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Abstract: We present the implementation of several color-singlet final-state processes at
Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-
level Monte Carlo program MCFM1. Specifically we discuss the processes pp→ H, pp→ Z,
pp → W , pp → HZ, pp → HW and pp → γγ. Decays of the unstable bosons are fully
included, resulting in a flexible fully differential Monte Carlo code. The NNLO corrections
have been calculated using the non-local N -jettiness subtraction approach. Special atten-
tion is given to the numerical aspects of running MCFM for these processes at this order.
We pay particular attention to the systematic uncertainties due to the power corrections
induced by the N -jettiness regularization scheme and the evaluation time needed to run
the hybrid openMP/MPI version of MCFM at NNLO on multi-processor systems.

1Version 8.0 of MCFM can be downloaded from the mcfm.fnal.gov website.
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1 Introduction

The second run of the LHC (Run II) which is currently underway, will result in the accu-
mulation of an unprecedented amount of high-quality data in a new high energy regime.
In tandem with the well-understood and carefully calibrated detectors, this will lead to
experimental uncertainties that are at the level of a few percent or smaller for many of the
most important processes. These include various Higgs boson production channels, as well
as standard candle processes such as vector boson production. Studies of diboson produc-
tion will allow for stringent tests of the Electroweak sector of the Standard Model (SM)
and constraints on possible new physics scenarios. In order to make best use of the precise
experimental observations it is crucial to have access to accurate theoretical calculations
of the same quantities. At the LHC this requires the calculation of QCD corrections to
inclusive and differential cross sections at increasingly higher order. For the most efficient
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comparison between theoretical predictions and experimental data it is extremely benefi-
cial for theoretical results to be released in the form of a public code, allowing users full
flexibility in obtaining theoretical predictions relevant for their analysis.

While calculations at Next-to-Leading Order (NLO) in the strong coupling constant
are by now quite standard, only about 20 processes have been calculated through to Next-
to-Next-to-Leading Order (NNLO). Recent publications on these processes are shown in
Table. 1. All such calculations require a means by which to regulate the soft and collinear
radiation that appears in the calculation of the higher-order contributions. At NLO lo-
cal subtraction schemes, such as FKS [40] or Catani-Seymour dipole subtraction [41], are
typically preferred. In these local subtraction formalisms, the singular unresolved infra-red
limits are cancelled point-wise by local counterterms. These local counterterms, after ana-
lytic integration over the unresolved partons, are added to the virtual corrections yielding
a finite result.

The construction of a local subtraction scheme for a NNLO calculation is a daunting
task, given the complexities of the multiple infrared limits and differing dimensionality of
phase space for the component parts. However, progress has been made, with significant
advances over the last decade. The first local subtraction scheme used at NNLO was the
sector decomposition approach presented in ref. [42]. This scheme separates the overlap-
ping singularities by using a plus-prescription to isolate the singular contributions, thereby
avoiding any analytic integrations over regions of phase space. The antenna subtraction
method was extended to NNLO in Refs. [43, 44], and has been used to obtain predictions for
2→ 2 processes in which both final state particles are colored [39]. Antenna subtraction re-
sembles the NLO subtraction formalisms in that the doubly unresolved limits are cancelled
point-by-point in phase space by counterterms which require analytic integration to cancel
infrared poles in the real-virtual and double virtual phase spaces. Finally in Refs. [45–47]
the sector decomposition approach was generalized to arbitrary processes. By partitioning
the phase space into appropriate sectors in which each singularity can be made manifest,
and then performing a Laurent series expansion to extract the poles. This method has been
applied to various processes at the LHC [5, 7, 34, 38].

In addition to the local subtraction schemes discussed above, there is an alternate form
of regulation, which is inherently non-local. Indeed one of the first NLO regularization
techniques developed was one such method, phase space slicing, introduced in Refs. [48–
50]. In these methods a parameter is used to separate the resolved and unresolved phase
spaces. The resolved region of phase space corresponds to a calculation of the process

H + 0 jet [1–4] H + 1 jet [5–9] Higgs WBF [10] H → bb̄ [11, 12]
W + 0 jet [13, 14] Z/γ∗ + 0 jet [4, 14, 15] W + 1 jet [16] Z + 1 jet [17–20]
ZH [21, 22] WH [22, 23] WZ [24]
ZZ [25–27] WW [28–30] W + γ, Z + γ [31] γγ [32, 33]
tt̄ [34, 35] single top [36] top decay [37, 38] dijets [39]

Table 1. Publications on processes evaluated differentially at NNLO.
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with one additional final state parton, and if a suitable resolution parameter is chosen,
the unresolved region can be directly calculated. At NLO non-local methods have generally
fallen out of favor. This is due to the large cancellation between the resolved and unresolved
contributions at small values of the resolution parameter, which can induce large Monte
Carlo uncertainties.

