
ar
X

iv
:1

60
4.

08
16

7v
1 

 [
he

p-
ph

] 
 2

7 
A

pr
 2

01
6

Prepared for submission to JHEP FERMILAB-PUB-16-126-T
ACCEPTED

Compact Perturbative Expressions For Neutrino

Oscillations in Matter

Peter B. Dentona,b Hisakazu Minakatac,d Stephen J. Parkea

aTheoretical Physics Department, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia,

IL 60510, USA
bPhysics & Astronomy Department, Vanderbilt University, PMB 401807, 2301 Vanderbilt Place,

Nashville, TN 37235, USA
cInstituto de F́ısica, Universidade de São Paulo, C. P. 66.318, 05315-970 São Paulo, Brazil
dDepartment of Physics, Yachay Tech University, San Miguel de Urcuqúı, 100119 Ecuador
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Abstract: We further develop and extend a recent perturbative framework for neutrino

oscillations in uniform matter density so that the resulting oscillation probabilities are

accurate for the complete matter potential versus baseline divided by neutrino energy

plane. This extension also gives the exact oscillation probabilities in vacuum for all values

of baseline divided by neutrino energy. The expansion parameter used is related to the ratio

of the solar to the atmospheric ∆m2 scales but with a unique choice of the atmospheric ∆m2

such that certain first-order effects are taken into account in the zeroth-order Hamiltonian.

Using a mixing matrix formulation, this framework has the exceptional feature that the

neutrino oscillation probability in matter has the same structure as in vacuum, to all

orders in the expansion parameter. It also contains all orders in the matter potential

and sin θ13. It facilitates immediate physical interpretation of the analytic results, and

makes the expressions for the neutrino oscillation probabilities extremely compact and

very accurate even at zeroth order in our perturbative expansion. The first and second

order results are also given which improve the precision by approximately two or more

orders of magnitude per perturbative order.
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1 Introduction

Neutrino oscillation based on the standard three flavor scheme provides the best possible

theoretical paradigm which can describe most of the experimental results obtained in the

atmospheric, solar, reactor, and the accelerator neutrino experiments. In matter, the

propogation of neutrinos is significantly modified by the Wolfenstein matter effect [1].

The theoretical derivation and understanding of the neutrino oscillation probabilities in

matter have been pursued by various means. The exact expressions of the eigenvalues,

mixing angles, and the oscillation probabilities have been obtained [2–4], albeit under the

assumption of uniform matter density. But, the resulting expressions of the oscillation

probabilities are way too complex to facilitate understanding of the structure of the three

flavor neutrino oscillations. For this reason, analytic approaches to the phenomena are

mostly based on variety of perturbative frameworks. For a comprehensive treatment of

neutrino oscillation in the matter, see ref. [5].

What is the appropriate expansion parameter in such a perturbative framework? We

now know that sin θ13, once used as the expansion parameter (there are an enormous num-

ber of references, see e.g., [6]), is not so small, sin θ13 ≃ 0.15. Moreover, expansion around

sin θ13 = 0 misses the physics of the resonance which exists at an energy around E ∼ 10

GeV for earth densities. Therefore, in the environments in which the matter effect is com-

parable to the vacuum mixing effect, the only available small expansion parameter known

to us is the ratio of the solar-scale ∆m2
⊙ to the atmospheric-scale ∆m2

⊕, ∆m2
⊙/∆m

2
⊕ ≃ 0.03.

This framework was examined in the past, to our knowledge in refs. [6–9].

Recently, two of us, see [10], presented a new perturbative framework for neutrino

oscillation in matter using a modified ∆m2
⊙/∆m

2
⊕ expansion. We identified a unique ∆m2

⊕

that absorb certain “first-order” terms into the “zeroth-order” Hamiltonian. The resulting

expansion parameter,

ǫ ≡ ∆m2
21/∆m

2
ee where ∆m2

ee ≡ ∆m2
31 − sin2 θ12∆m

2
21 ,

multiplies a particularly simple perturbing Hamiltonian with zero diagonal entries. This

re-organization of the perturbation expansion lead to simple and compact oscillation prob-

abilities in all channels. The νe disappearance channel is particularly simple, being of a

pure two flavor form.

As was noted in [10], this new perturbation expansion, while valid in most of the

baseline, L, divided by neutrino energy, E, versus matter potential plane, has issues around

vacuum values for the matter potential at large values of L/E. These issues are caused

by the crossing of two of the eigenvalues of the new zeroth order Hamiltonian at the

solar resonance. In this paper, we solve these issues by performing an additional rotation

of the neutrino basis in matter by introducing an additional matter mixing angle which is

identical to θ12 in vacuum. With this extra rotation, the new eigenvalues of the unperturbed

Hamiltonian do not cross and the perturbing Hamiltonian remains non-diagonal and is

multiplied by an additional factor which is always less than unity and is zero in vacuum.

With this additional rotation our perturbative expansion is valid in the full L/E versus

matter potential plane and the zeroth order gives the exact result in vacuum.
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The sectional plan of this paper is as follows: in section 2 we describe in detail the

sequence of rotations of the neutrino basis that leads us to the simple Hamiltonian that will

be used in the perturbative expansion. The zeroth order eigenvalues and mixing matrix are

given in this section. Then, in section, 3 we explicitly calculate the first and second order

corrections for both the eigenvalues and the mixing matrix. In section 4, we give compact

analytic expressions for νe and νµ disappearance channels as well as νµ → νe appearance

channel at both zeroth and first order in our perturbative expansion. All other channels

can by obtained by unitarity. Here we discuss the precision of the perturbative treatment.

