
Host Galaxy Identification for Supernova Surveys

Ravi R. Gupta1, Steve Kuhlmann1, Eve Kovacs1, Harold Spinka1, Richard Kessler2,3,

Daniel A. Goldstein4,5, Camille Liotine1, Katarzyna Pomian1, Chris B. D’Andrea6,7, Mark

Sullivan7, Jorge Carretero8,9, Francisco J. Castander8, Robert C. Nichol6, David A.

Finley10, John A. Fischer11, Ryan J. Foley12,13, Alex G. Kim5, Andreas Papadopoulos6,14,

Masao Sako11, Daniel M. Scolnic2, Mathew Smith7, Brad E. Tucker15, Syed Uddin17,

Rachel C. Wolf11, Fang Yuan15,16, Tim M. C. Abbott18, Filipe B. Abdalla19,20, Aurélien
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ABSTRACT

Host galaxy identification is a crucial step for modern supernova (SN) surveys

such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope

(LSST), which will discover SNe by the thousands. Spectroscopic resources are

limited, so in the absence of real-time SN spectra these surveys must rely on host

galaxy spectra to obtain accurate redshifts for the Hubble diagram and to im-

prove photometric classification of SNe. In addition, SN luminosities are known

to correlate with host-galaxy properties. Therefore, reliable identification of host

galaxies is essential for cosmology and SN science. We simulate SN events and

their locations within their host galaxies to develop and test methods for match-

ing SNe to their hosts. We use both real and simulated galaxy catalog data from

the Advanced Camera for Surveys General Catalog and MICECATv2.0, respec-

tively. We also incorporate “hostless” SNe residing in undetected faint hosts into

our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm

- 20921-400, Brazil
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is run on catalog data and matches SNe to their hosts with 91% accuracy. We

find that including a machine learning component, run after the initial matching

algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost

in efficiency (true positive rate). Although the exact results are dependent on

the details of the survey and the galaxy catalogs used, the method of identifying

host galaxies we outline here can be applied to any transient survey.

Subject headings: catalogs — galaxies: general — supernovae: general — surveys

1. INTRODUCTION

A seemingly simple but non-trivial problem that supernova (SN) surveys must confront

is how best to match the SNe that they discover with their respective host galaxies. In

the absence of spectroscopic or distance information about the SNe and the galaxies nearby,

matching each SN to its host is a difficult task that is impossible to accomplish with complete

accuracy. Although proximity in projected distance and spectroscopic redshift agreement

between the SN and galaxy are the best indicators we have for positively identifying the

host, even these indicators are not guaranteed to yield the correct match given that some

SNe occur in galaxies belonging to pairs, groups, or clusters – the members of which have

similar redshifts.

The problem is further compounded by the fact that a small fraction of SNe will occur

in dwarf galaxies or globular clusters that are too faint to be detected, even in deep stacked

images, resulting in so-called “hostless SNe.” In particular, the recent new class of SNe

known as superluminous SNe (Gal-Yam 2012) tend to explode in low-mass dwarf galaxies

and thus often appear to be hostless upon discovery (Barbary et al. 2009; Neill et al. 2011;

Papadopoulos et al. 2015). There is also evidence that the class of peculiar “calcium-rich

gap” SNe either occur in the outskirts of their hosts galaxies (at a projected distance of

> 30 kpc) or in low-luminosity hosts (Kasliwal et al. 2012). Moreover, truly hostless SNe

are possible among intragroup or intracluster stars that have been gravitationally stripped

from galaxies (Gal-Yam et al. 2003; McGee & Balogh 2010; Sand et al. 2011; Graham et al.

2015). In Figure 1 we present a schematic illustrating one example of the difficulty in host

galaxy identification.

Prior to the era of large SN surveys, the number of SNe discovered was low enough

that host galaxies could be identified by visual inspection of images. With the advent

of SN surveys such as the Supernova Legacy Survey (SNLS) and the Sloan Digital Sky

Survey-II Supernova Survey (SDSS-SNS), came more automated methods. Each of these
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SN

Fig. 1.— An illustrated example of the problem of host galaxy identification. The supernova

(labeled “SN”) lies in between two galaxies. The centroid of the smaller galaxy to the right

is closer to the SN in angular separation than the centroid of the larger galaxy on the left,

but it is possible that the smaller galaxy is a distant background galaxy. The blue arrows

indicate the light radii of the galaxies (approximated as ellipses) and point toward the SN

position. This “directional light radius” (DLR) is discussed in Section 3. A real scenario

similar to this schematic can be seen in Figure 2 of Dawson et al. (2009).

surveys has thousands of SNe, most of which are photometrically identified and thus have no

redshift information to aid in host identification. For SNLS, Sullivan et al. (2006) defined a

dimensionless parameter, R, that is an elliptical radius derived from outputs of SExtractor

(Bertin & Arnouts 1996) and computed for every candidate host galaxy. R connects the SN

position to the galaxy center and is a measure of the SN-host separation normalized by the

apparent size of the galaxy. For each SN, SNLS selected the galaxy with the smallest value

of R as the host, under the condition that R ≤ 5. In Sako et al. (2014), SDSS-SNS used a

method based on Sullivan et al. (2006) and defined a quantity termed the directional light

radius (DLR). The DLR is the elliptical radius of a galaxy in the direction of the SN in units

of arcseconds. In Figure 1, the DLR for each galaxy is represented by the blue arrows. The

dimensionless distance to the SN normalized by DLR is called dDLR, and this quantity is

analogous to R. For SDSS-SNS, the host matching was performed on all candidate transients

by searching within a radius of 30′′ and selecting the galaxy with the minimum dDLR. There

was a nominal restriction which required that the host have dDLR< 4. However, for a



– 6 –

subset of ∼ 100 SNe the host selected by this algorithm was manually changed after visual

inspection of images and/or comparisons of redshifts (see Section 8 of Sako et al. (2014)).

This human intervention added a bias that cannot be modeled or accurately quantified, and

we wish to avoid such issues with host galaxy identification in the future, particularly for

cases of SNe to be used in cosmological analyses. However, we note that visual inspection

and human decision are likely necessary for cases of peculiar transients and studies of SN

physics. The goal of this work is to remove the human subjectivity for cosmologically-useful

SNe by using a purely automated algorithm, and to use simulations to determine associated

biases stemming from incorrect host matches.

Modern surveys such as the Dark Energy Survey (DES; The Dark Energy Survey Col-

laboration 2005; Bernstein et al. 2012) are now discovering SN candidates by the thousands.

The DES SN Program will discover several thousand SNe Ia over five years, and upcoming

surveys such as the Large Synoptic Survey Telescope (LSST; LSST Science Collaboration

et al. 2009) expect to discover hundreds of thousands of SNe Ia. Visual inspection of all SN

images to identify hosts will be too time-consuming, and a determination of the rates of false

positives and missed detections cannot be obtained. Therefore, a well-defined automated al-

gorithm that can be run on all SN candidates is required in order to match SN with their

host galaxies and quantify systematic uncertainties.

Furthermore, the problem of host matching will have a significant impact on cosmology

in the near future. Given the large number of SNe that will be discovered, acquiring the

resources to confirm each spectroscopically is an unattainable goal. As a result, we rely

predominantly on redshifts obtained from spectra of the host galaxies. It is therefore crucial

to accurately identify the host galaxy because a misidentified host can result in an incor-

rect redshift assigned to the SN, which will propagate into errors in derived cosmological

parameters. Even if the misidentified host has a redshift similar to that of the true host, its

host properties may be different and thus result in inaccurate corrections for the host-SN

luminosity correlation (Kelly et al. 2010; Sullivan et al. 2010; Lampeitl et al. 2010; Gupta

et al. 2011; D’Andrea et al. 2011; Childress et al. 2013; Pan et al. 2014; Wolf et al. 2016).

The method of host galaxy identification that we develop here is applicable to extra-

galactic transients in general, such as gamma-ray bursts, tidal disruption events, and electro-

magnetic counterparts to gravitational wave sources. We are interested in SNe in particular,

but classification of a discovered transient often does not occur immediately. Therefore, iden-

tification of the host galaxy usually comes before classification of the event itself, and often

aids in the classification process. In fact, in the absence of a SN spectrum, SN typing relies

on a well-sampled light curve and can be further improved with a redshift prior from the

host galaxy. We do not concern ourselves with the details of SN survey detection efficiency
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for this work. We investigate host matching for a range of realistic SN locations, including

in galaxies too faint to be detected.

In this paper, we build upon existing automated algorithms for host galaxy identification

such as those implemented in Sullivan et al. (2006) and Sako et al. (2014). We go one step

further by simulating SN events and placing them in host galaxies to test our host matching

algorithm’s ability to recover the true hosts. We also include a treatment of hostless SNe in

our analysis and develop a machine learning classifier to compute the probability that our

algorithm has matched a SN to its correct host.

In Section 2, we describe the real and simulated galaxy catalogs from which we draw

our hosts and also explain the method we use to simulate SN locations. In Section 3, we use

the same galaxy catalogs and devise a matching algorithm to pair our SNe to their respective

host galaxies. No matching algorithm will be 100% accurate, so in Section 4.1 we explore

features of our host matching results that correlate with correct and wrong matches. We

then examine the benefits of using these features as input into a machine learning classifier

(Section 4), trained on simulated data, that returns probabilities of correct matches and

helps identify potential cases of mismatched host galaxies. In Section 5, we summarize our

findings and outline future work.