However non-local subtraction schemes have made a resurgence for NNLO calculations.
Although they have the disadvantages discussed above they also have several advantages
which make them attractive for NNLO calculations. First, they are conceptually simple to
implement. Once a suitable resolution parameter is selected, the singly unresolved part of
the calculation can be obtained with existing NLO event generators, such as MCFM [51–
53]. Second, with recent advances in computing, the drawback associated with the large
numerical cancellations can be mitigated by running with a large number of computer cores.
Finally by using a resolution parameter motivated by a physical factorization theorem, the
approximations inherent in the method can be systematically improved, e.g. by analytic
calculations of power-suppressed contributions [54].

The first non-local subtraction developed for NNLO calculation was the so-called qT
subtraction method [3]. This method uses the transverse momentum of the final state color
neutral particle, qT , as the cut variable. For qT < qcutT the factorization theorem of Collins,
Soper and Sterman [55], can be used to compute the cross section, while above the cutoff the
NLO calculation of the color-singlet plus jet can be utilized. An obvious drawback is that it
is only applicable to color neutral final states. Inspired by a factorization formula [56] from
Soft Collinear Effective Field Theory (SCET) [57–61] the first steps towards extending
these ideas to calculations containing colored final states were taken in a calculation of
top-quark decay at NNLO [37]. However, no initial collinear singularities appear in this
calculation. A powerful generalization of this idea applicable to general initial and final
states was introduced in [4, 16]. It is obtained by replacing the qT variable with the
event shape N -jettiness variable [62]. Below the N -jettiness (τN ) cutoff, SCET provides
the relevant factorization theorem [62]. For the below-cut region the necessary SCET
ingredients, corresponding to the final state and initial state collinear radiation functions
are already known, and are represented by the two-loop jet-functions of Ref. [63, 64] and
the two-loop beam-function of Ref. [65, 66]. The corresponding two-loop soft functions are
also known for zero-jettiness [67, 68] and for general N -jettiness [69]. The first process
calculated at NNLO using this method was pp → W+jet [16], followed by calculations of
the pp → Higgs+jet [8] and pp → Z+jet [18] processes, and by detailed phenomenological
studies of these processes at this order [70–72]. pp → H and pp → Z were also calculated
using this method [4]. Additional processes of phenomenological interest, pp → V H [22]
and pp→ γγ [33] have been calculated using the same approach.

As mentioned before, an important advantage of the N -jettiness subtraction method is
that it meshes well with the existing NLO calculations, such as those included in MCFM.
Included in MCFM are the NLO corrections to W + n jet production, Z + n jets produc-
tion [73], Higgs +n jets production [74, 75] for (n = 0, 1, 2), making the implementation of
W , Z, H + 0,1 jet at NNLO possible.

The recent advances in NNLO technologies allows for the exciting possibility of releasing
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a public code capable of computing many 2→ 2 processes at NNLO accuracy. This paper
presents a first step in this journey by summarizing the implementation of the N -jettiness
subtraction procedure in MCFM, and presenting a detailed breakdown of the method for
the processes released in the initial version of the NNLO code. An important consideration
in making the code public is computational speed. In Ref. [53] MCFM was upgraded
to use a parallel version of the VEGAS adaptive integration method using openMP. For
NNLO calculations, this was expanded by using a hybrid openMP/MPI version of MCFM
for use on computing clusters to facilitate the numerical NNLO calculations of Ref. [18].
Using the hybrid version of MCFM we can calculate NNLO distributions efficiently within
a reasonable timescale.

In summary, this paper describes the implementation of theN -jettiness subtraction pro-
cedure in MCFM and presents results for the processes available in MCFM v8.0. Specifically
these processes are pp→ H,W,Z, V H, γγ. Where present the decays of unstable particles
are included, allowing for a fully flexible MC code. In section 2 we will give a schematic
overview of the non-local N -jettiness subtraction scheme. Section 3 will detail the calcu-
lational set-up and sections 4 and 5 will look at the N -jettiness subtraction at NLO and
NNLO respectively. A preliminary study of the effects of the dominant power corrections
is presented in Section 6. The more numerical aspects are studied in section 7. Finally in
section 8 the main results are summarized.

