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Abstract

Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the
Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting
the beam intensity in present circular accelerators is collective instabilities, which can be
suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism
or by an external damper, if the instability is slow enough. The spread is usually created by
octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by
a chromatic spread (tune dependence on particle’s momentum). The introduction of octupoles
usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of
the IOTA research program is to achieve a high betatron tune spread, while retaining a large
dynamic aperture using conventional octupole magnets in a special but realistic accelerator
configuration. In this report, we present results of computer simulations of an electron beam in
the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring’s
octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large
amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam.
The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant
for the parameters and levels of tolerances set by the design of the ring. The described octupole
insert could be beneficial for suppression of space-charge induced instabilities in high intensity
machines.

Introduction

Modern circular accelerators are designed with linear focusing optics (also called lattice). In an
ideal case, in linear optics the single particle motion is fully integrable, that is, there are as many
independent conserved dynamic quantities, as the number of degrees of freedom. For an
integrable system the motion is always “solvable” and regular with no chaotic behavior,
independent of initial conditions. In reality, focusing lattices are far from being perfectly linear.
If a system is linear by design, small nonlinear perturbations break the integrability and may lead
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to a resonant behavior, chaotic and unbounded motion. In accelerators such perturbations arise
from high-order magnet errors and imperfections or are introduced on purpose (i.e. sextupole
magnets for chromaticity correction), leading to a dependence of a single-particle stability on
initial conditions [1].

If a dynamical system is integrable (linear or nonlinear), then according to the Kolmogorov-
Arnold-Moser (KAM) theorem the dynamics of the Hamiltonian system remains stable under
small perturbations [2]. An example of an integrable nonlinear system is the Kepler problem,
where 1 /U r . The motion is regular and stable (not necessarily bounded), and for bounded
orbits the oscillation frequency strongly depends on the amplitude: 3/2a  . Obviously, such a
potential is of limited use in particles accelerators because of its singularity at the origin.

Generally, there has not been a lot of success in funding integrable nonlinear focusing lattices for
circular accelerators. Nonetheless, in the late 1960’s McMillan discovered a 1-dimensional
nonlinear mapping – a thin kick of a special kind in an otherwise linear lattice leading to a
conservation of an integral of motion, quadratic in particle’s coordinate and momentum. This
solution was later generalized to 2D-case of an uncoupled symmetric lattice [3]. The required
nonlinear kick can be created by, for example, an electron lens [4] but difficult to implement
with magnets.

Recently, in 2010 a new nonlinear accelerator focusing system, which can be implemented with
magnets, was proposed [5]. It consist of a linear focusing lattice with a transfer matrix of a thin
axially symmetric lens, followed by a nonlinear magnetic field region, which can be created by a
special magnet, and, in 2D, yields a conservation of the Hamiltonian and the second invariant of
motion, quadratic in momenta. In contrast to the traditional linear focusing, it provides large a
amplitude-dependent tune spread, which is beneficial for Landau damping of collective
instabilities, with single particle motion being unconditionally stable and non-chaotic at all
amplitudes. This concept is to be experimentally tested at the Integrable Optics Test Accelerator
(IOTA) at Fermilab [6].

The potential in [5] has two points of singularity, making the design, manufacturing, and testing
of the special magnet rather challenging [7]. As a consequence, the first stage of the experiment
will use conventional octupole magnets to create a corresponding term in the multipole
expansion of the potential. In theory, this approach allows to achieve single particle dynamics
with one invariant of motion (out of two) – a “quasi-integrable” case. Even a single integral of
motion can significantly improve particle dynamics in terms of achievable tune shifts and
dynamical aperture. For instance, it proved to be beneficial for achieving a record-high beam-
beam tune shift with round colliding beams at VEPP-2000 (BINP, Russia) [8].



Since the paper [5] considered only transverse motion, it was important to make sure that the
introduction of the 3rd, longitudinal, degree of freedom does not destroy the integrability. Earlier
works on simulations of dynamics in IOTA [6], [9] did not consider the quasi-integrable case,
and treated the ring as a linear transfer matrix or disregarded the longitudinal motion. A thorough
study of dynamics in a realistic machine lattice in the presence of coupling, chromaticity, magnet
imperfections, and parasitic nonlinearities was required to estimate the influence of these effects.
In this paper we present the results of 3D particle tracking simulations of single particle
dynamics in a quasi-integrable optics experiment at IOTA.