2. METHODS

We begin by selecting catalogs of galaxies that will serve as hosts for simulated SN

locations. Our process of simulating SNe (Section 2.2) and our host-matching algorithm

(Section 3) both rely on certain physical characteristics of galaxies, and any galaxy catalog

we choose must contain these values. Galaxies that are to be selected as SN hosts must have

redshifts, preferably spectroscopic, although high-quality photometric redshifts (“photo-z’s”)

are also useful. They must also have morphology or surface brightness profile information

that will be used to determine the placement of the SNe. All galaxies (hosts and galaxies

nearby SNe) must have coordinates of their centroids in addition to shape, size, and orien-

tation information. We use both a simulated galaxy catalog, where the true properties are

known, and also a galaxy catalog generated from real data, which is more realistic and more

representative of what is available for actual SN surveys. We use the simulated (“mock”)

galaxy catalog to test the algorithm, and then use the real galaxy catalog to test if the sim-

ulations accurately represent observations. In this sense, using both simulations and data

serves as a good consistency check. Where necessary, we assume a flat ΛCDM cosmology

with ΩM = 0.3 and H0 = 70 km s−1 Mpc−1.
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2.1. Galaxy Catalogs

2.1.1. Simulated Galaxy Catalog

For our mock galaxy catalog we use the MICE-Grand Challenge light-cone halo and

galaxy catalog release known as MICECATv2.0. This catalog was generated by the Marenos-

trum Institut de Ciències de l’Espai (MICE) collaboration1. It is complete for DES-like

wide-field surveys and contains galaxies out to a redshift of 1.4 and down to a magnitude

of i = 24. Beginning with a dark matter halo catalog derived from an N -body simulation,

the mock galaxy catalog is generated from a combination of halo occupation distribution

and subhalo abundance matching techniques. The catalog was designed to follow local ob-

servational constraints, such as the local galaxy luminosity function (Blanton et al. 2003;

Blanton et al. 2005b), galaxy clustering as a function of luminosity and color (Zehavi et al.

2011), and the color-magnitude diagram (Blanton et al. 2005a). For details about the input

N -body simulation and construction of the catalog see Fosalba et al. (2015), Crocce et al.

(2015), and Carretero et al. (2015). The catalog was downloaded via custom query from

the CosmoHUB portal2. We select a ∼ 3 square-degree region which contains ∼ 300, 000

galaxies.

The MICECATv2.0 galaxies are modeled as ellipses using a two-component “bulge-plus-

disk” model, with the half-light radius of each component given. It is assumed that the axis

ratios for both components are identical. Elliptical galaxies are bulge-dominated while spiral

galaxies are generally more disk-like. Morphological parameters are estimated following

Miller et al. (2013). MICECATv2.0 uses a color-magnitude selection to determine which

galaxies are bulge-dominated (bulge fraction = 1), following observations from Schade

et al. (1996) and Simard et al. (2002). Approximately 15% of galaxies are bulge-dominated,

and the remaining galaxies are disk-dominated and have bulge fraction < 0.4.

The galaxies each have a redshift (which includes peculiar velocity), position angle, as

well as apparent and absolute magnitudes in the DES grizY bands (Flaugher et al. 2015).

Here we work only with the i-band magnitude for better comparison with our data catalog

(Section 2.1.2). There are also galaxy properties such as stellar mass, gas-phase metallicity,

and star formation rate included in the MICECATv2.0 catalog. The obvious benefit of the

mock catalog is that the true quantities are known. Also, the bulge+disk construction of

galaxies in MICE provides implicit Sérsic profile information for all galaxies which is useful

for the placement of SNe (Section 2.2.1). However, the mocks we use here do not account for

1https://www.ice.cat/mice

2http://cosmohub.pic.es
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instrumental or observational effects that cause problems in real data such as the instrument

point-spread function (PSF) or deblending detected sources in images.

2.1.2. Real Galaxy Catalog

We also use real, high-quality galaxy data from the Advanced Camera for Surveys

General Catalog (ACS-GC). This is a photometric and morphological database of publicly

available data obtained with the Advanced Camera for Surveys (ACS) instrument aboard

the Hubble Space Telescope (HST ) (Griffith et al. 2012). The catalog was created using the

code Galapagos (Häußler et al. 2007, 2011), which incorporates the source detection and

photometry software SExtractor (Bertin & Arnouts 1996) and the galaxy light profile fitting

algorithm GALFIT (Peng et al. 2002).

In particular, we use the data from the ∼ 1.8 square-degree Cosmological Evolutionary

Survey (COSMOS; Scoville et al. 2007), which contains approximately 305,000 objects. The

COSMOS images were taken with ACS’s Wide Field Camera (WFC) F814W filter with a

scale of 0.05 arcsec pixel−1 and a resolution of 0.09′′ FWHM. The F814W filter is a broad

i-band filter spanning the wavelength range of roughly 7000−9600 Å. The ACS-GC provides

≈ 8000 reasonably secure spectroscopic redshifts from the zCOSMOS redshift survey (Lilly

et al. 2009). In addition, there are ≈ 250, 000 high-quality photo-z’s from Ilbert et al. (2009)

computed from 30-band photometry spanning the UV to mid-IR range. For galaxies with

F814W < 24 mag, the median error on photo-z’s is 0.02. For more about the ACS-GC, see

Griffith et al. (2012). For galaxies with half-light radii of 0.25′′, the 50% completeness level is

F814W ' 26 mag (Scoville et al. 2007). To approximately match the MICECAT magnitude

limit of i < 24, we impose a brightness limit of F814W < 24 mag which removes 56% of

objects from the ACS-GC.

Since here we are interested only in a catalog of galaxies, we identify compact objects

and remove them. We use the definition of “compact object” in Griffith et al. (2012), i.e.,

objects with µ ≤ 18 or (µ ≥ 18 and re ≤ 0.03′′), where re is the half-light radius determined

from GALFIT and µ is the surface brightness computed from the magnitude and ellipse area.

Excluding these removes an additional 9% of objects. We have confirmed that after removing

compact objects and requiring F814W < 24 mag the average galaxy density (number per

square arcmin) agrees with MICECATv2.0, with some difference expected due to differences

in the DES i and HST F814W filters.



– 10 –

2.2. Simulating Supernovae in Host Galaxies

Kelly et al. (2008) studied the distribution of SNe within their host galaxies and found

that SNe Ia as well as SNe II and SNe Ib track their host galaxy’s light. Therefore, for the

purpose of this study, it seems reasonable to use the surface brightness profile of a galaxy

to determine the placement of a simulated SN location within it. In addition, since the

probability of a SN occurring in a galaxy is roughly proportional to the mass of the galaxy

(Sullivan et al. 2006; Smith et al. 2012), which is in turn proportional to the luminosity,

when selecting host galaxies we weight by the galaxy luminosity. We describe this process

in more detail below.

2.2.1. Host Galaxy Light Profiles

We use the supernova analysis software package SNANA3 (Kessler et al. 2009) to determine

the placement of simulated SN locations onto host galaxies. This software was used to place

simulated SNe (a.k.a. “fakes”) onto real galaxies for monitoring of the difference imaging

pipeline and the detection efficiency of the DES Supernova Program (Kessler et al. 2015).

The placement of SNe requires an input galaxy catalog that serves as a “host library” and

contains information such as galaxy positions, redshifts, magnitudes, orientations, shapes,

sizes, and light profile parameters.

For each simulated SN, a random host galaxy is selected from the input host library,

under the condition that the redshift of the galaxy matches the redshift of the SN to within

0.001. For the subset of galaxies that satisfy this redshift agreement criterion we then

weight the galaxies by their luminosity, assuming a simplistic linear probability function

such that galaxies with higher luminosity are preferred over those with lower luminosity.

For MICECAT the absolute magnitudes are provided and so we convert the DES i-band

absolute magnitude into a luminosity and use this as the weight. For ACS-GC, no absolute

magnitudes are provided and so instead we compute a pseudo-absolute magnitude defined as

the apparent magnitude in the F814W filter minus the distance modulus (calculated from the

galaxy redshift and our assumed cosmology). We ignore K-corrections which are typically

. 1 mag and increase with redshift on average. This pseudo-absolute magnitude is then

converted into a luminosity which is used as the weight. Once a suitable host is selected, the

exact coordinates of the SN are chosen by randomly sampling from the host’s light profile

so that the probability of the SN being at a particular location relative to the host galaxy

3http://das.sdss2.org/ge/sample/sdsssn/SNANA-PUBLIC/
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center is weighted by the host’s surface brightness. The actual redshifts and coordinates of

the potential host galaxies in the catalog are used in determining the placement of SNe.

Galaxy brightness profiles are often described by a Sérsic profile (Sérsic 1963), which

gives brightness, I, as a function of distance from the galactic center, r:

I(r) = I0 exp

[
−bn

(
r

re

)1/n
]
, (1)

where re is the half-light radius, n is the Sérsic index, and bn is a constant that depends on

n. For details on Sérsic profiles see Ciotti (1991) and Graham & Driver (2005). A profile

with n = 4 is known as a de Vaucouleurs profile (de Vaucouleurs 1948) and is generally a

good fit to elliptical galaxies. A profile with n = 1 is an exponential profile, which is a good

description of disk galaxies. Galaxies with large values of n are more centrally-concentrated,

but also contain more light at large r, in the wings of the distribution.

