear growth of mass and galaxy
fluctuations, as well as the visual impression of comparing the κWL

mass maps with the galaxy distribution on the same patch of the
sky. It is also a test of systematics. Our main findings are as follows:

• In agreement with many earlier papers we find that the 1D
DES galaxy PDF is well fitted by a lognormal model, taking into
account Poisson shot noise, with best-fit χ2/DOF= 1.28 vs. 6.55
for a Gaussian model at a scale of 10′.
• In modelling the weak lensing convergence distribution it is

important to account for shape noise since the width of this noise is
a significant fraction (70-90%) of the width of the κWL signal. We
find that the shape noise estimate derived from the 100 realisations
of DES κWL in which the shears have been randomised agrees with

Figure 11. Same as figure 8, but for DES galaxies (upper panel) and con-
vergence (lower panel).

that of the κB mode within 2% at all scales from 10 to 40′, and
that the distribution of the shape noise can be well modeled by a
Gaussian PDF. This allows us to model the κWL distribution with
a lognormal convolved with Gaussian PDF. In future work it would
be interesting to investigate the spatial correlation of this noise.
• The convergence field is not expected to be exactly lognormal

even if the mass density contrast field is, as it is a weighted projec-
tion of the mass density field along the line of sight. We find how-
ever, in agreement with previous work on simulations, that the 1D
κWL PDF is well fitted by a lognormal model, taking into account
shape noise. This is the first such measurement on data. The best-fit
χ2/DOF for the lognormal model is 1.11, compared to 1.84 for a
Gaussian model, corresponding to p-values of 0.35 (i.e. within one
σ) and 0.07 respectively. At scales above 15′ the Gaussian model
is a sufficient approximation.
• The bivariate (κWL, δg) PDF is also well fitted by a bivariate

lognormal.
• De-noised second moments derived via the lognormal fit are

consistent with variances derived directly from the data up to scales
of 40′, for both the DES galaxy density contrast and weak lensing
convergence distributions.
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This pilot study could be extended to much larger areas with
weak lensing surveys such as the full DES (5000 deg2) survey,
LSST (20,000 deg2) and Euclid (15,000 deg2). In this work we
have tested the lognormality of the κWL PDF; with the higher sig-
nal/noise that future surveys will provide it might be possible to
deduce from the observed κWL PDF whether or not the underlying
matter density field is lognormal - essentially inverting equation 4.

In this work we have used the CiC to probe lognormality, but
there is a wealth of information contained within it that could be ex-
ploited in future work. The CiC contains the full PDF so as well as
the variance, higher order moments such as skewness and kurtosis
can also be extracted.

The method used in this work, of constructing PDFs via CiC
and cross correlating them, could be used to extract information on
galaxy bias and to derive cosmological parameters. It could also be
interesting to repeat this analysis using manipulations of the shear
field than other κWL that avoid the reconstruction noise due to the
Kaiser Squires method.

Quantifying P (κWL) will be important for the emerging field
of mass reconstruction using κWL, since it is required as a prior in-
put for this process. We have demonstrated that a lognormal model
is a better choice than a Gaussian model at scales of 10 - 20′. As
well as the improved ability to capture non-linear behaviour versus
a Gaussian model, the lognormal model still allows fast production
of, for example, simulated realisations of the convergence field for
testing, and covariance matrices.

APPENDIX A: MEASUREMENT OF MOMENTS FROM
COUNTS-IN-CELLS

In section 5 we use the second moment, as calculated via CiC, as a
check that the lognormal model accurately recovers the character-
istics of the galaxy and κWL distributions. In this section we show
how these are calculated for the galaxy and weak lensing conver-
gence distributions, including how noise is accounted for.

Moments of a distribution are easily obtained via the CiC tech-
nique, with the pth central moment of the distribution of the num-
ber of objects n at angular scale θ given by:

mp(θ) =
1

N(θ)

nc(θ)∑
i=1

(xi(θ)− x̄)p (A1)

where N(θ) is the number of cells of angular size θ used, x̄ is the
mean count of observable x in a cell, and xi is the count in cell i.
For the distribution of galaxies xi is the number of galaxies in a
cell, and for the convergence xi is the average κ within a cell.

The connected central moments µp(θ) can be derived using
the moment generating function (see 3.2.4 of Bernardeau et al.
2002 for a derivation and nice diagrammatic representation of the
connected moments). The second connected moment is equal to the
second central moment, µ2 = m2.

For the galaxy distribution, shot noise can be accounted for by
assuming that galaxies form a Poisson sampling of the underlying
matter density field:

P (λ) =

∞∑
n=0

λnP (n). (A2)

Taylor expanding this around λ = 1 gives 〈n(n − 1)...(n − p −

1)〉 = n̄pkp where kp is the pth moment of the local density distri-
bution. The ‘de-noised’ second moment is:

k2 = µ2 − n̄, (A3)

where n̄ is the mean number of galaxies in a cell. The area averaged
correlations are then given by

w̄p =
kp
n̄p
, (A4)

For both the MICE and DES galaxy distributions, the second
moment as calculated via CiC, with shot noise removed, is given
by equations A1 - A4.

For κWL, since there is no need to model shot noise, k2 =
µ2. The second moment for MICE κWL is then given by equation
A4. In the case of DES κ we need to remove shape noise. The
shape noise in the DES κWL map is estimated from the 100 noise
realisations, as discussed in section 3.2. Following Van Waerbeke
et al. 2013, we assume the de-noised second moment of DES κWL

is then given by

w̄2 = w̄2,data − w̄2,noise (A5)

where w̄2,noise is given by equations A1 - A4 (with k2 = µ2),
and w̄2,noise is the mean of the second moments measured via CiC
from each of the noise maps.