Finally, in section 5 there is a conclusion. A number of technical details are contained in

the appendices, see A. We have also published the new Nu-Pert code used in this paper

online.1

2 Rotations of the neutrino basis and the Hamiltonian

In this section we perform a sequence of rotations on the neutrino basis and the corre-

sponding Hamiltonian such that the following conditions are satisfied:

• The diagonal elements of the rotated Hamiltonian are excellent approximations to

the eigenvalues of the exact Hamiltonian and do not cross for any values of the matter

potential. These diagonal elements will form our H0.

• The size of non-diagonal elements are controlled by our small parameter, ǫ′, which

vanishes in vacuum. The non-diagonal elements will form our perturbing Hamilto-

nian, H1.

The first two of these rotations are identical to the rotations performed in [10], while the last

rotation is needed to deal with the remaining eigenvalue crossing at the solar resonance.

With these three rotations the resulting Hamiltonian satisfies the conditions above and

leads us to a rapidly converging perturbative expansion for the oscillation probabilities

that covers all of the L/E versus matter potential plane.

2.1 Overview

Neutrino evolution in matter is governed by a Schrödinger like equation

i
∂

∂x
|ν〉 = H|ν〉 , (2.1.1)

where in the flavor basis

|ν〉 =







νe
νµ
ντ






, (2.1.2)

H =
1

2E

[

UMNS diag(0,∆m2
21,∆m

2
31)U †

MNS + diag(a(x), 0, 0)
]

. (2.1.3)

1See https://github.com/PeterDenton/Nu-Pert.
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UMNS is the lepton mixing matrix in vacuum, given by

UMNS ≡ U23(θ23, δ)U13(θ13)U12(θ12) with2

U12(ψ) ≡







cψ sψ
−sψ cψ

1






, U13(φ) ≡







cφ sφ
1

−sφ cφ






,

U23(θ23, δ) ≡







1

c23 s23e
iδ

−s23e−iδ c23






,

(2.1.4)

and the matter potential, assumed to be constant, is given by

a ≡ 2
√

2GFNeE ≈ 1.52 × 10−4

(

Yeρ

g · cm−3

)(

E

GeV

)

eV2 . (2.1.5)

We will perform a sequence of rotations on the flavor basis by multiplying the left and

right hand side of eq. 2.1.1 by an appropriate unitary matrix, U † and inserting unity (UU †)

between H and |ν〉. These rotations are chosen such that the final resulting Hamiltonian

satisfies the following properties: the diagonal elements are an excellent approximations

to the exact eigenvalues and the size of off-diagonal elements are controlled by a small

parameter (ratio of the ∆m2’s) and are identically zero in vacuum.

The sequence of rotations applied to the eigenstates is performed in the following order

|ν〉 → |ν̃〉 = U †
23(θ23, δ)|ν〉

→ |ν̂〉 = U †
13(φ)U †

23(θ23, δ)|ν〉
→ |ν̌〉 = U †

12(ψ)U †
13(φ)U †

23(θ23, δ)|ν〉 ,
(2.1.6)

with the corresponding Hamiltonians

H → H̃ = U †
23(θ23, δ) H U23(θ23, δ)

→ Ĥ = U †
13(φ)U †

23(θ23, δ) H U23(θ23, δ)U13(φ)

→ Ȟ = U †
12(ψ)U †

13(φ)U †
23(θ23, δ) H U23(θ23, δ)U13(φ)U12(ψ) .

(2.1.7)

The first rotation undoes the θ23 − δ rotation, whereas the φ followed by ψ rotations

are matter analogues to the vacuum θ13 and θ12 rotations, respectively. In vacuum, the

final Schrödinger equation is just the trivial mass eigenstate evolution equation.

2.2 U23(θ23, δ) rotation

After the U23(θ23, δ) rotation, the neutrino basis is

|ν̃〉 = U †
23(θ23, δ)|ν〉 , (2.2.1)

2The PDG form of UMNS is obtained from our UMNS by multiplying the 3rd row by eiδ and the 3rd

column by e−iδ i.e. by rephasing ντ and ν3. The shorthand notation cθ = cos θ and sθ = sin θ is used

throughout this paper.
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and the Hamiltonian is given by

H̃ = U †
23(θ23, δ) H U23(θ23, δ)

=
1

2E

[

U13(θ13)U12(θ12) diag(0,∆m2
21,∆m

2
31)U †

12(θ12)U †
13(θ13)

+ diag(a, 0, 0)
]

.

(2.2.2)

As was shown in [10], the Hamiltonian, H̃, is most simple written in terms of a renormalized

atmospheric ∆m2,

∆m2
ee ≡ ∆m2

31 − s212∆m2
21 , (2.2.3)

as defined in [11, 12], and the ratio of the ∆m2’s

ǫ ≡ ∆m2
21/∆m

2
ee . (2.2.4)

In terms of the |a| → ∞ eigenvalues

λa = a+ (s213 + ǫs212)∆m
2
ee ,

λb = ǫc212∆m2
ee ,

λc = (c213 + ǫs212)∆m2
ee ,

(2.2.5)

the exact Hamiltonian is simple given by3

H̃ =
1

2E







λa s13c13∆m2
ee

λb
s13c13∆m2

ee λc






+ ǫs12c12

∆m2
ee

2E







c13
c13 −s13

−s13






. (2.2.6)

Note that H̃ is real and does not depend on θ23 or δ.

2.3 U13(φ) rotation

Since s13 ∼ O(
√
ǫ), it is natural to diagonalize the (1-3) sector next, using U13(φ), again

see [10]. After this rotation the neutrino basis is

|ν̂〉 = U †
13(φ)|ν̃〉 = U †

13(φ)U †
23(θ23, δ)|ν〉 , (2.3.1)

and the Hamiltonian is given by

Ĥ = U †
13(φ) H̃ U13(φ)

=
1

2E







λ−
λ0

λ+






+ ǫc12s12

∆m2
ee

2E







c(φ−θ13)
c(φ−θ13) s(φ−θ13)

s(φ−θ13)






.