When creating the host library for the MICECAT galaxies, we assume that the bulge

component of the MICE mock galaxies has a de Vaucouleurs profile while the disk component

has an exponential profile. The half-light radii for each component are given by the catalog

parameters bulge length and disk length. The bulge fraction provides the weight given

to the bulge component, and SNANA is able to construct weighted sums of Sérsic profiles and

thus the total light profile for each galaxy in the host library.

For the ACS-GC galaxies, GALFIT was used by Griffith et al. (2012) to simultaneously

fit a half-light radius re and a Sérsic index in the range 0.2 ≤ n ≤ 8.0. We use this single

fitted Sérsic profile to reconstruct the light profile in SNANA. To help ensure that our ACS-GC

host galaxies are truly galaxies and that they have well-measured light profile parameters

for placing simulated SNe, we create an ACS-GC host library by imposing the following

selection criteria on sources. In parentheses we list the cumulative fraction of the total

ACS-GC sample remaining after each additional criterion is imposed. We require each host

1. Have a F814W magnitude < 24 (43.6%)

2. Not be a compact source, where “compact source” is defined as in Griffith et al. (2012)

and Section 2.1.2 (37.8%)

3. Have a redshift in the catalog (36.6%)

4. Have errors on the GALFIT Sérsic parameters re and n that are < 15% and have

values of re and n not identically equal the maximum allowed values (max{re} = 37.5′′,

max{n} = 8.0), since those cases are often indicative of failures in the fits (30.8%)
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This leaves us with ≈ 94, 000 galaxies as potential hosts. These requirements are intended to

maintain the balance between reliability of the host-galaxy parameters and the bias against

faint galaxies whose measured properties are more uncertain. While the selection criteria

listed above will still allow some fraction of galaxies with faulty GALFIT parameters to serve

as hosts, we find that only 1% of our selected host galaxies have extreme values of re > 5′′.

We have run tests where we modified the values of the Sérsic indices in the host library and

found that the effect of the Sérsic index is subdominant to the effect of size of the half-light

radius when it comes to the simulated SN-host separation.

2.2.2. Redshift Distribution

For the purposes of testing algorithms to identify the host galaxy, the SN coordinates

are the only relevant SN quantity. In order to have a realistic redshift distribution similar to

that of an actual SN survey, we simulate SNe Ia with the observing conditions and detection

efficiency of the DES SN Program. We assume the SN Ia rate from Dilday et al. (2008)

(i.e., (2.6× 10−5)× (1 + z)1.5 SNe Mpc−3 yr−1), which was also assumed in Bernstein et al.

(2012). We simulate SNe in the range 0.08 < z < 1.4 as these are the redshift limits of

MICECATv2.0. SNANA generates each redshift from a random comoving volume element

weighted by the SN Ia volumetric rate and selects a host from the host library that matches

the redshift with a tolerance which we have set to 0.001. Since there is less volume at

lower redshifts and we intend to simulate many SNe, we allow for individual galaxies in the

host library to host more than one SN. This does not pose a problem for this study since

each SN is drawn from a different random number which is used to place it. As a result,

a particular galaxy may be a host for multiple SNe, but each SN will have an independent

random orientation with respect to that host.

We simulate SN Ia light curves using the SALT2 model (Guy et al. 2007) and the

measured SN cadence and observing conditions of the first 2.5 years of the DES SN survey.

To sculpt the redshift distribution we apply the DES detection efficiency as a function of S/N

derived from DES SN Year 1 data (Diehl et al. 2014) and impose the DES transient trigger

criterion of 2 detections in any filter, occurring on different nights. We simulate 100,000 SNe

each on the MICECAT and ACS-GC galaxies, using their respective host libraries and each

satisfying the DES trigger criterion. The resulting redshift distribution (which is the same

for both MICECAT and ACS-GC by construction) as well as the magnitude distribution of

the hosts is shown in Figure 2.

Here we have ignored Milky Way extinction and Poisson noise from the host galaxy when

simulating our SNe and computing S/N . We emphasize that the goal of this simulation is
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Fig. 2.— Left : Redshift distribution for the 100K SNe simulated on MICE and ACS-GC

galaxies. By construction, the redshift distributions for MICE and ACS-GC are nearly

identical. Right : The host galaxy magnitude distribution for these SNe. The ACS-GC host

magnitudes measured in the F814W filter by SExtractor (MAG BEST) are shown in filled

blue; the MICE host magnitudes in the DES i filter are shown in red.

purely to obtain a redshift distribution that is somewhat realistic, and the details of the

generated SNe Ia and their light curves are not relevant here. A more detailed simulation

(including galaxies measured by DES, galactic extinction, fits to light curves) is planned for

a future paper.

2.2.3. Comparison with SN Data

We find that our host galaxy (pseudo-)absolute magnitude distributions appear roughly

consistent with the SN Ia host galaxy SDSS i-band absolute magnitude distribution derived

from SDSS data in Yasuda & Fukugita (2010). To check that we are placing SNe at reasonable

separation distances from their hosts given the MICECAT and ACS-GC host libraries, we

plot the distribution of SN-host separations and compare to actual SN survey data. Rather

than comparing the SN-host angular separations, we compare projected SN-host separation

distance, in units of kpc, to account for the differences in redshift distributions between

different surveys. This quantity is shown in Figure 3, where we overplot data for the SNe

from the SDSS-SNS and SNLS3 that have identified host galaxies and compare them with our

simulated distributions. The SDSS-SNS data includes 1737 spectroscopically-confirmed or

photometrically-classified SNe (with host-galaxy spectroscopic redshifts) of all SN types with

hosts from Sako et al. (2014), while the SNLS3 data includes only the 268 spectroscopically-
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Fig. 3.— Distribution of the SN-host projected separation for our SN simulations using

both ACS-GC (filled blue histogram) and MICECATv2.0 (red histogram) galaxy catalogs

(100,000 SNe each). For comparison with data we also show 1737 SNe from SDSS-SNS

(green circles) and 268 SNe from SNLS3 (black triangles).

confirmed SNe Ia with hosts published in Guy et al. (2010). In general, our simulated SNe

show very good agreement with data, indicating that our methods are sensible.

The two datasets (SDSS and SNLS) agree fairly well within errors, although SDSS seems

to be less efficient than SNLS at detecting SNe near the core of the galaxy, as seen in the first

bin in Figure 3. This difference might be partly explained by the SDSS SN spectroscopic

follow-up strategy. We have confirmed in the data that the spectroscopically-confirmed SDSS

SNe are biased against SNe near galactic cores when compared to the photometrically-typed

SNe (whose redshifts were obtained from host-galaxy spectra taken after the SNe had faded

away). Since SDSS was a lower-redshift survey compared to SNLS, contamination from

bright, relatively nearby hosts likely prevented SDSS from obtaining some SNe spectra.

The distribution of simulated SN-host separation on MICECAT galaxies and ACS-GC

galaxies also agree quite well with each other. This is not surprising given that the distribu-

tion of galaxy sizes are very similar between the two catalogs. This can be seen in Figure 4

when comparing ACS-GC re sizes (blue filled histogram) to the MICECAT sizes (red open

histogram). For the MICECAT sizes we plot bulge length for bulge-dominated galaxies
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Fig. 4.— Comparison of sizes for galaxies in the MICECATv2.0 and ACS-GC COSMOS

host libraries. For MICE, the galaxy size plotted is the bulge length for bulge-dominated

galaxies and the disk length, otherwise.

and the disk length, otherwise. The similarity in the ACS-GC re and MICECAT size dis-

tributions makes sense since both are half-light radii derived from HST data4. However,

there is an excess of SNe at low SN-host separations in MICECAT compared to ACS-GC

(first two bins in Figure 3). This is likely due to the excess of small galaxies seen in MICE

in Figure 4. ACS-GC sizes are limited by the PSF of the HST images (0.09 arcsec), while

the minimum size of MICECAT galaxies is 10−4 arcsec. Such small galaxies in MICECAT

would go unresolved in ACS-GC and thus would appear larger.

For ACS-GC, we also show in Figure 4 the A IMAGE value from SExtractor (black open

histogram), which is used to perform the host matching (Section 3.1). A IMAGE is a measure

of size derived from the second moments of the light distribution in the raw images; unlike

re, it is not derived from fitting a model. For galaxies that are well-measured with GALFIT

there is a tight linear relationship between re and A IMAGE.

4MICECAT sizes are simulated from relations derived from HST data (Miller et al. 2013; Simard et al.

2002)
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3. HOST MATCHING ALGORITHM

3.1. Directional Light Radius (DLR) Method

We employ the DLR host matching method used for the final data release of the SDSS-

SNS and described in Sako et al. (2014). As mentioned in the Introduction, this method is

similar to that developed by Sullivan et al. (2006) for SNLS. Explicitly, the distance from a

SN to a nearby galaxy, normalized by the galaxy’s DLR is termed dDLR and is defined as

dDLR =
SN-galaxy angular separation (arcsec)

DLR (arcsec)
(2)

Our method assumes that galaxies in images are elliptical in shape and can be described

by a semi-major axis A and a semi-minor axis B. In addition, the galaxy position angle φ is

the orientation of A relative to a fixed coordinate axis on the sky. Given these quantities for

each galaxy along with the coordinates of the SN, we can compute dDLR. When matching a

SN to its host, we first begin by searching for all galaxies within 30′′ of the SN position. We

compute dDLR for each of these galaxies and order them by increasing dDLR. The nearest

galaxy in dDLR-space (i.e., the galaxy with the minimum dDLR) is designated as the host.