Octupole experimental setup in IOTA

IOTA is a relatively small storage ring with the circumference of 40 m, designed to circulate
either electrons or protons of the same momentum. In the electron mode, it will operate with
short bunches of 150 MeV electrons injected from a superconducting linac [10]. The ring has a
flexible linear optics, allowing the installation of one or two nonlinear magnets with the transfer
matrix of the rest of the ring outside those magnets being an equivalent of a thin axially
symmetric lens. The ring’s focusing optics has a two-fold symmetry; its layout and optics
functions are shown in FIG. 1, and main parameters of the machine are summarized in Table I. A
detailed description of the ring can be found in [9].



FIG. 1. The beta functions (horizontal – black line, vertical – red) are equal and the horizontal
dispersion (green) is zero in the nonlinear insert. A half of the IOTA ring for the setup of one
nonlinear insert is depicted; ring elements and their positions are shown on the top.

TABLE I. Main parameters of IOTA ring, setup with one nonlinear insert.

Electron energy 150 MeV

Number of bunches, particles per bunch 1, 109

Ring circumference 40 m

Synchrotron decay radiation damping time 1 s

Equilibrium emittance, x & y, RMS 0.074 mm-mrad

Betatron tunes, x & y 5.3, 5.3

Natural tune chromaticities, x & y -11.4, -7.1

Synchrotron tune 5.3 1́0-4

RF harmonic number and voltage 4, 10.13 kV

RMS bunch length 511 cm



At the first stage of its experimental program IOTA will study beam dynamics in a nonlinear
lattice with one invariant of motion, proposed in [5]. The nonlinearity will be created by a set of
octupole magnets, placed in one of the 1.8 m long drifts with equal beta-functions and zero
dispersion (FIG. 1). Their strength will vary inversely proportional to β3, creating a potential:
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where xN, yN, Px, and Py are the normalized coordinates and momenta. H is independent of the
longitudinal position s and thus is an invariant of motion. Figure 2 shows the distribution of
octupole strength in the channel; B3 is the normalized octupole gradient:
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FIG. 2. Octupole strength is maximal in the middle of the nonlinear section and rapidly decreases
towards the ends. Magnetic length of each octupole – 10 cm.

Numerical model

Our model of the ring incorporated dipoles with their fringe fields, quadrupoles, and an RF
cavity – all ring elements, except the injection magnet, kickers, and corrector magnets. The
nonlinear potential (1) was created by a set of 10-cm-long octupole magnets. The strengths of the
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magnets were governed by the expression (3). Thus, we simulated 3D particle dynamics in a real
machine with betatron and synchrotron motion coupled through dispersion and chromaticity. To
speed up the computations thick elements were represented by a number of thin kicks and drifts
in a symplectic manner.

In the planned experiment the electron bunch will be kicked in the transverse plane using a
horizontal and a vertical kicker. The bunch trajectory then will be recorded turn-by-turn by the
beam position monitors to create a Poincare map of the phase space. This procedure was
simulated by giving the electrons an initial displacement in 2D (x and y) and tracking their
positions on each turn at the center of the nonlinear section.

Numerical simulations were performed using Lifetrac particle tracking code [11] running on
Fermilab’s Wilson cluster. The code was initially developed for beam-beam simulations but can
also be used for 3D tracking of particles in the presence of an arbitrary nonlinear potential. Two
methods were used to study particle dynamics: tracking and Frequency Map Analysis. FMA,
originally proposed by Laskar in [12], thanks to its high computing performance allows to
rapidly scan through the phase space and determine frequency shifts as functions of betatron
oscillation amplitudes, identify potentially dangerous resonances, and find the boundary of
chaotic region [13].

FMA finds only the single dominant frequency of particle motion and may fail to resolve
multiple Fourier peaks, which arise, when a particle is close to a resonance. So in addition to
FMA we performed tracking for a time of synchrotron radiation decay(~ 106 turns) to treat such
situations and determine the dynamic aperture of the machine exactly. A smaller subset of initial
amplitudes was used for this purpose. Initial amplitude both in x and y was increased until a
particle loss was observed.