(2.3.2)

where

λ∓ =
1

2

[

(λa + λc) ∓ sign(∆m2
ee)
√

(λc − λa)2 + 4(s13c13∆m2
ee)

2
]

,

λ0 = λb = ǫc212∆m2
ee ,

(2.3.3)

3One can use H̃ to do a perturbative expansion, such that it is simple to recover the νµ → νe appearance

probability of Cervera et al., [6] at first order.
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which is identical to eq. 3.1 of [10].

The angle, φ, that achieves this diagonalization of the (1-3) sub-matrix (see appendix

A.1), satisfies

λa = c2φλ− + s2φλ+ , λc = s2φλ− + c2φλ+ , and sφcφ =
s13c13∆m2

ee

λ+ − λ−
, (2.3.4)

from which it is easy to derive

c2φ − s2φ =
λc − λa
λ+ − λ−

, (2.3.5)

sφ =

√

λ+ − λc
λ+ − λ−

, cφ =

√

λc − λ−
λ+ − λ−

. (2.3.6)

The Hamiltonian given in eq. 2.3.2 was used to derive simple, compact and accurate oscil-

lation probabilities for a wide range of the L/E versus ρE plane, see [10]. However, as was

noted in that paper, there is a region of this plane for which a perturbation theory based

on Ĥ is insufficient to describe the physics accurately. This region is small ρE and large

L/E given by

|a| < 1

3
∆m2

ee and L/E >
4π

∆m2
ee

. (2.3.7)

To address this region of the L/E versus ρE plane, we perform one further rotation on the

Hamiltonian. This rotation removes the degeneracy of the zeroth order eigenvalues at the

solar resonance when λ− = λ0. This is performed in the next subsection.

2.4 U12(ψ) rotation

Since λ− and λ0 cross at the solar resonance, a ≈ ǫ∆m2
ee cos 2θ12/ cos2 θ13, to describe

the physics near this degeneracy we need to diagonalize the (1-2) submatrix of Ĥ, using

U12(ψ). The new neutrino basis is

|ν̌〉 = U †
12(ψ)|ν̂〉 = U †

12(ψ)U †
13(φ)U †

23(θ23, δ)|ν〉 . (2.4.1)

The resulting Hamiltonian, split into a zeroth order Hamiltonian and a perturbing Hamil-

tonian, is given by

Ȟ = U †
12(ψ) Ĥ U12(ψ) = Ȟ0 + Ȟ1 , (2.4.2)

where

Ȟ0 =
1

2E







λ1
λ2

λ3






, (2.4.3)

Ȟ1 = ǫs(φ−θ13)s12c12
∆m2

ee

2E







−sψ
cψ

−sψ cψ






. (2.4.4)
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The diagonal elements of the zeroth order Hamiltonian are

λ1,2 =
1

2

[

(λ0 + λ−) ∓
√

(λ0 − λ−)2 + 4(ǫc(φ−θ13)c12s12∆m2
ee)

2
]

,

λ3 = λ+ .
(2.4.5)

The angle, ψ, that achieves this diagonalization of the (1-2) sub-matrix of Ĥ (see

appendix A.1), satisfies

λ− = c2ψλ1 + s2ψλ2 , λ0 = s2ψλ1 + c2ψλ2 , (2.4.6)

sψcψ =
ǫc(φ−θ13)s12c12∆m2

ee

∆λ21
, (2.4.7)

where we introduce the useful shorthand notation,

∆λij ≡ λi − λj . (2.4.8)

It is easy to derive that4

c2ψ − s2ψ =
λ0 − λ−

∆λ21
, (2.4.9)

and sψ =

√

λ2 − λ0
∆λ21

, cψ = sign(∆λ21)

√

λ0 − λ1
∆λ21

. (2.4.10)

Figure 1 shows φ and ψ as functions of the matter potential as well as the eigenvalues

of Ȟ for both the normal ordering (NO) and the inverted ordering (IO). Several additional

useful identities used in the calculations throughout this paper are listed in appendix A.2.

2.5 Remarks

A number of summarizing and useful comments are warranted at this point.

• The neutrino basis that will be used in our perturbation theory, |ν̌〉 is related to the

flavor basis, |ν〉 by






νe
νµ
ντ






= UmMNS







ν̌1
ν̌2
ν̌3






, (2.5.1)

where

UmMNS ≡ U23(θ23, δ)U13(φ)U12(ψ) . (2.5.2)

• The Hamiltonian, eqs. 2.4.3 and 2.4.4, that will used as the basis for our perturbation

theory is given by

Ȟ = (UmMNS)†HUmMNS = Ȟ0 + Ȟ1 , (2.5.3)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-

ments the perturbing Hamiltonian. While the λa,b,c eigenvalues cross twice and the

λ−,0,+ eigenvalues cross once, the new λ1,2,3 eigenvalues do not cross, see figure 1,

which allows for the perturbation theory to be well defined everywhere.

4Given the definition of λ1,2 in eq. 2.4.5, the sign term in from of cψ is not necessary, but will become

necessary when we discuss the λ1 ↔ λ2 interchange symmetry.
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Figure 1: The upper figure shows the angles, φ and ψ, as a function of the matter potential

for both NO and IO. φ and ψ are the mixing angles θ13 and θ12 in matter respectively. For

ψ, the curves for the two mass ordering are nearly identical. The two lower figures show the

eigenvalues to zeroth order, λ1,2,3, in matter as a function of the matter potential for NO

and for IO. For all our figures, YeρE ≥ 0 is for neutrinos and YeρE ≤ 0 for antineutrinos.

• The size of the perturbing Hamiltonian, Ȟ1, is controlled by the parameter

ǫ′ ≡ ǫ s(φ−θ13) s12c12

= s(φ−θ13)s12c12
∆m2

21

∆m2
ee

,
(2.5.4)

which is never larger than 1.4%.