Based on our simulations, 0.05% of MICE SNe and 0.6% of ACS-GC SNe are actually

located > 30′′ from the center of their hosts. We remove these SNe from our sample, but it

is worthwhile to note that it is possible that some small fraction of low-redshift SN will be

located at large angular separations from their hosts.

We emphasize that DLR is a survey-dependent quantity as it relies on measures of A and

B which are themselves survey-dependent. For example, measurements of the shape and size

of galaxies depend on the image filters and PSFs. Furthermore, the algorithm used to make

these measurements may differ between surveys as well. For MICECAT, each galaxy has only

a disk length and a bulge length. Therefore, when matching SNe to galaxies, we assume

that a galaxy has a semi-major axis equal to bulge length if bulge fraction = 1 and equal

to disk length, otherwise (bulge fractions that are not identically unity are all < 0.4). This

semi-major axis is plotted for the MICECAT sizes in Figure 4. For ACS-GC, we use the fitted

GALFIT position angle, Sérsic index n, and size scale re in the host library when placing

the SNe, but use the measured SExtractor parameters A IMAGE, B IMAGE, and THETA IMAGE

when computing DLR and performing the matching, since these types of parameters are

more readily available in a real survey catalog. We find that matching using re to compute

DLR for ACS-GC galaxies results in a greatly reduced matching accuracy due to the fact

that, in the absence of a quality cut on GALFIT parameters, some of the fainter galaxies

can have unreliable values of re.
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3.2. Magnitude Limits & Hostless SNe

A magnitude-limited SN survey will detect some fraction of SNe in low-luminosity galax-

ies that fall below this magnitude limit. We wish to understand the effect of such hostless

SNe on host matching. As an example, for the real SN data used in Figure 3, ≈ 6% of the

SNLS SNe and ≈ 4% of the SDSS SNe were excluded from the figure because they had no

identified host. For SNLS, “hostless” was defined as having no galaxies within 5R (Sullivan

et al. 2006), and for SDSS the nominal definition was having no galaxies within 4 dDLR, but

with some manual corrections based on visual inspection and redshift agreement (Sako et al.

2014). In this paper we select a fiducial hostless rate of 5% and näıvely assume that these

SNe are hostless because the true host is fainter than the magnitude limit. Our definition

of “hostless” here therefore differs from the definitions of SDSS and SNLS, where “hostless”

could simply mean the true host lies beyond a certain distance threshold. Also our definition

does not account for the possibility of SNe occurring outside of galaxies, within the intra-

group or intracluster medium. However, we believe that our treatment of hostless galaxies

is sufficient for the illustrative purpose of this study.

To create our hostless sample, we impose a magnitude limit on our galaxy catalogs when

performing the matching such that 5% of our simulated SNe are hosted by galaxies with

brightnesses below this limit. These limits are ilim = 23.67 for MICECAT and F814Wlim =

23.68 for ACS-GC. Thus, when running our host-matching algorithm we first remove galaxies

fainter than the magnitude limit, thereby creating hostless SNe comprising 5% of our sample

for which we know the hosts will be incorrectly matched to galaxies brighter than the true

host. Fixing the hostless rate to 5% for both galaxy catalogs allows us to better compare the

matching accuracies. Our number of hostless SNe increases with redshift, which is expected

since galaxies at higher redshift are generally fainter. There is an indication of a similar

trend for the hostless SNe in SNLS, though the statistics are low. For SDSS, the redshift

distribution for hostless SNe is flatter, but the redshift range of SDSS is roughly half the

range of SNLS. Also, the SDSS sample includes photometrically-classified SNe with host

galaxy redshifts, which by construction cannot be hostless.

Our study is limited by the magnitude depth of our chosen galaxy catalogs, both simu-

lated and real. Current and future surveys will eventually surpass these in depth, revealing

even fainter galaxies. In fact, even our DES-like MICE catalog is only complete out to i = 24,

which is the estimated five-year depth of the DES wide-field survey. However, the DES SN

fields are observed more frequently and attain a one-season co-add 5σ limiting magnitude of

∼ 26 for point sources in the shallow fields and ∼ 27 in the deep fields, which will increase

to ∼ 0.85 mag deeper when the full five seasons are co-added (Bernstein et al. 2012). We

also point out that the true rate of hostless SNe in any survey depends on the specifics of
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the survey, the SN type, and the host galaxy luminosity functions (LFs) for those respective

types, among other things. For the purpose of this analysis we believe a 5% hostless rate to

be a reasonable assumption. In a future paper, we intend to focus specifically on matching

the hosts of SNe Ia, and we plan to implement prior knowledge of the SN Ia host galaxy LFs

into our simulations.

3.3. Results & Performance

Our main method of host matching is the DLR method described in the previous sec-

tion. A summary of the host matching results for both MICECAT and ACS-GC is given

in Table 1. We also match based on nearest angular separation since this is the simplest

and computationally easiest method. This method agrees with the DLR method 91% of the

time for MICECAT and 95% of the time for ACS-GC. However, the DLR method slightly

outperforms the angular separation method for both catalogs. We find that when using

MICECAT, the DLR matching accuracy is 90.11% and the nearest separation matching ac-

curacy is 88.35%. When using ACS-GC, the DLR matching accuracy is 92.21% and the

nearest separation matching accuracy is 90.62%. Recall that 5% of the mismatch is due to

hostless SNe which get matched to galaxies brighter than their true hosts. For MICECAT,

the 2nd-nearest and 3rd-nearest galaxies in DLR are the true host 4% and 0.6% of the time,

respectively. For ACS-GC, these values are 2% and 0.5%. In cases where the nearest DLR

galaxy is not the correct host, the nearest galaxy in angular separation is the correct host

2% of the time in MICECAT and 0.5% of the time in ACS-GC.

In order to understand why the overall DLR matching accuracy is higher for ACS-GC

than for MICECAT galaxies by 2.11 ± 0.13% we return to Figures 3 and 4. The simulated

SN-host separations and true host galaxy sizes are not different enough to account for this

difference in matching accuracy between ACS-GC and MICECAT. Another factor that might

be responsible is the galaxy spatial distributions and clustering properties of the two cata-

logs. A related issue is the detection and deblending of galaxies in ACS-GC. We investigate

differences in the galaxy clustering of the two catalogs in the Appendix. The main result

is that at small angular separations (< 2′′), MICECAT exhibits a much higher number of

galaxy pairs relative to ACS-GC. In addition, it is common for MICECAT galaxy pairs at

this separation to overlap or occlude each other. Whether or not this clustering accurately

represents true galaxy dynamics is unclear. However, if a high degree of small-scale cluster-

ing does exist, such galaxy pairs in real data would be difficult to separate or even impossible

to see if completely occluded and may be identified as a single galaxy in the catalog. This

would explain in part the decreased galaxy number density at small scales in ACS-GC and



– 19 –

thus the slightly higher overall matching accuracy when compared to MICECAT. Looking

specifically at our true host galaxies, we find that while the mismatch rate for true hosts

with neighbors within 2′′ is similar for both MICECAT and ACS-GC, the occurrence of true

hosts with neighbors this close is much higher for MICECAT (22% of all hosts) than for

ACS-GC (only 4% of all hosts).

In Figures 5 and 6 we plot the matching accuracy (purity) as a function of SN-true

host separation, SN redshift, true host magnitude, and true host size for both the MICE

and ACS-GC cases, respectively. We show both the purity for the entire sample (red circles)

and also for the sample with hostless SNe removed (green triangles) in order to better see

the effect of the hostless SNe. We also show the cumulative fractions for all simulated SNe

as the black histograms. The matching accuracy is highly sensitive to the separation from

the true host, as one would expect since SNe that are farther away from their hosts have

a higher probability of being matched to another nearby galaxy. Note that the exact DLR

values cannot be directly compared between MICECAT and ACS-GC, as they are computed

using different measures of galaxy size. The hostless SNe reduce the purity at smaller values

of true host separation since the true hosts are faint and generally small, which results in

the SNe often being simulated near the host center.

The purity as a function of redshift is constant for z . 0.6, but begins to drop signifi-

cantly at higher redshifts due to an increase in the rate of hostless SNe which reside in the

faintest galaxies. A plot of the mismatch fraction (= 1− purity) versus redshift is shown in

Figure 7 with the results for MICECAT and ACS-GC overlaid for better comparison. The

trend with redshift is similar for both catalogs, with MICECAT offset from ACS-GC due to

the overall lower matching accuracy of MICECAT. The purity (and mismatch fraction) is

fairly constant at all redshifts for both catalogs once the hostless SNe are removed.

For both MICECAT and ACS-GC, the matching purity is fairly insensitive to the true

host galaxy brightness except for the faintest hosts where the purity drops precipitously, as

expected due the magnitude limit we impose for our hostless SNe (Section 3.2). In both

catalogs, the matching purity is lower for the smallest true hosts; this is because the hostless

SNe lie in faint hosts that tend to also be small, either due to their intrinsic size and low-

luminosity or because they are distant and thus subtend small angles.