The second moment, estimated jointly from two distributions
becomes

m2(θ) =
1

N(θ)

nc(θ)∑
i=1

(nδ,i(θ)− n̄δ) (κi(θ)− κ̄) (A6)

= n̄δn̄κ(θ)〈δi(θ)κi(θ)〉 (A7)

APPENDIX B: SYSTEMATIC EFFECTS

We investigate the potential impact on our results of spatially
varying systematics. The systematics we consider are varying the
amount of air mass dependent on the distance of the observed
field from the zenith, exposure time, magnitude limit, atmospheric
seeing, and sky brightness. The values of these properties were
mapped across the DES-SV area as described in Leistedt et al.
(2015).

We compare PDFs of δg and κWL for the full samples used in
this work versus when the areas worst-affected by these systematics
are removed. We produce PDFs with the 20% of worst-affected
pixels masked, for each systematic in turn.

Figure B1 shows the resulting distributions. The top row
shows DES galaxy number density at cell radii of 10, 15, 30′ (blue
data points) with jackknife errors. Coloured lines show PDFs with
cuts for each systematic effect in turn. The lower panel shows the
fractional difference between the full sample and those with sys-
tematics cuts, with errors shown by the grey shaded region. The
same for DES κWL is shown in the bottom row.

Here we can see that the PDFs of the cut data are broadly
consistent with that of the full data, given the jackknife errors. For
DES galaxies, for each systematic effect at least 95% of the bin
heights after the cuts are made fall within the jackknife errors of
the original distribution, and all are within 1.5 sigma of the origi-
nal distribution. For DES κWL, at least 93% of the new bin heights
fall within the jackknife errors of the original distribution. All are
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Figure B1. UPPER ROW: PDF of DES galaxy number density at cell radii of 10, 15, 30′ (blue data points) with jackknife errors. Coloured lines show PDFs
with cuts for each systematic effect in turn. Lower panel shows the fractional difference between the full sample and those with systematics cuts, with errors
shown by the grey shaded region. LOWER ROW: Same but for DES κWL.

within 1.9 sigma of the original data points. We can see that the
effect of the systematics on the distribution increases with scale.
Importantly PDFs of the cut κWL data at scales below 20′, which
is where we detect lognormality of κWL, are completely consistent
with the original distributions, i.e. all of the new bin heights fall
within the errors of the original distribution. This simple test is re-
assuring and indicates that our lognormal fits to the DES δg and
κWL distributions are not likely to be affected by these systematic
effects.

APPENDIX C: TESTS OF SAMPLING METHODS

Our CiC analysis has made particular choices for cell size and dis-
tribution when accounting for the mask and creating the underly-
ing HEALPix maps. In this Appendix we test each of these as-
sumptions and demonstrate that the conclusions of our analysis are
robust to our methodological choices.

HEALPix tessellations are made up of pixels with equal area,
but not equal shape. Using circles that encompass several pixels
will reduce the effect of the different pixel shapes, more so the
larger the circles relative to the pixels. To check that the effect of
varying shapes is effectively mitigated in this way we measure the
area averaged 2-point correlation w̄2(θ) for DES galaxies at differ-
ent HEALPix resolutions (512, 1024, 2048, and 4096). Figure C1
shows that when the cells size is close to the pixel size the correla-
tion function is not smooth due to the effects of pixel shape. Once
the cells are several times larger than the average pixel separation
the correlation function becomes smooth, and the correlation func-

Figure C1. Second moment of MICE galaxy density contrast distribution
as a function of scale as calculated via CiC, using underlying HEALPix
maps with different resolutions. The HEALPix maps have nside (see main
text) 512, 1024, 2048, 4096 corresponding to pixels of sizes shown by the
solid circles. At scales approaching the pixel size edge effects are visible.

tions based on the different HEALPix resolutions converge. This
confirms that the method of using circular cells several times larger
than the pixel resolution does not suffer from the effects of pixel
shape, and that the underlying pixel resolution is not important as
long as the minimum cell size considered is sufficiently large.
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Figure C2. Left panel: Effect of the mask threshold (fraction of a cell that must be unmasked in order to be included in the analysis) on the resulting probability
distribution of MICE galaxies. Middle Panel: Effect of this threshold on the second moment. Right panel: The fraction of the cells randomly thrown that are
kept in the analysis, and, of those kept, the fraction of the data that comes from re-weighting these cells.

The other sampling assumption we test is the threshold at
which we decide to discard a randomly positioned cell because too
much of it is masked. If unmasked fraction of a randomly posi-
tioned cell is less than f , the counts are up-weighted to make it the
equivalent of a whole cell. Here we explain the choice of f = 0.8
used in this work.

The first panel of figure C2 shows the PDF of MICE galaxy
counts for which the f takes different values. For values of f > 0.5
there is not much difference in the histograms by eye. The middle
panel shows the variances of these different distributions, with er-
rors produced by jackknife sampling. We find that the effect on the
variance of changing f is not significant within the errors.

If we chose a very high threshold, such as requiring 90% of
a cell to be unmasked in order for it to be used, we would throw
away a lot of cells landing near the edge of the survey and give
greater statistical weight to areas away from the edges. If we set f
too low, so that cells with a large fraction of their area masked are
kept, we will end up re-weighting a lot the data nearer the edges. So
we would like to strike a balance between these two effects. From
the right panel of figure C2 we can see than f = 0.8 is the highest
value that can be allowed before the number of cells we discard
drops off significantly, and that at this value the fraction of data re-
weighted is not too high (around 10%). Hence f = 0.8 seems to be
a sensible choice.
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Tecnológicas (CIEMAT), Madrid, Spain
[35] ICTP South American Institute for Fundamental Research
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