• In vacuum,

s(φ−θ13) = 0 , (2.5.5)

so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where

a→ −∞ for NO or a→ +∞ for IO s(φ−θ13) → −s13 which is of O(
√
ǫ). Whereas for

a→ +∞ for NO or a→ −∞ for IO s(φ−θ13) → c13 ∼ 1, see figure 2.
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Figure 2: The absolute value of the various expansion parameters as a function of the

matter potential. ǫs12c12 ≡ s12c12∆m2
21/∆m

2
ee is the expansion parameter from [10] and

ǫ′ ≡ s(φ−θ13)s12c12∆m2
21/∆m

2
ee is the expansion parameter of this paper, see eqs. 2.2.4 and

2.5.4. The asymptotic value of |ǫ′| as E → −∞ is |ǫc12s12s13| ≈ 2.2×10−3 and as E → ∞ is

|ǫc12s12c13| ≈ 1.4× 10−2. The NO is shown here, the IO is the same with YeρE → −YeρE.

• Since perturbing Hamiltonian, Ȟ1, has only non-diagonal entries the first order cor-

rection to the eigenvalues are zero. The diagonal elements multiplied by 2E are, to

an excellent approximation, the mass squares of the neutrinos in matter.

• There is a very useful interchange symmetry involving λ1,2 and ψ. The Hamiltonian

is invariant under the pair of transformations λ1 ↔ λ2 and ψ → ψ ± π/2. Our

expressions for sψ and cψ, see eq. 2.4.10, satisfy this interchange symmetry with the

+ in front of the π/2. Since the transition probabilities always have an even number

of ψ trig functions, this interchange symmetry can be simply expressed as

λ1 ↔ λ2 , c2ψ ↔ s2ψ , and cψsψ ↔ −cψsψ . (2.5.6)

In the rest of this paper we call this the λ1,2 − ψ interchange symmetry.

• An antineutrino with energy E is equivalent to a neutrino with energy −E.

• The values of all of the eigenvalues in vacuum and for a→ ±∞ are shown in appendix

A.3.

3 Perturbation expansion

To calculate the neutrino oscillation probabilities at zeroth order, all that is needed is

eigenvalues and mixing matrix,

λ1,2,3 and UmMNS ,

– 9 –



given by eq. 2.4.5 and eq. 2.5.2 respectively. For higher order calculations we need not

only the corrections to the eigenvalues but also the corrections to the mixing matrix. In

this section we first given the corrections to the eigenvalues at both first and second order

in our expansion parameter, ǫ′. This is followed by the corrections to the same order

for the mixing matrix. Note that all corrections to both the eigenvalues and the mixing

matrix vanish in vacuum as our expansion parameter is zero in vacuum, i.e. the zero order

oscillation probabilities are exact in vacuum.

3.1 Corrections to the eigenvalues

Since the diagonal terms of Ȟ1 = 0 by construction, the first order corrections to the

eigenvalues are exactly zero, since

λ
(1)
i = 2E(Ȟ1)ii = 0 . (3.1.1)

The second order corrections to the eigenvalues are given by5

λ
(2)
i =

∑

k 6=i

[2E(Ȟ1)ik]2

∆λik
. (3.1.2)

Using Ȟ1 from eq. 2.4.4, we see that the corrections are

λ
(2)
1 = −(ǫ′∆m2

ee)
2
s2ψ

∆λ31
,

λ
(2)
2 = −(ǫ′∆m2

ee)
2
c2ψ

∆λ32
,

λ
(2)
3 = (ǫ′∆m2

ee)
2

(

s2ψ
∆λ31

+
c2ψ

∆λ32

)

.

(3.1.3)

We verified that the eigenvalues satisfy the characteristic equation to second order, see

appendix A.4. The eigenvalues are correct at zeroth order to a fractional precision of

about 10−4 or better, and through second order to a precision of 10−8 or better. In fact,

the precision of λ1 + λ
(1)
1 + λ

(2)
1 for sign(∆m2

ee)YeρE < 0 is completely saturated by the

limits of double precision computer calculations.

3.2 Corrections to the eigenvectors

Here we present the corrections to the eigenvectors which allows us to calculate the tran-

sition probabilities to arbitrary order. This was called the V -matrix approach in [13].

First, we relate the flavor eigenvectors to the zeroth order eigenvectors (no subscript)

using UmMNS, as in eq. 2.1.4,






νe
νµ
ντ






= UmMNS







ν̌1
ν̌2
ν̌3






. (3.2.1)

5Eq. 3.1.2 explicitly shows why the level crossing of two of the eigenvalues (λ−, λ0) causes problems for

higher orders in the perturbation theory.
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Next, the exact eigenvectors of Ȟ, labeled with subscript (ex), are related to the eigenvec-

tors of Ȟ0 (the zeroth order eigenvectors) by a unitary matrix, which we call W †,






ν̌1
ν̌2
ν̌3







(ex)

= W †







ν̌1
ν̌2
ν̌3






. (3.2.2)

Combining the above gives,






νe
νµ
ντ






= V







ν̌1
ν̌2
ν̌3







(ex)

where V ≡ UmMNSW . (3.2.3)

The exact V matrix transforms the exact eigenvectors of Ȟ to the flavor basis. In vacuum

(a = 0), UmMNS = UMNS and W = 1, so V = UMNS as expected.

Standard perturbation theory in Ȟ1, which contains the small parameter ǫ′, can be

used to calculate W †. Here we use a slightly modified perturbation theory to calculate W

directly. Expanding W as a power series in ǫ′, we define

W ≡W0 +W1 +W2 + O(ǫ′3) . (3.2.4)

It is clear from eq. 3.2.2 that W0 = 1.