Given the decreasing purity as a function of DLR separation seen in Figures 5 and 6, it

is reasonable to ask if there is a value of DLR separation that we can use as a cut to remove

probable mismatches. SNLS decided that SNe whose nearest galaxy is > 5R away do not get

assigned a host, and we make a similar requirement using DLR. To maintain an efficiency

(true positive rate) of 98%, we find that a cut at a distance of 5.3 DLR results in a purity

of 94.45% for MICECAT and removes 6.5% of the sample. Similarly fixing the efficiency at
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Fig. 5.— DLR matching accuracy (purity) as a function of true SN-host separation, redshift,

true host brightness, and true host size for the SNe simulated on MICECATv2.0 galaxies.

The purity is given for all SNe (red circles) and also for the sample that excludes hostless

SNe (green triangles). The black histogram is the cumulative fraction for all simulated SNe.

98% for ACS-GC, we find that a cut at 11.5 DLR results in a purity of 97.29% and removes

7.1% of the sample. These purity values are listed in Table 1 for comparison.

3.4. Comparison with Spectroscopically-Confirmed SNe in DES

Host galaxy identification in DES is performed using the DLR method within an initial

15′′ search radius around each transient5. The DLR for nearby galaxies is currently computed

from the SExtractor parameters A IMAGE, B IMAGE, and THETA IMAGE obtained from the co-

added r+ i+ z detection images taken during Science Verification (“SVA1”). In the future,

5For our simulations, we find that a cut on SN-host separation of 15′′ removes 0.3% of SNe in MICECAT

and 1.4% of SNe in ACS-GC.
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Fig. 6.— Same as Figure 5 but for the SNe simulated on ACS-GC galaxies.

we plan to create deeper multi-season co-added images without SN light to use for host

galaxy identification and host studies.

To test the DLR method for DES-SN, we examine the sample of spectroscopically-

confirmed SNe discovered in DES Years 1 and 2 and estimate the accuracy of the host

matching based on the agreement between the redshift obtained from the SN spectrum and

the redshift obtained from an independent spectrum of the galaxy we identify as the host.

Of the 106 SNe (of all types) with spectral classifications, 73 also have a spectrum of the

host galaxy. Two of those 73 have SN redshifts that disagree with the host redshifts by more

than 0.1, indicating the host was misidentified. Of the remaining 71, the difference between

the SN redshift and the host redshift is at most 0.021, with a mean and standard deviation

of 0.0017 and 0.0054, respectively. This indicates very good agreement and a high likelihood

of a correct host match, though in cases of SNe in galaxy groups or clusters the redshift

agreement between the SN and any cluster member will be similarly good. Furthermore,

for 8 cases out of these 71 the host galaxy is not the nearest galaxy in angular separation,

and all but one of those nearest galaxies lacks a spectroscopic redshift to compare to the

SN redshift. However, for one case there exists galaxy redshifts for both the host (nearest
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Fig. 7.— The host-galaxy mismatch fraction as a function of redshift for both MICECAT

and ACS-GC.

galaxy in DLR-space) and the nearest galaxy in angular separation, and these redshifts

differ by only 0.0002, which is evidence that these two galaxies belong to the same group or

cluster. This single example illustrates the difficulty in host identification. For this reason,

we advocate that for the cases where the nearest DLR galaxy is different from the nearest

angular separation galaxy that both galaxies be targeted for spectroscopic follow-up. Having

redshifts of both galaxies is necessary to better quantify the rate of occurrence of SNe in

high-confusion regions such as galaxy groups and clusters.

From this DES sample we can roughly estimate the host galaxy mismatch rate due to

the failure of the DLR method to be 2.7% (2/73). We compare this rate to the ∼ 3 − 5%

DLR failure rate from our simulations (where we have ignored the hostless SNe). Of course,

this sample of spectroscopically-confirmed SNe with host redshifts is highly biased, since

both the SNe and hosts must be bright enough to be targeted and to obtain secure redshift

measurements. A description of the first 3 years of the DES spectroscopy campaign to target

live transients and their host galaxies will be published in D’Andrea et al., in prep.

3.5. Implications for Cosmology

Since the MICECATv2.0 galaxies all have redshifts, stellar masses, and gas-phase metal-

licities, we can investigate host galaxy mismatches as a function of these key host properties
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Fig. 8.— The difference in galaxy properties between the true host and the matched host for

the wrong matches (including hostless SNe) among the 100K SNe simulated on MICECAT

galaxies. Plots show (from left to right) redshift, stellar mass, and metallicity.

which influence cosmological inferences obtained from SNe. Figure 8 displays the differences

between the true and matched galaxy in terms of redshift, mass, and metallicity for cases

where there is a host mismatch. The data plotted are for the ≈ 10, 000 wrong matches out

of the 100K simulated SNe on MICECAT host galaxies.

The distribution of redshift differences, ztrue − zmatch, is highly peaked at zero, indicat-

ing that the mismatched galaxy is often at a very similar redshift as the true host and is

likely a group or cluster neighbor. This is encouraging given the reliance on host redshifts

for SN classification and placement on the Hubble diagram. However, the distribution of

redshift differences has large tails which are asymmetric, indicating that for hostless SNe the

mismatched galaxy is more likely to be a lower-redshift foreground galaxy. This makes sense

given that the hostless fraction rises with increasing redshift (upper right panel, Figure 5).

Given the known Hubble residual correlation with host-galaxy mass, current cosmological

analyses with SNe Ia use the host mass to correct SN luminosities (e.g., Sullivan et al. 2011;

Betoule et al. 2014). Using the mass of the wrong galaxy may cause an incorrect offset to

be applied to the SN peak magnitude. There is also some theoretical evidence that the true

driver of this effect is SN progenitor metallicity (Timmes et al. 2003; Kasen et al. 2009)

or age (Childress et al. 2014). For these reasons we include both host stellar mass and

gas-phase metallicity in Figure 8, as these parameters (but not galaxy age) are included in
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Fig. 9.— The difference in redshift between the true host galaxy and the matched host

galaxy for the wrong matches among the 100K SNe simulated on ACS-GC galaxies (for

which both the true host and the matched host have redshifts listed in the catalog).

MICECATv2.0.

For all galaxy properties shown, the differences can be extreme (∆z ∼ 1, ∆(logM) ∼
3 dex, ∆(log [O/H]) ∼ 1 dex), which is disconcerting. The distributions of mass and metal-

licity differences, shown in the lower panels of Figure 8, are much broader than the redshift

difference though the total wrong-match distributions still peak at zero. The location of this

peak will shift depending on the ratio of hostless SNe to DLR failures. If we examine the

breakdown of the total wrong-match histogram, we notice that the DLR failures are biased

to be greater than zero while the hostless cases are biased to be less than zero. This is

because the hostless SNe are generally low-mass and low-metallicity (as well as faint) and

so are more likely to get mismatched to galaxies with higher masses and higher metallic-

ities. Similarly, for the DLR failures (the brighter true hosts), the true hosts tend to be

higher mass/metallicity, so the likelihood of the SN getting mismatched to galaxies of lower

mass/metallicity is higher.

As previously mentioned, several recent cosmological analyses have used a “mass step”

correction to SN luminosities such that SNe Ia in hosts with log(M/M�) ≤ 10 have one

absolute magnitude and those in hosts with log(M/M�) > 10 have another (Sullivan et al.

2011; Betoule et al. 2014). Using the MICECAT sample of mismatched SNe, we can ask how

often a SN gets matched to a host galaxy that falls into a mass bin that is different from

the mass bin of the true host. That is, how often is it that a SN in a truly low-mass host

gets matched to a high-mass galaxy, or that a SN in a truly high-mass host gets matched

to a low-mass galaxy? Using a split value of log(M/M�) = 10, as done in the literature,
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to separate low- and high-mass galaxies (the MICECAT true host galaxy mass distribution

has a median of 10.163), we find that this occurs 44% of the time. Given that the total

mismatch rate is ≈ 10%, this implies that > 4% of the total SN Ia sample would be assigned

an incorrect luminosity and thus be misplaced on the Hubble diagram.

The ACS-GC catalog does not contain galaxy mass or metallicity estimates but does

contain spectroscopic or photometric redshifts for the majority of galaxies. Therefore, of

the 100K simulated SNe on ACS-GC host galaxies, we make a plot similar to Figure 8 for

the ≈ 7500 incorrectly-matched SNe that have redshifts for both the true host and the

matched host. This is shown in Figure 9. While the redshift difference distribution is still

peaked at zero as it is for MICE, the peak is not nearly as sharp. This plot also exhibits an

asymmetry, indicating that SNe are more often mismatched to galaxies with redshifts lower

than the true redshift. The exact shape of this redshift difference distribution depends on

the redshift distribution of detected SNe and the magnitude limit of the survey, among other

factors.

4. IMPROVEMENTS USING MACHINE LEARNING

While the automated DLR algorithm presented in Section 3 is 90 − 92% accurate at

matching SNe to their proper host galaxies, for real data we will not know the identity of

the true host. The algorithm produces a match but does not produce an uncertainty or a

probability that an individual SN-host matched pair is correct. Therefore, we would like

some way of quantifying the likelihood of a correct match for each SN, while at the same

time improving the matching accuracy.