2 SCET Based Non-Local Subtraction

A collision of partons a and b with momentum fractions xa,b, originating from the incoming
beam protons with momenta pa,b, produces a final state including N jets with momenta
{qi}. The jettiness of parton j with momentum pj is defined as

TN (pj) = min
i=a,b,1,...,N

{
2 qi · pj
Qi

}
, (2.1)

where for notational simplicity we have set qa,b = pa,b. We denote the jet or beam energy
by Ei. Qi is a measure of the jet/beam hardness. In our numerical results we set this equal
to twice the jet/beam energy, Qi = 2Ei [62]. We can now define the event jettiness, or
N -jettiness, as the sum over all the M final state parton jettiness values

TN =
M∑
k=1

TN (pk) =
M∑
k=1

min
i=a,b,1,...,N

{
2 qi · pk
Qi

}
. (2.2)

For Leading Order (LO) events we have {pi} = {qi} and the event jettiness is zero. Beyond
LO (M > N), only in the soft/collinear limit will the event jettiness necessarily go to zero.
Therefore the event N -jettiness can be used in a non-local subtraction approach where we
can isolate the doubly unresolved region of the phase space by demanding TN < T cutN . In
this paper we restrict ourselves to color singlet final state events. We can therefore use the
event shape variable T0 to regulate the initial state radiation.

By demanding T0 < T cut0 one isolates the doubly unresolved regions of phase space. The
matrix elements in the soft/collinear approximation can be analytically integrated over this
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region and added to the virtual contributions. The regions of phase space where T0 > T cut0

are integrated over numerically. In the limit T cut0 → 0 this will result in the correct results
for the cross section.

To obtain the analytic soft/collinear expressions we use all-orders resummation results
which rely heavily on the machinery of soft-collinear effective theory (SCET) [57–61]. The
all-orders resummation of the T0 event-shape variable in the limit T0 → 0 was constructed
in Ref. [62]:

dσ

dT0
=
∑
ab

∫
dxadxb

∫
dΦB(pa, pb; psinglet) Θ(psinglet)Hab(ΦB, µ)

d∆ab

dT0
+ . . . , (2.3)

where the indices a, b run over all initial state partons involved in the scattering. The
initial state momenta pa,b are given by the momenta fractions xa,b, while ΦB denotes the
Born-level color singlet phase space papb → psinglet. The composite Θ(psinglet) denotes any
phase space restrictions on the color-singlet phase space. The soft/collinear function ∆ab

is given by

d∆ab

dT0
= Ba ⊗Bb ⊗ Sab

≡
∫

dtBadtBb
dtS δ (T0 − tBa − tBb

− tS) Ba(tBa , xa, µ)Bb(tBb
, xb, µ)Sab(tS , µ) .

(2.4)

A summary of the various components which appear in these expressions is given below:

• The hard function H encodes the effect of hard virtual corrections. At leading order
in the αs-expansion it reduces to the leading-order partonic cross section. At higher
orders it also contains the finite contributions of the pure virtual corrections, renor-
malized at scale µ using the MS scheme. It depends on the Born-level kinematics and
the scale choice.

• The beam function Ba contains the effects of initial-state collinear radiation. It de-
pends on tBa , the contribution of initial-state collinear radiation to T0. The beam
function is non-perturbative; however, up to corrections suppressed by ΛQCD/tB, it
can be written as a convolution of perturbative matching coefficients and the usual
parton density functions, fi/H ,

Ba(tBa , x, µ) =
∑
i

∫ 1

x

dξ

ξ
Iai(tBa , x/ξ, µ)fi/H(ξ), (2.5)

where we have suppressed the scale dependence of the parton density functions, and i
runs over all partons. The two-loop beam functions have been computed in Refs. [65,
66].

• The soft function S collects the jettiness contributions of soft radiation. It depends
on tS , the contribution of soft radiation to T0. The expansion of the soft function for
zero-jettiness up to two-loop order can be found in Refs. [67, 68].