The first order correction to the W matrix is given by

(W1)ij =











0 i = j

−2E(Ȟ1)ij
∆λij

i 6= j
, thus

W1 = ǫ′∆m2
ee









− sψ
∆λ31
cψ

∆λ32
sψ

∆λ31
− cψ

∆λ32









.

(3.2.5)

The second order correction, after using the facts that Ȟ1 is symmetric and has no

diagonal elements, eq. 2.4.4, is

(W2)ij =



























−1

2

∑

k 6=i

[2E(Ȟ1)ik]
2

(∆λik)2
i = j

1

∆λij

∑

k 6=i,k 6=j

2E(Ȟ1)ik 2E(Ȟ1)kj
∆λkj

i 6= j

, thus

W2 = −ǫ′2 (∆m2
ee)

2

2













s2ψ
(∆λ31)2

− s2ψ
∆λ32∆λ21

s2ψ
∆λ31∆λ21

c2ψ
(∆λ32)2

[

c2ψ
(∆λ32)2

+
s2ψ

(∆λ31)2

]













.

(3.2.6)
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This series can be continued to reach arbitrary precision. However, we have found that

second order provides more than sufficient precision.

In summary the matrix relating the zeroth order eigenvalues of Ȟ0 to the flavor basis

is given by

V = UmMNSW = U23(θ23, δ)U13(φ)U12(ψ)(1 +W1 +W2) , (3.2.7)

to second order in ǫ′. Demonstration of the unitary nature of V , to the appropriate order,

is given in appendix A.5. With the eigenvalues and eigenvectors determined to second

order we can now calculate the neutrino oscillation probabilities.

4 Oscillation probabilities

In vacuum and in matter with constant density, it is well known that the neutrino oscillation

probabilities for να → νβ for three-flavor mixing (i, j = 1, 2, 3) can be written in the

following form6

P (να → νβ) =

∣

∣

∣

∣

∣

3
∑

i=1

V ∗
αiVβie

−i
λ
(ex)
i

L

2E

∣

∣

∣

∣

∣

2

= δαβ + 4Cαβ21 sin2 ∆21 + 4Cαβ31 sin2 ∆31 + 4Cαβ32 sin2 ∆32

+ 8Dαβ sin ∆21 sin ∆31 sin ∆32 ,

(4.0.1)

where

Cαβij = −ℜ[VαiV
∗
βiV

∗
αjVβj ] ,

Dαβ = ℑ[Vα1V
∗
β1V

∗
α2Vβ2] ,

∆ij ≡ ∆λ
(ex)
ij L/4E ,

(4.0.2)

using the exact mixing matrix, Vαi, and difference of the exact eigenvalues λ
(ex)
i . Both

V and λ
(ex)
i s depend on the energy of the neutrino E, and the matter density ρ but the

baseline L, dependence only appears in ∆ij .

By unitarity
∑

β

P (να → νβ) = 1 , (4.0.3)

and using the fact that the sin2 functions and the triple sine function are linearly indepen-

dent functions of L, as determined by their non-zero Wronskian, we have to the following

powerful statements,
∑

β

Cαβij = 0 ,
∑

β

Dαβ = 0 . (4.0.4)

Since Dαα = 0, we also note that Dαβ = −Dαγ for α, β, γ all different. So, up to one

overall sign, there is only one D term for all channels.

6The equivalence of the V-matrix method and the S-matrix method for calculating the oscillation prob-

abilities is addressed in appendix A.6.
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To determine the oscillation probability to n-th order in our perturbative expansion we

must evaluate C, D, and ∆λ
(ex)
ij to the n-th order. We denote this perturbative expansion

as follows

∆λ
(ex)
ij = ∆λij + ∆λ

(1)
ij + ∆λ

(2)
ij + . . .

Cαβij = (Cαβij )(0) + (Cαβij )(1) + (Cαβij )(2) + . . .

Dαβ = (Dαβ)(0) + (Dαβ)(1) + (Dαβ)(2) + . . . .

(4.0.5)

4.1 The zeroth order probabilities

At zeroth order the ∆λ’s are given by eq. 2.4.5 and the C,D coefficients are the same as

in vacuum with θ13, θ12 replaced with φ,ψ respectively, see eq. 3.2.7. Therefore

(Cαβij )(0) = −ℜ[UαiU
∗
βiU

∗
αjUβj] ,

(Dαβ)(0) = ℑ[Uα1U
∗
β1U

∗
α2Uβ2] ,

(4.1.1)

where here the Uαi are elements of UmMNS = U23(θ23, δ)U13(φ)U12(ψ). In table 1 we give

the zeroth order coefficients for P (νe → νe), P (νµ → νe), and P (νµ → νµ), from which all

remaining transitions can be easily determined by unitarity.7

7The ντ channels can also be obtained from the corresponding νµ channel by the following replacements

c23 → −s23 and s23 → c23.

– 13 –



να → νβ (Cαβ31 )(0) (Cαβ21 )(0) (Dαβ)(0)

νe → νe −c2φs2φc2ψ −c4φs2ψc2ψ 0

νµ → νe s2φc
2
φc

2
ψs

2
23 + Jmr cos δ c2φs

2
ψc

2
ψ(c223 − s2φs

2
23) + c2ψJ

m
r cos δ −Jmr sin δ

νµ → νµ
−c2φs223(c223s

2
ψ + s223s

2
φc

2
ψ) −(c223c

2
ψ + s223s

2
φs

2
ψ)(c223s

2
ψ + s223s

2
φc

2
ψ)

0
−2s223J

m
r cos δ −2(c223 − s2φs

2
23)c2ψJ

m
rr cos δ + (2Jmrr cos δ)2

Table 1: The zeroth order coefficients for Cαβij and Dαβ using eq. 4.1.1. The angles in matter, φ, ψ, are given in sections 2.3 and 2.4. We also define

the singly and doubly reduced Jarlskog coefficients in matter as Jmr ≡ sψcψsφc
2
φs23c23 and Jmrr ≡ Jmr /c

2
φ respectively. (Cαβ32 )(0) can be obtained

from (Cαβ31 )(0) by using the λ1,2 − ψ interchange symmetry (eq. 2.5.6) i.e. λ1 ↔ λ2, c2ψ ↔ s2ψ and sψcψ → −sψcψ, which also changes the sign on

the Jm’s.