In order to do this, we employ machine learning (ML) to compute probabilities that

can be used to classify our SN-host matched pairs into two classes – “correct match” and

“wrong match.” Our goal is to create a binary ML classifier that uses features of the data

extracted from the results of the matching algorithm to quantify the probability of a correct

host match for every SN. We use a Random Forest (RF; Breiman 2001) classifier since

this method is fast, easy to implement, and capable of providing probabilities for class

membership. The probability of class membership in effect tells us the likelihood that a SN-

host matched pair is correctly matched (i.e. belongs to class “correct match”). We use the

RF implementation available in the Python package scikit-learn (Pedregosa et al. 2011).

Goldstein et al. (2015) also used RF as a binary classifier to successfully separate artifacts

from true transients in DES SN differenced images, maintaining a detection-level efficiency

of 96% and a false positive rate of 2.5%.
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We describe the features we use in Section 4.1 and introduce our binary ML classifier in

Section 4.2. In Section 4.3 we explain how we train and optimize the classifier, and finally

we present the results in Section 4.4.

4.1. Features: Distinguishing Correct & Wrong Matches

As described in Section 3, host galaxy matching begins by considering galaxies within

a search radius around the SN position. As part of the matching algorithm, distances from

the SN position to each potential host are measured in units of DLR (dDLR). Let us adopt

the shorthand notation for the dDLR of the ith host as Di and then order the potential hosts

by increasing DLR such that D1 is the value of dDLR for the nearest galaxy in DLR-space.

Similarly, let us denote Si as the angular separation (in arcsec) of the ith host from the

SN such that when ordered by increasing angular separation, S1 is the nearest galaxy in

angular-space.

Confusion over the identification of a host galaxy will occur in situations where nearby

galaxies have similar separations from the SN, creating ambiguity over which is the true host.

Therefore, we would expect that Di and functions thereof, such as Di −Dj or Dj/Di, have

different distributions for correct and wrong matches; the same ought to be true for Si and

functions thereof. In most cases, this host ambiguity exists between the nearest galaxy (with

separation D1) and the second-nearest galaxy (with separation D2). As a result, values of

D2 −D1 or D1/D2 are good indicators of whether or not a SN was correctly matched to a

host galaxy. We refer to such indicators as features of the host-matched data.

A more revealing feature is the difference in angular separation between the SN and

the nearest DLR galaxy, S(D1), and the SN and the second-nearest DLR galaxy, S(D2).

Let us call this ∆S(D21) and define it as ∆S(D21) = S(D2) − S(D1). This feature has

the interesting property of being a combination of DLR and angular separation. In most

cases, matching using the DLR method as we have done will select the same host galaxy as

matching by simply taking the nearest galaxy in angular separation. For these cases, the

host is the galaxy with minimum dDLR (= D1) and minimum angular separation (S1), and

so ∆S(D21) > 0. However, for cases where the DLR method and the angular separation

method disagree, negative values of ∆S(D21) are possible since the galaxy with minimum

dDLR (D1) might actually be the second-closest galaxy in angular separation (S2). Therefore,

cases where ∆S(D21) < 0 have a higher chance of being incorrect matches.

We aim to define a quantity that parametrizes the degree of host confusion or mismatch-

ing for a given SN in such a way that a larger value indicates a higher degree of confusion.
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Given a SN location and N galaxies within our search radius, we define a host confusion

parameter, HC, to be

HC =


−99 if N = 1

log10

(
D2

1/D2 + ε

D2 −D1 + ε

N−1∑
i=1

N∑
j>i

Di/Dj + ε

i2(Dj −Di + ε)

)
if N > 1.

(3)

The sum is over all pairs of galaxies within the search radius and accounts for cases where any

number of the N nearby galaxies have similar separations from the SN. The prefactor term

outside the sum increases the contribution from the two nearest galaxies, which generally

cause the majority of the confusion. The D1/D2 term in the numerator reduces the overall

value of HC for cases where D1 is small but D2 is large by comparison; the extra factor of

D1 in the numerator penalizes SNe which are far separated from their hosts. The D2 −D1

term in the denominator increases the value of HC for cases where the first and second DLR-

ranked galaxies are very close in separation (D1 ≈ D2). The addition of a small quantity,

ε, prevents HC from becoming undefined or infinite in cases where Di = 0 or Di = Dj.

We choose ε = 10−5, but find the values of HC to be relatively insensitive to the precise

value of ε. Inside the sum, the i2 term is a weight factor that progressively down-weights

the contributions from galaxies as they get farther away from the SN, the rationale being

that the more distant galaxies are less likely to contribute to the confusion. HC has the

desired general behavior of being small when the differences between the potential hosts are

large (low density, low degree of confusion) and large when these differences are small (high

density, high degree of confusion). A cartoon illustrating the difference between cases of low

and high confusion is shown in Figure 10.

The distributions of HC for both correct and wrong host-galaxy matches as well as

hostless SNe are plotted in Figure 11 (MICE) and Figure 12 (ACS-GC) along with a subset

of the other features that we have described above. Ideally, we would like to see clear

separations in the distributions of features between correct matches (shown in green filled)

and the incorrect matches, which include matches that are wrong due to a failure of the

DLR method of matching (shown in red cross-hatched) and also hostless cases (shown in

blue). The hostless matches will be wrong by construction since these SNe were simulated

on faint galaxies that are then removed by the magnitude limit during the matching process.

However, we would hope that the hostless distributions are more similar to the wrong match

distributions than to the correct match distributions. Given an actual observed SN, we

would like to be aware if there is a high probability that its matched host is wrong, whether

due to host confusion or due to the true host being low-luminosity (hostless).

Indeed, the hostless distributions for the features shown in Figures 11 and 12 differ

significantly from the correct match distributions. In addition, the hostless and DLR failure
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Fig. 10.— An illustration of the difference between cases of low host confusion (left) and

high host confusion (right). In both cases, the star in the center represents the position of

the SN, and the circles represent nearby galaxies, projected on the sky. For simplicity of

this example, all galaxies are depicted as circles of the same size and thus all have the same

DLR. However, as their angular distances from the SN differ, they will have different values

of dDLR. The respective values of the host confusion parameter, HC (see Equation 3), are

shown on each panel.

distributions are very similar in general, which is promising. The distribution of D1/D2

is very similar for MICECAT and ACS-GC, as is the distribution of ∆S(D21), although

the latter distribution is broader for ACS-GC. An interesting difference between MICECAT

and ACS-GC is seen in the D1 and S(D1) feature distributions. For MICECAT, the DLR

failures for these features look much like correct matches, while for ACS-GC the DLR failures

are well-separated from correct matches. This might be a clue toward explaining the overall

higher matching accuracy in ACS-GC compared to MICECAT, the origin of which is explored

in the Appendix.

Additional features of the data can always be discovered or developed and included into

the ML training to improve performance. Other potentially useful features worth exploring

in the future include SN photo-z, photometrically-determined SN type, and host galaxy

morphological type.
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Fig. 11.— Distributions of a subset of the features derived from the results of our host-

matching algorithm run on SNe simulated on MICECAT galaxies. These features show

the difference in distributions between correct matches (green filled), wrong matches due to

failures of the DLR matching algorithm (red cross-hatched), and wrong matches due to the

SNe being hostless (blue). The area of each histogram is normalized to unity.

4.2. Binary Classification with Random Forest

For the task of binary classification, as we have here, it is useful to consult the schematic

2 × 2 confusion matrix shown in Figure 13. Objects that are correct matches (i.e., belong
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Fig. 12.— Same as Figure 11 but for the SNe simulated on and matched to the ACS-GC

galaxy catalog.

to the true class “correct match”) and which the classifier predicts are correct matches are

called true positives (TP ); those that are correct matches but are predicted to be wrong

matches are called false negatives (FN). Objects that are wrong matches (true class “wrong

match”) are called false positives (FP ) if they are predicted to be correct matches and are
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Fig. 13.— A diagram of the confusion matrix for binary classification into classes “correct

match” and “wrong match”.

called true negatives (TN) if they are predicted to be wrong matches.

Using these definitions, we can also define the efficiency and purity of the classifier.

Efficiency is given by

efficiency =
TP

TP + FN

(4)

and is also known as the true positive rate. The efficiency is the fraction of true correct

matches recovered by the classifier. Purity is defined as

purity =
TP

TP + FP

(5)

and is essentially the accuracy with which objects are classified as correct matches. The

results of the host-matching algorithm can be thought of as having an efficiency of 100%

(since all SNe get matched to a host galaxy) but with a purity of < 100% (since some fraction

of those matches will be incorrect). The goal of this ML classifier is to increase the purity

(matching accuracy) of the SN-host galaxy matched sample, with some minimal decrease in

efficiency. In this way, we lose some SNe but become more confident in the accuracy of the

host galaxy matches for those SNe that remain. For a more comprehensive description of

machine learning with RF, see Breiman (2001) and Goldstein et al. (2015).

RF can output probabilities of a correct match, Pcorr, for each SN-host pair in the test
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sample. Classification into “correct match” or “wrong match” depends on the threshold

probability, Pt, which is the probability above which a SN-host pair is classified as a correct

match. The value of Pt can be selected to maximize the metric of choice, such as efficiency

or the purity, and depends on the scientific goals. For example, if a SN survey requires that

no more than 2% of correct matches be misclassified (i.e., false negative rate = 2%), then

one would choose the value of Pt at which the efficiency (= 1− false negative rate) equals

98% and compute the corresponding purity. For this study, we select as our metric the value

of purity at a fixed efficiency of 98%.