– 5 –



The delta function appearing in Eq. (2.4) combines the contribution of each type of radiation
to produce the measured value of T0. The factorization formula is correct up to power
corrections, indicated by the ellipsis in Eq. (2.3). These power corrections can in principle
be calculated in the same way as one derives the leading power components in Eq. (2.4).
However, they can be neglected as long as we restrict ourselves to the phase-space region
T0 � Q, where Q denotes the hard scale in the process (for the zero-jet processes considered
here, Q is of the order of the invariant mass of the final state). Integrating Eq. (2.3) over
the region T0 < T cut0 will give the analytic result for the below-cut cross section:

dσ(T cut0 ) =
∑
ab

∫
dxadxb

∫
dΦB(pa, pb; psinglet) Θ(psinglet)Hab(ΦB, µ) ∆ab(T cut0 ) + · · · ,

(2.6)
with

∆ab(T0 < T cut0 ) =

∫ T cut
0

0
dT0 (Ba ⊗Bb ⊗ Sab) . (2.7)

Next we expand the functions order by order in αS using a superscript to denote the
power of αs appearing in each term. That is, we expand any perturbative function F as

F = F (0) + αSF (1) + α2
SF (2) + · · · . (2.8)

This results in

dσ(n)(T cut0 ) =
∑
ab

∫
dxadxb

∫
dΦB(pa, pb; psinglet) Θ(psinglet)

n∑
k=0

H
(n−k)
ab (ΦB, µ)∆

(k)
ab (T cut0 ) ,

∆
(n)
ab (T cut0 ) =

∑
k+l+m=n

∫ T cut
0

0
dT0

(
B(k)
a ⊗B

(l)
b ⊗ S

(m)
ab

)
. (2.9)

To obtain the O(α2
s) correction to the soft/collinear cross section below the T cut0 we

need

∆
(0)
ab (T cut0 ) =

∫ T cut
0

0
dT0 B(0)

a ⊗B
(0)
b ⊗ S

(0)
ab = fa/H(xa) fb/H(xb) ,

∆
(1)
ab (T cut0 ) =

∫ T cut
0

0
dT0

(
B(1)
a ⊗B

(0)
b ⊗ S

(0)
ab +B(0)

a ⊗B
(1)
b ⊗ S

(0)
ab +B(0)

a ⊗B
(0)
b ⊗ S

(1)
ab

)
,

∆
(2)
ab (T cut0 ) =

∫ T cut
0

0
dT0

(
B(2)
a ⊗B

(0)
b ⊗ S

(0)
ab +B(0)

a ⊗B
(2)
b ⊗ S

(0)
ab +B(0)

a ⊗B
(0)
b ⊗ S

(2)
ab

+B(1)
a ⊗B

(1)
b ⊗ S

(0)
ab +B(1)

a ⊗B
(0)
b ⊗ S

(1)
ab +B(0)

a ⊗B
(1)
b ⊗ S

(1)
ab

)
.

(2.10)

Note that the leading-order expressions for the subtraction functions are proportional to
delta functions in their respective hadronic variable:

B(0)
a (tBa , xa, µ) = δ(tBa)fa/H(xa); S

(0)
ab (ts, µ) = δ(ts) . (2.11)

– 6 –



The soft and beam function have the generic forms

S(n)(ts, µ) = s
(n)
−1δ(ts) +

2n−1∑
k=0

s
(n)
k Lk(ts, µ) ,

I(n)ij (ta, z, µ) = i
(n)
−1,ij(z)δ(ta) +

2n−1∑
k=0

i
(n)
k,ij(z)Lk(ta, µ) ,

Ln(t, µ) =
1

µ

[
µ lnn(t)

t

]
+

. (2.12)

For example, the following contributions to the NNLO SCET function become

∫ T cut
0

0
dT0 S(2) ⊗ I(0)ai ⊗ I

(0)
bj = δai δbj

{
s
(2)
−1 +

3∑
n=0

1

n+ 1
s(2)n Ln+1

}
,

∫ T cut
0

0
dT0 S(1) ⊗ I(1)ai ⊗ I

(0)
bj =

δbj

{
s
(1)
−1i

(1)
−1,ai(z) + s

(1)
−1

1∑
n=0

1

n+ 1
i
(1)
n,ai(z)L

n+1 + i
(1)
−1,ai(z)

1∑
n=0

1

n+ 1
s(1)n Ln+1

+
1∑

m,n=0

s(1)m i
(1)
n,ai(z)Γm,n

 , (2.13)

where

L = ln
(
T cut0

µ

)
. (2.14)

and

Γ0,0 = L2 − ζ2

Γ1,0 = Γ0,1 =
L3

2
− ζ2L+ ζ3

Γ1,1 =
L4

4
− ζ2L2 + 2ζ3L−

ζ22
10

. (2.15)