να → νβ Fαβ1 Gαβ1 Kαβ
1

νe → νe −2c3φsφs
3
ψcψ 2sφcφsψcψc2φ 0

νµ → νe
cφs

2
ψ[sφsψcψ(c223 + c2φs

2
23) −2sφcφsψ(s223c2φcψ − s23c23sφsψ cos δ) −s23c23cφs2ψ(c2φc

2
ψ − s2φ) sin δ

−s23c23(s2φs
2
ψ + c2φc

2
ψ) cos δ]

νµ → νµ
2cφsψ(s223sφcψ + s23c23sψ cos δ)× −2cφsψ(s223sφcψ + s23c23sψ cos δ)

0
(c223c

2
ψ − 2s23c23sφsψcψ cos δ + s223s

2
φs

2
ψ) ×(1 − 2c2φs

2
23)

Table 2: The functions Fαβ1 , Gαβ1 and Kαβ
1 , from eq. 4.2.2, are used to calculate the first order coefficients (Cαβij )(1) and (Dαβ)(1) through eq. 4.2.1.

Fαβ2 , Gαβ2 and Kαβ
2 can be obtained using the λ1,2 − ψ interchange symmetry (eq. 2.5.6) i.e. λ1 ↔ λ2, c2ψ ↔ s2ψ and sψcψ → −sψcψ. The angles in

matter, φ, ψ, are given in sections 2.3 and 2.4.

–
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4.2 The first order probabilities

At first order the ∆λ’s are again given by eq. 2.4.5, since λ
(1)
i = 0, see eq. 2.4.4, because

the diagonal elements of Ȟ1 are zero. The first order corrections to C,D only have terms

proportional to ∆λ−1
31 , ∆λ−1

32 . This comes from the form of W1, eq. 3.2.5, which follows

from the position of the non-zero elements in Ȟ1. In fact, all of the coefficients can be

written in the following general form,

(Cαβ21 )(1) = ǫ′∆m2
ee

(

Fαβ1

∆λ31
+

Fαβ2

∆λ32

)

,

(Cαβ31 )(1) = ǫ′∆m2
ee

(

Fαβ1 +Gαβ1
∆λ31

− Fαβ2

∆λ32

)

,

(Cαβ32 )(1) = ǫ′∆m2
ee

(

− Fαβ1

∆λ31
+
Fαβ2 +Gαβ2

∆λ32

)

,

(Dαβ)(1) = ǫ′∆m2
ee

(

Kαβ
1

∆λ31
− Kαβ

2

∆λ32

)

,

(4.2.1)

where the F1,2, G1,2 and K1,2 are related by λ1,2, ψ interchange previously discussed. Thus

only three modest expressions are required to describe the C’s and D coefficients to first

order for each channel. The F,G,K terms can be calculated from UmMNS by

Fαβ1 = −sψℜ
[

(Uα1U
∗
β3 + Uα3U

∗
β1)U

∗
α2Uβ2

]

,

Gαβ1 = −sψℜ
[(

Uα1U
∗
β3 + Uα3U

∗
β1

)

(2U∗
α3Uβ3 − δαβ)

]

.

Kαβ
1 = −sψI

[

(Uα1U
∗
β3 + Uα3U

∗
β1)U

∗
α2Uβ2

]

.

(4.2.2)

F and G are even under the interchange of α and β whereas K is odd. Their explicit values

are given in table 2.

In the appearance channels the CP violating term must be of the following form

D = ±s12c12s13c213s23c23 sinδ

∏

i>j ∆m2
ij

∏

i>j ∆λ
(ex)
ij

, (4.2.3)

where in the denominator one needs the exact eigenvalues in matter. This is the Naumov-

Harrison-Scott identity, see refs. [14, 15]. We have checked this identity to the appropriate

order, see appendix A.7.

The P (να → β) and P (ν̄α → ν̄β) probabilities are related by δ → −δ and the P (να →
νβ) and P (νβ → να) transition probabilities are related by L→ −L. From eq. 4.0.1, we see

that the D term is the only term odd in L. From tables 1 and 2, we see that the D term is

also the only one odd in δ, confirming the CPT invariance of these equations. Moreover,

all of the Dαβ terms are the same order by order up to a coefficient of −1, 0, 1.

4.3 The second order probabilities

Although we have not expanded the second order oscillation probabilities analytically, the

second order corrections to the eigenvalues, λ
(2)
i , as well as the second order corrections to

– 15 –
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Figure 3: The νµ → νe oscillation probability is plotted in the upper part of the figure for

DUNE parameters; a 1300 km baseline and Yeρ = 1.4 g·cm−3. The fractional uncertainties

at zeroth and first order are plotted using the analytic formulas in tables 1 and 2 respec-

tively. The probability to second order is calculated by using λ’s and W through second

order, see eqs. 3.1.3 and 3.2.6

.

the mixing matrix, W2, have been used to calculate the oscillation probabilities to second

order. The resulting oscillation probabilities are more than two orders of magnitude closer

to the exact values than the first order probabilities.

4.4 Precision of the perturbation expansion

The oscillation probabilities that were perturbatively calculated in this section are only

useful if they are more precise than the experimental uncertainties. In figure 3, we have

plotted the fractional uncertainties8 at each order of our perturbative expansion for the

νµ → νe channel at the DUNE [16], baseline of 1300 km. The precision at the first

oscillation maximum and minimum for DUNE are shown in table 3. We note that the

precision improves at lower energies, such as for NOνA [17] and T2K/T2HK [18, 19].