4.3. Training and Optimization

Our RF classifier must first be trained in order to learn how to properly classify SN-

host pairs into “correct match” and “wrong match” classes. While the majority of matches

determined from our DLR matching algorithm are correct (see Section 3.3), we also have

cases of mismatched pairs due to failures of the DLR method and hostless SNe. A training

sample containing a realistic proportion of correct and wrong matches (roughly 10:1) would

bias the classifier, since it would not have enough examples of wrong matches to learn how to

distinguish them from correct matches. Therefore, to reduce this bias we attempt to evenly

balance the training set so that it contains equal numbers of correct and wrong matches.

The training set of “wrong matches” comprises both misidentification due to failure of the

DLR method and misidentification of hostless SNe, in the proportion they appear in the

data (given the 5% hostless rate assumed in Section 3.2). Training is performed separately

for MICECAT and ACS-GC datasets. Each classifier is trained on equal numbers of correct

and wrong matches taken from the 100K simulated SNe from Section 3. The training sample

size for MICE is ≈ 20K while for ACS-GC it is ≈ 15K.

A Random Forest is constructed from a user-defined set of parameters called hyperpa-

rameters that control the growth and behavior of trees in the forest. The Random Forest

implementation we use relies on the following hyperparameters:

1. n estimators, the number of decision trees in the forest

2. criterion, the function used to measure the quality of a split at each node

3. max features, the maximum number of features considered when looking for the best

split at a node

4. max depth, the maximum depth of a tree
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5. min samples split, the minimum number of samples required to split an internal

node.

We optimize our RF classifier by varying these hyperparameters over the range of val-

ues listed in Table 2. We performed a 3-fold cross-validated randomized search, sampling

1000 random points over this hyperparameter space. For n estimators, max features, and

min samples split we randomly select integer values from the uniform distributions given

by (min,max) in Table 2. For criterion and max depth we randomly sample from the

discrete possibilities listed in brackets. The performance metric of the classifier was defined

to be the value of purity at an efficiency of 98%. Combinations of hyperparameters that

maximize this metric were considered optimal for our purposes. The performance metric

can be chosen by each SN survey to meet the needs and goals of the survey and need not be

the same as the one we chose here.

We find that the entropy criterion consistently outperformed the Gini criterion6, and

that performance is insensitive to the values of max depth and min samples split. Perfor-

mance increases for values of n estimators up to ∼ 100 and then plateaus for larger values.

Similarly, performance increases for values of max features up to 4 and then plateaus for

larger values. Therefore, we select the following as our hyperparameters when implement-

ing our RF for classification: n estimators=100, criterion=entropy, max features=10,

max depth=None, and min samples split=70. These values are also listed in Table 2.

4.4. Results & Performance

Here we present the results from our ML classifier on SN-host matched pairs. After

training, the relative importance of the features used in the training sample can be computed.

The general method used to compute RF feature importances is described in Section 3.4

of Goldstein et al. (2015). The importance of a feature is a number such that a higher

value indicates the feature is more relevant in providing information during training. The

importances are normalized so that they sum to unity. In Table 3, we list all the features

used to train our classifiers and give their relative importances for both MICE and ACS-

GC. By far the most important feature for both MICECAT and ACS-GC is D1/D2, with

importances > 0.5. The second most important feature in both cases is D1. For ACS-

GC, all other feature are nearly irrelevant (with importances < 0.04), whereas for MICE

the other features help contribute more toward the classification. The feature ∆S(D21) is

6Entropy uses information gain as the metric while Gini uses the Gini impurity.
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Table 1. Summary of Host Matching Results

Galaxy Catalog

MICECATv2.0 ACS-GC COSMOS

Accuracy, nearest separationa 88.35± 0.10% 90.62± 0.09%

Accuracy, DLR methoda 90.11± 0.09% 92.21± 0.09%

Accuracy (purity), DLR cutb 94.45± 0.09% 97.29± 0.09%

Accuracy (purity), ML cutb 96.19± 0.19% 97.71± 0.16%

aPurity at 100% efficiency

bPurity at 98% efficiency; objects removed by cut

Note. — Accuracies include hostless SNe. The accuracy after ML is

based on simulations of 10K SNe; the other accuracies are derived from

an independent set of 100K SNe.

Table 2. Random Forest Hyperparameter Values for Optimization

Hyperparameter Range Selected

n estimators (10, 300) 100

criterion {gini, entropy} entropy

max features (1, 11) 10

max depth {None, 15, 30, 50, 80} None

min samples split (10, 100) 70

Note. — For ranges denoted in parentheses, integer val-

ues were randomly sampled from the uniform distribution

(min,max). For ranges denoted in braces, random values

were selected from the discrete options listed. The values

eventually used in the Random Forest classifier are listed

under the column “Selected.”
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Fig. 14.— Results of the ML classifier on a validation set of 10,000 SNe simulated on galaxies

from MICECATv2.0. Left : The ML probability of a SN-host pair being a correct match, with

the true correct matches shown as the green filled histogram and the true wrong matches

(including “hostless” SNe) shown as the red open histogram. Note the logarithmic scaling of

the ordinate axis. Right : The efficiency and purity as a function of ML threshold probability.

SN-host pairs with probabilities Pcorr > Pt get classified as correct matches.

important for MICECAT but not so for ACS-GC. Our derived feature, HC, is the fourth

most important feature in the ML training process for both MICECAT and ACS-GC.

To demonstrate the improvement that ML provides here, we apply our classifier to an

independent validation set of simulated SNe (10K each for MICECAT and ACS-GC) that

were matched to hosts via the DLR method, again with 5% of these SNe being hostless.

Figures 14 and 15 show the results from MICECAT and ACS-GC, respectively. As before,

the accuracy of the DLR matching algorithm before ML is 90% for MICE and 92% for ACS-

GC for the validation set, the same as the result seen with our 100K SNe (Table 1, first

row).

The left panels of Figures 14 and 15 plot the ML output probability of being a correct

match (Pcorr), with the true correct matches shown in the green filled histogram and the

true wrong matches (including hostless SNe) shown in the red open histogram. The ordinate

axis displays number on a logarithmic scale. There is clearly a good separation between

the two classes, with true wrong matches having probabilities near zero and true correct

matches having probabilities near one, as desired. The right panels display the efficiency

and purity of the classifier as a function of the threshold probability, Pt, which defines the

boundary between the classes “correct match” and “wrong match.” Under our requirement

of fixed 98% efficiency, we find that this results in a purity of 96.2% for MICE and 97.7% for
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Table 3. List of Machine Learning Features

Feature MICECATv2.0 ACS-GC COSMOS

Importance Rank Importance Rank

D1 0.114 2 0.179 2

S(D1) 0.056 5 0.016 5

∆S(D21) 0.083 3 0.011 8

D2 −D1 0.024 8 0.011 9

D1/D2 0.525 1 0.685 1

D3 −D1 0.010 11 0.008 11

D1/D3 0.012 10 0.033 3

HC 0.065 4 0.017 4

MAG (matched galaxy magnitude) 0.053 6 0.013 7

A (matched galaxy size) 0.039 7 0.010 10

B/A (matched galaxy axis ratio) 0.018 9 0.015 6

Note. — Feature importances and ranks computed from a single training. Impor-

tances will fluctuate slightly after each random training.
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Fig. 15.— Same as Figure 14, but for SNe simulated on ACS-GC galaxies.

ACS-GC. In the right panels in both figures we see the dramatic increase of purity (matching

accuracy) resulting from ML run after the initial matching algorithm. A summary of these

results is provided in the last row of Table 1. We see that ML improves the purity above

that of a simple cut on DLR separation, especially in the case of MICECAT. Similar to the

cut on separation, this increase in purity with ML results in 7− 8% of the total SN sample

being classified as having wrong matches. If a SN survey decides to remove these wrong

matches in an analysis, it would constitute a significant reduction in sample size.

However, a cut on DLR separation can only accept or reject a host match whereas ML

is able to provide probabilities of a correct match. We wish to point out that the end result

need not be binary classification into “correct match” or “wrong match.” In the work we

have presented, the binary classification was made based on the selection of a threshold

probability that provides 98% efficiency. SN-host matches that fall below this threshold are

classified as “wrong matches” and those above are classified as “correct matches.” However,

as the actual ML classifier outputs are the probabilities themselves, one could instead use

the probabilities as weights in a Bayesian cosmology analysis and avoid binary classification

and the outright rejection of SNe from the sample due to host misidentification.

The ML classifier is specific to the dataset being used and so feature distributions and

importances will vary between datasets (this is evident from comparing Figures 11 and 12).

Therefore, before we can apply this ML classifier to real SN data from DES, for example, it

is critical that we first train the classifier on simulated SNe placed on galaxies in catalogs

derived from real DES data. We leave such a DES-specific study for future work, since

at this time we do not have adequate morphological classifications and light profile fits for

DES galaxies. Furthermore, we have checked that using the nearest separation instead of
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the DLR as the initial host matching method, followed by an implementation of the ML

classifier trained on analogous features (e.g., S1, S1/S2, etc.) results in similar increases in

purity.