Using these results it is possible to analytically compute all of the necessary hadronic in-
tegrals in Eq. (2.10). The remaining integrals are over the Born phase space and parton
distribution functions, and are simple to perform numerically. This completes the calcula-
tion of the T0 < T cut0 phase space region. We note that the cross section below T cut0 will
contain terms of the form lnn(T cut0 ), where n ranges from 0 to 4 at NNLO. An important
check of our framework is the cancellation of these terms against the identical logarithms
that appear for T0 > T cut0 . We must also choose T cut0 small enough to suppress the power
corrections in Eq. (2.3). Both of these issues will be addressed in the subsequent sections.
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mZ 91.1876 GeV α(mZ) 0.0075563839
mW 80.398 GeV sin2 θw 0.2226459
mH 125 GeV mt 172 GeV
ΓZ 2.4952 GeV g2w 0.4264904
ΓW 2.1054 GeV e2 0.0949563
GF 0.116639×10−4

Table 2. Masses, widths, couplings and scales used in the calculation of all processes. Note that
the value of α(mZ) corresponds to 1/α(mZ) = 132.3384323.

Process µR µF Cross-section to NNLO Reference
gg → H MH MH 12.937× (1 + 1.28 + 0.77) pb ggh@nnlo [76]
Z 2MZ MZ/2 44.303× (1 + 0.22 + 0.05) nb ZWMS [77]
W+ 2MW MW /2 81.561× (1 + 0.23 + 0.06) nb ZWMS [77]
ZH

√
q2

√
q2 0.68255× (1 + 0.16 + 0.10) pb vh@nnlo [78, 79]

W+H +W−H
√
q2

√
q2 1.2593× (1 + 0.16 + 0.02) pb vh@nnlo [78, 79]

Table 3. Inclusive results from validation codes (listed in the final column) for processes considered
in this paper. NLO and NNLO corrections are shown as relative enhancements to the LO cross-
section. q2 is the overall invariant mass squared of the vector boson and the Higgs boson.

3 Process Overview

For all of the studies performed in this paper we perform calculations for the LHC operating
at a center-of-mass energy of

√
s = 13 TeV. The parameters that are used throughout this

paper are shown in Table 2. Finally, we use the NNLO MSTW2008 PDF set (MSTW8nn)
that corresponds to αs(MZ) = 0.11707.

An overview of the processes that will be studied in detail in this paper is shown in
Table 31. As well as detailing the default choice of renormalization and factorization scales
(µR and µF ), this table also shows the corresponding cross-section up to NNLO. The NNLO
cross-sections are written in the form,

σNNLO = σLO ×
(

1 +
∆σNLO
σLO

+
∆σNNLO
σLO

)
, (3.1)

so that, for instance, the corresponding NLO result is obtained by simply omitting the
final term in this equation. The cross-sections have been obtained by running the readily-
available public codes referenced in the final column of Table 3.

We now describe the calculational setup that we use for these processes, which corre-
sponds to the default behavior of the above codes. This behaviour has been matched in
the MCFM code and, in order to establish the equivalence of the parameters for MCFM
and the other publicly available codes, we compare results up to NLO in Table 4. The
agreement is excellent for all processes, so that we can be sure that MCFM should produce

1In addition, we include a more limited study of the di-photon process
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the same results as the other codes when computing the NLO and NNLO predictions using
the N -jettiness subtraction method.

3.1 Higgs production through gluon fusion

We work in a theory in which only the top quark has a non-zero Yukawa coupling. Taking
the large mt limit we obtain an effective Lagrangian that expresses the coupling of gluons
to the Higgs field [80],

LintH =
C(m2

t , µ
2)

2
H
∑
a

Gaµν G
µν
a . (3.2)

where the sum is over the color degrees of freedom of the gluon. At the order required in
this paper, the coefficient C(m2

t , µ
2) is given in the MS scheme by [81, 82],

C(m2
t , µ

2) =
αS
6πv

{
1 +

αs
4π

(5CA − 3CF ) (3.3)

+
(αs

4π

)2 [27

2
C2
F +

(
11 ln

m2
t

µ2
− 100

3

)
CFCA −

(
7 ln

m2
t

µ2
− 1063

36

)
C2
A

− 4

3
CFTF −

5

6
CATF −

(
8 ln

m2
t

µ2
+ 5

)
CFTFnf −

47

9
CATFnf

]}
.