The results are comparable for different values of δ, for the inverted ordering, for other

channels, and for antineutrino mode. Therefore, even at zeroth order, the precision exceeds

the precision of the expected experimental results.

8The exact oscillation probability were calculated using [3, 4].
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DUNE: NO, δ = 3π/2 First min First max

P (νµ → νe) 0.0047 0.081

E (GeV) 1.2 2.2

|∆P |
P

Zeroth 5 × 10−4 4 × 10−4

First 3 × 10−7 2 × 10−7

Second 6 × 10−10 5 × 10−10

Table 3: The transition probabilities, energies, and fractional uncertainties at zeroth, first,

and second order. Values are calculated at DUNE for νµ → νe with the NO and δ = 3π/2.

At higher maxima and minima the fractional uncertainties are even smaller.

5 Conclusions

In this paper we have further developed and expanded upon the recent perturbative frame-

work for neutrino oscillations in uniform matter, introduced in [10]. The new oscillation

probabilities are of the same simple, compact functional form with slightly more com-

plicated coefficients, yet, the range of applicability now includes the whole L/E versus

matter potential, a, plane, i.e. the restriction that L/E be small, (L/E ≪ 1/∆m2
21)

around the vacuum values of the matter potential has been completely removed. In fact,

with these new improvements, the oscillation probabilities in vacuum are exact at ze-

roth order in our perturbative expansion. This occurs because the expansion parameter

s12c12∆m2
21/∆m

2
ee = 0.014 is further multiplied by s(φ−θ13), where φ is the mixing angle

θ13 in matter. In vacuum, φ = θ13 and therefore all corrections to zeroth order vanish.

To achieve this extended range of applicability, an additional rotation of the Hamilto-

nian is performed over that in [10]. The third angle ψ is the mixing angle θ12 in matter.

In the resulting Hamiltonian, the diagonal elements are the eigenvalues of the zeroth order

Hamiltonian and do not cross for any values of the matter potential, especially near the

solar resonance (this occurred in [10]). The non-diagonal elements of the new Hamiltonian

are the perturbing Hamiltonian for our perturbative expansion and their size is controlled

by the small parameter s(φ−θ13)s12c12∆m2
21/∆m

2
ee, mentioned in the previous paragraph.

The new perturbative expansion is now well defined for all values of the matter potential

and gives very accurate oscillation probabilities. We have performed many cross checks

on the perturbative expansion, e.g. we have checked the CP violating term recovers, or-

der by order, the known form. We have calculated the oscillation probabilities for zeroth,

first, and second order in our expansion parameter. For most practical applications related

to experiments, the zeroth order oscillation probabilities are sufficiently accurate with a

typical fractional uncertainty of better than 10−3. Including the first and second order

corrections the accuracy improves that to better than 10−6 and 10−9, respectively.
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A Technical details

A.1 Generalized approach to diagonalization

We describe the diagonalization of a particular 2 × 2 submatrix and the angle and eigen-

values. This is the approach used twice in subsections 2.3 and 2.4 to diagonalize the 1-3

and then the 1-2 submatrices.

Given a general symmetric 2× 2 matrix we wish to diagonalize with angle φ, we write

(

λσ

λρ

)

= U(φ)†

(

λa λx

λx λc

)

U(φ) , (A.1.1)

where

U(φ) ≡
(

cφ sφ

−sφ cφ

)

. (A.1.2)

Since trace and determinant are unchanged by the U sandwich,

λσ + λρ = λa + λc and λρλσ = λaλc − λ2x . (A.1.3)

By squaring the trace equation and subtracting 4 times the determinant equation we have

(λρ − λσ)2 = (λa − λc)
2 + 4λ2x , (A.1.4)

thus

λρ,σ =
1

2

[

(λa + λc) ±
√

(λa − λc)
2 + 4λ2x

]

. (A.1.5)
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Next, we rewrite eq. A.1.1 by left (right) multiplying by U(φ) (U †(φ)), then

U(φ)

(

λσ

λρ

)

U(φ)† =

(

c2φλσ + s2φλρ sφcφ(λρ − λσ)

sφcφ(λρ − λσ) s2φλσ + c2φλρ

)

=

(

λa λx

λx λc

)

. (A.1.6)

This gives us three equations,
λa = c2φλσ + s2φλρ ,

λc = s2φλσ + c2φλρ ,

λx = (λρ − λσ)sφcφ .

(A.1.7)

The last equation is the standard equation for s2φ. Subtracting (adding) the first two

gives the standard equation for c2φ (the trace). Thus the rotation angle is defined by the

following

λx = (λρ − λσ)sφcφ and (λc − λa) = (λρ − λσ)(c2φ − s2φ) . (A.1.8)

In addition, using only c2φ + s2φ = 1 we can write down the following useful identities

c2φ =
λρ − λa
λρ − λσ

=
λc − λσ
λρ − λσ

,

s2φ =
λρ − λc
λρ − λσ

=
λa − λσ
λρ − λσ

,

(A.1.9)

which are used extensively throughout this paper. This set of operations will be used both

for φ and ψ rotations.