5. CONCLUSIONS

In this paper we have investigated the problem of host galaxy identification, a challenge

for modern SN surveys that must rely on host galaxies for SN cosmology. For the DES

SN Program this is a current concern, and the issue will be even more pressing for the

LSST, which expects to discover hundreds of thousands of SNe Ia. Given limited resources

to spectroscopically target all these SNe, host galaxy spectra will be the primary redshift

source. We expand on the host matching algorithms published in previous works by testing

our algorithm’s efficacy with simulated SNe (including hostless SNe) and improving it with

a machine learning classifier.

We have developed an automated algorithm that can be run on source catalogs and

which matches SNe to host galaxies. We have tested this algorithm by simulating SN loca-

tions on host galaxies in catalogs, both mock and real, and performing the matching using

information on galaxies nearby the SNe. Using the DLR method of matching as outlined in

Section 3 and assuming a hostless SN rate of 5% results in a matching accuracy of 90−92%.

Based on our simulations we find that the DLR method and the nearest angular separation

method of matching select the same galaxy in the majority of cases. However, in the cases

where these methods disagree, the DLR method is more often correct. This results in a

statistically higher overall matching accuracy for the DLR method than simply matching

hosts based on nearest angular separation.

We have shown that the accuracy of host identification can be significantly improved

with the addition of machine learning, which can be trained to output probabilities of a

correct match. These probabilities, in turn, can be used to classify SN-host pairs into

categories “correct match” and “wrong match,” with purities as high as 97% given a fixed

98% efficiency. We find that regardless of the initial matching algorithm (DLR or angular

separation), machine learning classification run afterward using features of the matched

pairs does an excellent job of identifying probable correct and wrong matches. We have also

shown that the misidentification of host galaxies can result in values of redshift, mass, and

metallicity that are very different from those of the true host. This in turn can result in the

misplacement of SNe on the Hubble diagram.

This work is intended as a proof of concept, illustrating an approach to host galaxy
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identification that can be applied to any SN survey. In order to apply this methodology

to a given survey, several things are required. A large catalog of galaxies (preferably from

real survey data) in the appropriate survey filters that contains positions, shapes, sizes, ori-

entations, magnitudes, and light profiles is needed to place fake SN locations. In addition,

having spectroscopic redshifts (or high-quality photometric redshifts) for as many galaxies as

possible is useful if one wishes to simulate SNe with the same redshift distribution as the SN

survey. A catalog generated from deep co-added images, corrected for seeing and not con-

taining SN light will help reveal fainter galaxies and produce accurate shape measurements.

SN locations simulated on these galaxies can then be matched using the same catalog and

the match results used for training and validation sets for the machine learning classifier.

The results presented come with several important caveats that we mention here. One is

that we use a simple luminosity weighting rather than actual LFs for SN host galaxies from

the literature, and so host galaxies that we select will not be completely representative of

observed host galaxies of all SN types. Using SN data to better determine the distributions

of SN-host galaxy separation for different types of SN, as opposed to using galaxy Sérsic

profiles to place SNe will improve studies of this kind. In addition, we do not account

for observational or instrumental factors such as SN detection efficiency and the PSF. For

example, DES images in the SN fields have PSF sizes that are > 1′′, significantly larger

than those of HST and ACS-GC, which will make deblending and measurements of intrinsic

galaxy sizes and shapes more challenging. Also, we assume a reasonable hostless SN rate of

5% but the exact value will differ depending on the SN survey.

Future work is needed to implement the framework proposed here to determine the effect

of host galaxy misidentification on cosmological parameters for a DES SN Ia analysis. This

can be accomplished by simulating light curves of SNe Ia and core-collapse SNe onto galaxies

actually observed in the DES SN fields and then running our host matching algorithm and

machine learning classification. From this we can learn how host misidentification influences

redshift assignment, photometric SN classification, and corrections for SN-host correlations

and how these ultimately translate into biases in the derived cosmology. Additional study is

required to determine what statistics are needed in order to replicate the conditions of the

DES search for the purposes of simulation and training the methodology.
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A. GALAXY CLUSTERING: COMPARISON BETWEEN MICECATv2.0

AND ACS-GC COSMOS

In this appendix, we go into more detail about the differences between MICECATv2.0

and the ACS-GC COSMOS catalog we use in this work. In an effort to better understand

the reason why the host matching accuracy is lower for SNe simulated on MICE galaxies

compared to those simulated on ACS-GC we examine the clustering properties of the two

catalogs, particularly at the small scales we are concerned with in this work (i.e., < 30

arcsec). This comparison is done using only the positions of the galaxies (after a magnitude

cut) and does not rely on their shapes or orientations.

First, we begin by attempting to make the two catalogs as similar as possible. We remove

compact objects (defined in Section 2.1.2) from the ACS-GC catalog, leaving only galaxies.

Then we impose a magnitude limit on both catalogs, requiring i < 24 mag for MICE and

MAG BEST (F814W) < 24 mag for ACS-GC, where we expect both catalogs to be complete.

Since the ACS F814W is a broad i filter, not identical to DES i band, this will result in minor

differences. We then sample 10,000 random galaxies each from these magnitude-limited

MICE and ACS-GC catalogs. For each of these randomly-selected galaxies we compute

several quantities: the projected angular distance to the nearest neighbor and the number

of other galaxies within radii of various sizes (30′′, 20′′, 10′′, 5′′, 2′′, and 1′′).

In Figure 16 we plot the distribution of nearest neighbor separations. While the mean

values of the distributions are quite similar (5.76′′ for MICE and 5.84′′ for ACS-GC), we see

that the distributions themselves are quite different. Particularly telling is the discrepancy

below 2′′ in which we see that it is fairly common for MICE galaxies to have other galaxies

very nearby (∼ 20% of MICE galaxies have neighbors within 2′′), whereas such an occurrence

in ACS-GC is rare. While the ACS PSF FWHM is very small (0.09′′), it is possible that the

deblending of galaxies within 2′′ is sometimes problematic in the HST data.

In Figure 17 we plot the distribution of the number of neighboring galaxies within

6 different radii. In the top panels (showing radii of 30′′, 20′′, and 10′′), the ACS-GC

distributions lie to the right of the MICE distributions, which indicates that when averaging

over regions of this size, the ACS-GC catalog has a slightly higher mean galaxy density.

However, when we examine regions of smaller area (such as in the lower panels showing radii

of 5′′, 2′′, and 1′′), we see the opposite effect: MICECAT has a higher mean galaxy density.

For example, the last panel in the lower right shows that a random galaxy in MICECAT has

nearly a 10% probability of having another galaxy within 1′′, while for the ACS-GC catalog

this probability is only 1%. MICECAT was calibrated to reproduce the galaxy clustering

observations at low redshift. In order to fit the clustering at small separations (the one-

halo term), the galaxy distribution profile inside halos was made more concentrated than
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Fig. 16.— Distance to the nearest neighboring galaxy for a random sample of MICECATv2.0

galaxies and ASC-GC COSMOS galaxies. On scales smaller than ≈ 2 ′′ MICE exhibits a

higher degree of clustering compared with ACS-GC data.

a standard NFW profile (Navarro et al. 1997). The need for this extra concentration was

extrapolated at higher redshift given the lack of calibrating data. Also, the galaxy mock

generating code contains also a minimum radius for satellites inside their halos below which

satellites are considered to have merged with the central halo. The extrapolation of the

extra concentration at higher redshift and/or an underestimation of the minimum “merging

radius” used may contribute to the higher number of galaxy pairs seen in the simulation

mock catalog compared to the ACS-GC data.

These differences in clustering properties between the MICECATv2.0 and ACS-GC

COSMOS catalogs have implications for our study of host galaxy matching since the proba-

bility of a SN being correctly matched to its host galaxy is highly dependent on the very local

galaxy density. We have shown here that for MICECAT, the clustering on scales smaller

than 5′′ is enhanced relative to ACS-GC. Further investigation of the subset of MICECAT

galaxies with a neighbor within 2′′ shows that in two-thirds of these cases, the neighboring

galaxy has a redshift within 0.0001 of the random galaxy’s redshift; this indicates that they

belong to the same halo and thus are true neighbors and not merely projected coincidences.

In half of the cases where the neighbor lies within 2′′, the galaxy and its neighbor overlap

each other at the 1 half-light-radius level. This implies that roughly 10% of all MICECAT

galaxies overlap with other galaxies. Since these are simulated galaxies, all of them appear

in the mock catalog, whereas in a real catalog some of these would not be detected due to

occlusion of galaxies along the line of sight or an inability to deblend overlapping galaxies.
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Fig. 17.— Distributions of the number of neighboring galaxies within various distances from

random galaxies selected from MICECATv2.0 and ACS-GC COSMOS.

This enhanced clustering in concert with the overlap issue in MICECAT would account

for the overall lower matching accuracy using MICECAT (90%) compared to ACS-GC (92%),

since a higher local galaxy density increases the potential for confusion and mismatch. Most

science being tested with mock catalogs of this kind (such as weak lensing or large scale

structure studies) do not care about scales this small. Further studies are needed to determine

if the clustering we see in MICECAT and ACS-GC on small scales is real or due to some

deficit of simulations or deblending issue with actual data and source detection.
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Häußler, B., McIntosh, D. H., Barden, M., et al. 2007, ApJS, 172, 615

Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236
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