Here v is the vacuum expectation value of the Higgs field, v = 246 GeV. The only remaining
mt-dependence at this order is the one shown in the O(α2

s) contribution to the coefficient
of the effective operator.

The validation cross-section for this process is obtained using ggh@nnlo [76]. As can
be seen from Table 3, at 13 TeV the higher-order corrections to this cross-section are quite
large.

3.2 W and Z production

To establish the correct values of the higher-order cross sections for W+ and Z production
we use the program ZWMS [77]. For the sake of illustration we have chosen to perform
the comparison for only one charge of the W -boson. We note that for the canonical scale
choice µR = µF = MV (where V = W,Z) the NNLO corrections are very small. Although
this is ultimately an advantage in terms of the accuracy required for phenomenological
applications, it prohibits a careful study of the behaviour of the N -jettiness calculation. To
enhance the size of the NNLO correction we therefore use an asymmetric choice, µR = 2MV ,
µF = MV /2. This results in NNLO corrections of approximately 5% relative to the LO
cross-section at 13 TeV (c.f. Table 3).

Note that by default MCFM includes the decay of the vector bosons, Z/γ∗ to a lepton
pair. For comparison with the rate for production of on-shell Z-bosons, we remove the
(small) contribution mediated by a virtual photon and divide out the overall branching
ratio of the Z-boson to leptons.
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Process Order MCFM cross-section Cross-check
H production LO 12.937± 0.001 pb 12.937 pb

NLO 29.520± 0.001 pb 29.521 pb
Z LO 44.303± 0.001 nb 44.303 nb

NLO 53.958± 0.002 nb 53.957 nb
W+ LO 81.559± 0.002 nb 81.561 nb

NLO 100.298± 0.003 nb 100.299 nb
ZH LO 0.68254± 0.00001 pb 0.68255 pb

NLO 0.79073± 0.00003 pb 0.79079 pb
W+H +W−H LO 1.2592± 0.02 pb 1.2593 pb

NLO 1.4629± 0.04 pb 1.4630 pb

Table 4. Comparison of LO and NLO cross-sections computed using the standard MCFM
subtraction method with the codes used for cross-checking in this paper.

3.3 Associated Higgs production: W±H and ZH processes

To establish target NLO and NNLO values for the total cross section for W±H and ZH
production we use the program vh@nnlo [78, 79]. In order to facilitate an easy comparison
with this program, we use the scale choice µR = µF =

√
q2 ≡

√
(pV + pH)2, with V = W±

or V = Z as appropriate. We also sum over both charges of the W boson, i.e. we include
both W+ and W− contributions – which can differ substantially at a pp collider such as
the LHC – in all of the results below. For the diagrams in which the Higgs boson couples
directly to a top quark loop we work in the effective theory, valid in the large mt limit given
by Eq. (3.2). A detailed phenomenological study of the NNLO implementation of these
processes in MCFM has been presented in Ref. [22].

For both W±H and ZH processes the correction originating from diagrams with the
Higgs boson coupling to a top quark loop is approximately 1.5%. The ZH process also
includes a substantial finite component due to gg → ZH loops at NNLO. The NNLO
corrections that correspond to simple dressings of the LO diagrams are very small, of order
1%, for both W±H and ZH production. The net effect of all these contributions is shown
in Table 3, where the NNLO corrections to the ZH process are at the level of 10%. In
contrast, the total NNLO correction to the W±H process is about 2% of the LO result.

3.4 Diphoton production

NNLO predictions for the diphoton process, obtained using MCFM, have been presented
in ref. [33]. Therein the results have been validated using the same procedure as we will
adopt later; we do not repeat that analysis here. However, we will later on summarize the
size of the power corrections and timing results for this process.

– 10 –



Process ∆σNLO ∆σNLO/σLO

H 16.58 pb 1.282
Z 9.655 nb 0.218
W+ 18.74 nb 0.230
ZH 0.1082 pb 0.158
W+H +W−H 0.2037 pb 0.162

Table 5. NLO corrections to the processes computed in this paper using the N -jettiness method.

4 N-Jettiness subtraction at NLO

Although the calculation of NLO corrections for the processes considered here is straight-
forward, a detailed examination of the corresponding N -jettiness subtraction calculation is
extremely useful. It provides a stringent check of the accuracy of this approach, namely
a direct probe of the size of the power corrections that have been neglected in Eq. (2.3).
This can be tested with exquisite accuracy, due to the relative simplicity of the calculation
compared to the corresponding exercise at NNLO. This comparison can also illuminate the
limitations of this approach when moving beyond an inclusive calculation, by using MCFM
to compare calculations of differential distributions at NLO.