A.2 Useful identities

From the trace and determinant identities, see eq. A.1.3,

λ− + λ+ = λa + λc , (A.2.1)

λ1 + λ2 = λ− + λ0 , (A.2.2)

λ+λ− = λaλc −
[

∆m2
eec13s13

]2
, (A.2.3)

λ1λ2 = λ0λ− −
[

ǫ∆m2
eec12s12c(φ−θ13)

]2
, (A.2.4)

where we recall that the λa,b,c in the tilde basis are defined in eq. 2.2.5. Another useful

relation is

c(φ−θ13)s(φ−θ13) = s13c13
a

∆λ+−
, (A.2.5)

then for a≪ ∆m2
ee,

s(φ−θ13) ≈ s13c13
a

∆m2
ee

. (A.2.6)

A.3 Limits

We list the values of the angles and the eigenvalues in vacuum and for a→ ±∞ in table 4.
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a 0 −∞ +∞
φ θ13 0 (π/2) π/2 (0)

ψ θ12 0 π/2

λ− s212∆m2
21 λa (λc) λc (λa)

λ0 c212∆m2
21 λb λb

λ+ ∆m2
31 λc (λa) λa (λc)

λ1 0 λa (λc) λb

λ2 ∆m2
21 λb λc (λa)

λ3 ∆m2
31 λc (λa) λa (λc)

Table 4: The NO (IO) limits of the angles and the eigenvalues in vacuum and for a→ ±∞,

where λa = a+(s213+ǫs212)∆m2
ee, λb = ǫc212∆m2

ee, and λc = (c213+ǫs212)∆m2
ee, from eq. 2.2.5.

A.4 Characteristic equation

The characteristic equation for neutrino oscillation in matter is

λ3 −
(

∆m2
21 + ∆m2

31 + a
)

λ2 +
{

∆m2
21∆m

2
31 + a

[

(c212 + s212s
2
13)∆m

2
21 + c213∆m2

31

]}

λ

−
(

ac212c
2
13∆m2

21∆m2
31

)

= 0 . (A.4.1)

The coefficient of the λ2 term is the sum of the eigenvalues, the coefficient of the λ term is

the sum of pairs of the eigenvalues, and the coefficient of the λ0 term is the triple product

of eigenvalues.

We now verify that our matter mass eigenvalues satisfy these expressions to second

order. First, the λ−,0,+ eigenvalues satisfy the first requirement exactly as was discussed

in [10]. Since
∑

i=1,2,3 λi =
∑

i=−,0,+ λi, so the λ1,2,3 eigenvalues also satisfy the first

requirement. Also, from eq. 3.1.3,
∑

i=1,2,3 λ
(2)
i = 0, so the λ1,2,3 eigenvalues also satisfy

the first requirement exactly through second order. We have also verified that each of the

other two conditions are satisfied two second order.

A.5 Unitarity of the W matrix

We verify that the V matrix satisfies the unitarity requirements, V V † = 1. UmMNS is

unitary by definition. Then we just need that the W matrix is unitary. The zeroth order

requirement is W0W
†
0 = 1 which is immediately satisfied since W0 = 1. At first order

the requirement is W1 + W †
1 = 0. This is equivalent, to the requirement that W1 is anti-

Hermitian, or that Ȟ1 is Hermitian, which they are, respectively, see eq. 3.2.5.

To second order, the unitarity requirement becomes, W2 +W †
2 = −W 2

1 . That is, that

the Hermitian part of W2 must be −W 2
1 /2, which it is. An additional anti-Hermitian part

is unconstrained and is calculated through perturbation theory.
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A.6 V -matrix, S-matrix comparison

In the S-matrix method, the oscillation probabilities are given by, see for example [10],

SS(L) = UmMNS e
−iH0LΩ(L) (UmMNS)†

Ω(L) = 1 + (−i)
∫ L

0
dx eiH0xH1e

−iH0x

+ (−i)2
∫ L

0
dx eiH0xH1e

−iH0x

∫ x

0
dx′ eiH0x′H1e

−iH0x′ + · · · .

(A.6.1)

where H0 and H1 are given by eqs. 2.4.3 and 2.4.4. (We drop the “check” in this appendix.)

In the V-matrix method, used in this paper, the oscillation probabilities are given by,

SV (L) = UmMNS We−iΛL/2EW † (UmMNS)†

(Λ)ij = δij(λi + λ
(1)
i + λ

(2)
i + · · · )

W = 1 +W1 +W2 + · · · ,
(A.6.2)

where the λi/2E are the eigenvalues of H0. λ
(n)
i and Wn are given by n-th order perturba-

tion theory.

Specializing to the case when the perturbing Hamiltonian has no diagonal elements,

(H1)ij = (1 − δij)hij/2E , (A.6.3)

which is relevant for the perturbation discussed in this paper, W can be calculated from

eq. 3.2.5 for first order and eq. 3.2.6 for second order.

Then it is trivial to show that to first order,

[(UmMNS)†SS(L)UmMNS]ij = [(UmMNS)†SV (L)UmMNS]ij

= δije
−iλiL/2E + (1 − δij)

hij
∆λij

(

e−iλiL/2E − e−iλjL/2E
)

.

(A.6.4)

We have also checked that they are equal at second order. As this is just a consistency

check of perturbation theory, we postulate that it is true to all orders, without presenting

an all orders proof.

A.7 CP violating term

It is useful to rewrite the numerator of eq. 4.2.3 as ǫ(∆m2
ee)

3(1− ǫ cos 2θ12 − ǫ2c212s
2
12). We

evaluate Deµ through first order, keeping terms that are explicitly second order in ǫ, noting

that dividing by ∆λ21 introduces an additional factor of ǫ in vacuum.

(Deµ)(0) + (Deµ)(1) = sδJr
ǫ(∆m2

ee)
3(1 − ǫ cos 2θ12)

∆λ21∆λ31∆λ32
, (A.7.1)

where Jr is the reduced Jarlskog factor, see ref. [20],

Jr ≡ c12s12c
2
13s13c23s23 . (A.7.2)
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The dropped higher order contribution to the numerator is

− ǫ2c212s
2
12

∆λ+− + (∆m2
ee − a)

4(∆λ+−)3
×

[

(∆m2
ee)

2 + 3a2 − 4c2θ13a∆m2
ee + (∆m2

ee + a)∆λ+−

]

, (A.7.3)

which is −ǫ2c212s212 in vacuum as desired since ∆λ+− is ∆m2
ee in vacuum.
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