Results and discussion

FMA footprints for a case of ideal lattice with one octupole section are shown in FIG. 3.3. A
wide resonance line at 45 degrees in FIG. 3. (a) (red) is the difference resonance Qx – Qy = 0.
Tracking shows that particles in this region remain stable due to the absence of crossings with
other resonances, which could lead to transfer of energy between degrees of freedom and
eventually particle loss. Dynamical aperture for this case is 21σ of the electron beam. Phase
space footprint corresponding to the stable region is depicted in FIG. 3.3 (b). Tune shifts in Qx



and Qy range from -0.05 to +0.03, creating a total maximum tune spread of 0.08 for a beam
occupying the entire stable region.

FMA also shows numerous thin resonance lines (green). Those are high order resonances
(typical order in the range 10 - 20) involving both betatron and synchrotron motion. They are
unlikely to be excited in the real machine and consequently would not disturb the particle
motion.

In the ideal case described above, the particles started with no initial synchrotron motion: dE/E =
0. It arose due to coupling between the horizontal and longitudinal degrees of freedom. The
average amplitude of synchrotron oscillations increased with betatron amplitude up to 3σs at the
boundary of the stable region.

Figure 4 shows relative error in the integral of motion, Hamiltonian (2), as a function of betatron
amplitudes. One can see that despite the presence of synchrotron motion the Hamiltonian
conserves on a level of 10-4-10-3 up to the amplitudes of 20σ.

In a non-ideal case, for the particles with initial synchrotron oscillation amplitudes , the

resulting frequency maps differ from the ideal picture insignificantly. In those the cases the
initial synchrotron amplitude is much smaller than the amplitude, arising from the betatron
motion due to betatron-synchrotron coupling. However, for 6s sA  the synchrotron motion starts

to destroy the dynamics significantly, and the dynamical aperture can be reduced by 15% or
more.

1s sA 



FIG. 3. FMA footprints of phase space in average betatron amplitudes – a) and betatron
frequencies – b).

FIG. 4. Jitter in the Hamiltonian is of the order of or below 10-3 for most amplitudes of stable
betatron oscillations.

Apart from the synchrotron motion, another factor affecting the integrability is the chromaticity
of betatron tunes. It introduces a first order perturbation to the Hamiltonian if x- and y-
chromaticities are not equal [14]. To obtain numerical estimates of this effect a part of the ring
was replace by a transfer matrix with phase advances in x and y depending on pz. By changing
this artificially introduced chromaticity we were able to get a dependence of dynamic aperture on
the difference of betatron frequencies , depicted in FIG. 5.5. One can also

see that the dynamical aperture is the greatest when , as predicted in [14]. The natural
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chromaticities of IOTA: -11, -7 are close to this condition. Dynamical aperture decreases as the
difference in tunes, created by unequal chromaticities, shifts further away from 0. For

it is less than ½ of the maximum value.

FIG. 5. Tune mismatch, created by chromaticity, leads to reduction of dynamic aperture. For
electron operation the decrease is about 2 RMS beam sizes.

Since most of the particles in IOTA electron bunch will have less or of the order of

, the longitudinal motion does not affect the transverse dynamics significantly. Though

it might become an issue for the proton experiment at IOTA because of the larger momentum
spread of the proton beam (~ 10-3).

To study the influence of errors in the linear lattice, the strengths of several quadrupole magnets
were manually varied to detune Qy from its design value 0.3, while leaving Qx unperturbed.
Previous similar studies of fully integrable potential show that it requires a precise matching of
beta functions and tune to the design values. An error of more than 10-3 in phase advance over
the ring breaks the integrability [9]. In contrast to the fully integrable case, the quasi-integrable
optics is more robust against errors in linear focusing: errors of the order of 10-3 in betatron tunes
produce no visible effect on particle dynamics, ( in the middle of the insert of

0.06) leads to a reduction of dynamic aperture of ~ 10%, and for ( ) dynamic

aperture shrinks by a half (FIG. 6.6).

To estimate the influence of imperfections in the nonlinear potential on particle dynamics, a
normally distributed error was added to each of the octupole magnets. The simulations show that
for a 10% r.m.s. error in octupole strength, the reduction of dynamical aperture is negligible.
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FIG. 6. Detuning of linear lattice leads to decrease of maximum tune spread (a) and dynamic
aperture (b).