The calculation of NLO corrections using theN -jettiness subtraction method is straight-
forward in MCFM. The below-cut contribution is easily computed, while the above-cut
contribution corresponds to a LO calculation of the process that contains an additional
parton. In order to avoid numerical instability in calculations using MCFM, previous ver-
sions of the code have applied a small cutoff on all invariant masses present in the problem,
√
sij > cutoff. In this version this has been changed so as to enforce a small cutoff on the

partonic jettiness of every parton present in a given calculation, TN (pj) > cutoff. Since
the above-cut region involves a standard LO calculation, for which there are no numeri-
cal instabilities, we are able to choose a value for this cutoff close to the limit of double
precision, cutoff = 10−12 GeV.

4.1 Inclusive cross-sections

The benchmark cross-sections that form the basis for this comparison can be extracted
from Table 4 and, for convenience, have been summarized in Table 5. As is well-known,
the NLO corrections to Higgs production through gluon fusion are very large, while all of
the other processes receive corrections of order 20%.

A comparison of theN -jettiness calculations of these coefficients, with the results shown
in Table 5, is shown in Fig. 1. The ratio of the calculations is shown as a function of T cut0 ,
for a range of suitable values of T cut0 . The approach of the N -jettiness calculation to the
correct result as T cut0 → 0 is clear for each process. However the manner in which the
correct result is reached varies considerably. For instance, Higgs production through gluon
fusion approaches the correct result from above, while the other processes approach it from
below. The approach is much slower for W+ and Z production than for any of the Higgs
production processes, with percent level accuracy only reached for T cut0 . 0.01 GeV.

– 11 –



Figure 1. The ratio of the NLO correction calculated using N -jettiness subtraction as imple-
mented in MCFM to the standard MCFM subtraction result (as presented in Table 5). The ratios
are plotted as a function of the N -jettiness resolution parameter T cut

0 in GeV. The comparison
is performed for gg → H, Z, W+, ZH and W±H production and the lines represent fits to the
individual points using the form given in Eq. (4.1).
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The approach of the N -jettiness subtraction result to the correct answer is determined
by the behaviour of power corrections that are not accounted for at present. At the NLO
level after integration over the final-state phase space this can be modeled by the following
functional form,

∆σNLOjettiness(T cut0 ) = ∆σNLO + c×
(
T cut0

Q

)
× log

(
T cut0

Q

)
, (4.1)

where Q is the appropriate scale for the process at hand and c is an unknown constant.
For single boson production Q is taken to be the mass of the produced particle (MH ,
MW or MZ) while for the associated production processes we use Q = MW + MH and
Q = MZ +MH . Fig. 1 also shows a fit of the results to Eq. (4.1), with the values of ∆σNLO

and c determined in the fit. The difference of the fit value for ∆σNLO with the known result
given in Table 5 is no larger than one per mille for all processes. The results of a study
of the dominant NLO power correction, obtained using an analytic calculation [54], will be
discussed in Section 6.

Since the speed of the approach to the correct result is qualitatively much worse for
W and Z production it is instructive to examine the processes in more detail in order to
uncover the origin of the difference. To that end we now turn to a comparison of more
differential results.

4.2 Rapidity distributions at NLO

The simplest distribution to study is the rapidity of the produced system, which is intimately
related to the momentum fractions carried by the incident partons. We will compare the
prediction for the NLO contribution to this distribution (i.e. corresponding to ∆σNLO)
computed using dipole subtraction and jettiness subtraction with T cut0 = 0.01 GeV and
T cut0 = 0.04 GeV. The difference between the true result and the jettiness calculation for
T cut0 = 0.04 GeV is about 0.4% for gg → H, 1.5% for Z production and 0.3% for ZH.
These processes are sufficient to illustrate the issue, since W+ and W±H production show
very similar behaviour to the Z and ZH processes respectively.

Results are shown in Fig. 2. The agreement of the jettiness calculations with the normal
MCFM result is excellent overall, particularly for central production |y| . 3. However there
is evidence for an increase in the size of the power corrections at larger absolute rapidities2.
The reason for the qualitative difference in the behaviour is thus two-fold. First, the onset
of power corrections with increased rapidity occurs sooner for Z production. Second, and
critically, the shape of the rapidity distribution is much broader for Z production so that
the effect of the high-rapidity tails is more apparent in the inclusive rates presented in the
previous section. It suggests that a restriction to more central rapidities would decrease the
effect of power corrections and speed the convergence to the correct result.