FIG. 7.7 shows the dependence of maximum tune shift and betatron amplitude on the strength of
octupole potential. For small strength parameters α, the amplitude is limited by physical aperture
and the maximum tune shift increases with α. For sufficiently big α, the dynamical aperture is
limited by resonances (FIG. 3.3(b)), and consequently the maximum tune shift is independent of
the potential strength. Thus there is a value of α, which yields the greatest dynamical aperture for
the maximum possible tune shift. Our modelling shows that in IOTA this value is α = 100 cm-1.

FIG. 7. Maximum tune spread is achieved at the strength of octupole potential α = 100 cm-1;
further increase of nonlinearity leads only to reduction of dynamical aperture.

Since the octupole focusing strength is quadratic in betatron amplitude and the maximum
octupole tune shift is independent of the strength above a certain value, there is a tradeoff
between the dynamical aperture and r.m.s. tune shift:
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FIG. 8.8 depicts a dependence of maximum tune shift on the phase advance over the drift
section. For the purpose of this simulation the rest of the ring was treated as an axially-
symmetric focusing transfer matrix with an integer phase advance. One can see that the
dependence is close to linear and can be approximated as , where stands for the

phase advance in the drift. Since the phase advance in the ring outside of the nonlinear section
shall always be a multiple of 2π, the ring tunes change with and when it gets close to a low
order resonance the maximum tune spread decreases (point 0.35 on the plot).

FIG. 8. Maximum tune spread increases linearly with the phase advance in the insert.
One insert in the ring, the rest of the ring was modelled by a linear transfer matrix.

The tune spread, created by the octupole channel, can be used to create Landau damping of
collective instabilities in a high intensity beam. Note that there are other ways to create the
spread of betatron tunes: for example, tune chromaticity. But linear chromaticity provides
Landau damping only in the cases a coasting beam or very long bunches, where the period of
synchrotron oscillations is significantly greater than the characteristic growth time of the
instability: s instT  . In a more common case of short bunches with relatively low Ts the betatron

tune shift due to chromaticity, averaged over the synchrotron period, is zero to the first order:
0

s
dp p  for every particle in the bunch, and thus there is no damping. Although it does not

provide damping (at the first order), tune chromaticity affects the instability through its growth
rate. Correcting the chromaticity reduces the growth rate or even stabilizes the most unstable
collective mode, which is typically the lowest frequency one [15]. The amount of correction one
can achieve without too much damage to dynamic aperture and beam lifetime is specific for
every accelerator as it depends on the working point, beam intensity, etc. In some cases it may be

max ~ 0.4dQ  





more beneficial to create additional Landau damping, introducing nonlinear tune spread with
octupoles.

Knowing the tune spread one can estimate the strength of Landau damping. According to Burov
[15], the damping rate of space charge driven collective instabilities is quadraticaly proportional
to RMS nonlinear tune spread:
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where is a space charge tune shift and F is a damping factor. For the proposed parameters

of PIP-II Recycler upgrade [16], a single octupole insert is capable of creating the tune spread up
to 5*10-3, but the downside is a relatively small resulting dynamic aperture: about 4 sigma in
ideal case with no imperfections. A possible solution for achieving a greater spread may be using
more than one octupole insert. We shall also notice that [15] gives only a qualitative estimate of
the damping rate, and a detailed numerical study of Landau damping in the presence of nonlinear
tune spread is required. Such research is currently under way at FNAL, and the first simulation
results are consistent with the theory [17].

Conclusion

We have studied single particle dynamics in the Integrable Optics Test Accelerator using a
realistic 3D model of the ring. The numerical simulation allows to determine nonlinear tune
shifts and dynamical aperture in the presence of lattice errors and magnet imperfections. The
results show that a tune spread of 0.08 can be achieved with conventional octupole magnets. The
effect of longitudinal motion and lattice chromaticity on the dynamics of electrons in the ring are
insignificant, although they may create certain challenges for proton operation due to higher
momentum spread.

We have found that for octupole potential the tolerances to imperfections can be higher than for
the fully integrable case. Whereas for fully integrable optics the IOTA ring needs a precise
control of lattice errors at the level of 10-3, for a quasi-integrable case errors of up to 0.01 in
betatron tunes, 6% in beta-functions, and 10% in the potential itself lead to less than 15%
reduction of dynamical aperture. This level of precision of can be realistically achieved in future
high-intensity circular accelerators. They can benefit from employing the described “quasi-
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integrable” optics by creation of significant nonlinear tune spreads to provide Landau damping
of collective beam instabilities.
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