2This can be expected as τ0 ∼ pT exp(−|η|) and therefore at large rapidity the transverse momentum
cutoff is larger, increasing the expected power corrections
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Figure 2. MCFM calculation using N -jettiness subtraction of the NLO contribution to the rapidity
distributions of the Higgs boson (left), Z boson (centre) and ZH system (right), in the gg → H,
Z and ZH production processes respectively. Results are shown for two values of T cut

0 (in GeV)
and are compared with the normal MCFM calculation (solid histogram). The lower panel shows
the ratio of the jettiness results to the normal MCFM calculation.

4.3 Cross-sections under cuts

As an explicit demonstration of this behavior we will contrast the effect of the power
corrections on the inclusive cross-section with the behavior under a more realistic set of
experimental cuts. Rather than cutting directly on the rapidity of the W or Z boson, we
instead apply a minimal set of cuts on the W and Z boson decay products that might be
applied in an experimental analysis. We consider a Z boson decay to an electron-positron
pair and demand that both leptons be observed in the central region, |y(e±)| < 2.5. For the
W+ boson case we consider the decay into an positron and neutrino, imposing a rapidity
constraint on the charged lepton |y(e+)| < 2.5 and a minimum missing transverse energy
(MET) of 30 GeV. Note that the application of these cuts means that a comparison with
the code ZWMS can no longer be made. Although DYNNLO [14] or FEWZ [83, 84] could
be used to provide a reference cross-section under these cuts we do not pursue that here.
Instead we simply normalize to the (fitted) asymptotic result.

The results of this study are shown in Fig. 3. As anticipated, the effect of the cuts
is to significantly decrease the T cut0 -dependence of the cross-section. For instance, rather
than a difference of approximately 1% with the asymptotic result for T cut0 = 0.02 GeV in
the inclusive case, the fiducial cross-section differs by a few per mille or less for the same
value of T cut0 . The inability to restrict the rapidity of the unobserved neutrino in the case
of W+ → e+ν production, compared to Z → e−e+, leads to a slightly slower approach to
the correct result.
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Figure 3. The ratio of the MCFM N -jettiness calculation of the NLO coefficient to the (fitted)
asymptotic result, as a function of the N -jettiness resolution parameter T cut

0 in GeV. The compar-
ison is performed for Z (top) and W+ production (bottom) and for both the inclusive case and for
a minimal set of fiducial cuts (detailed in the text). The lines represent fits to the individual points
using the form given in Eq. (4.1).

5 N-Jettiness subtraction at NNLO

At NNLO, the N -jettiness subtraction method involves an above-cut contribution that
corresponds to a NLO calculation of the process containing an additional parton. In contrast
to the previous order, this results in genuine numerical instabilities that primarily arise
from the cancellation of subtraction terms in the real radiation contribution. As a result we
must use a larger value of the safety-cutoff parameter, namely cutoff = 10−8 GeV. This is
appropriate for computations in double precision, such as the ones presented in this paper.
Although we do not include any quadruple precision results here, we note that this cut may
be relaxed significantly in that case. We note the caveat that the running time of the code
increases significantly in quadruple precision, by about an order of magnitude.

5.1 Inclusive cross-sections

The expected NNLO cross-sections in the inclusive case, obtained using the already-available
public codes listed previously, are shown in Table 6. The corrections to the gg → H process
are again large at this order, while all of the other processes have corrections in the 2–10%
range. Of these other processes ZH production has the largest correction, but this is largely
due to the effect of finite gg → ZH and top-Yukawa contributions, as discussed previously.

The calculation of the NNLO coefficients by jettiness subtraction are compared with
results from the literature in Fig. 4. Note that all of the plots use a common scale for the
ordinates, which display the ratio, except for the one representing the gg → H calculation,
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Process ∆σNNLO ∆σNNLO/σLO

H 10.01 pb 0.774
Z 2.200 nb 0.050
W+ 4.702 nb 0.058
ZH 0.06562 pb 0.096
W+H +W−H 0.0294 pb 0.023

Table 6. NNLO corrections to the processes computed in this paper.

for which the power corrections are much smaller. It is clear from this figure that there is
a slower approach to the asymptotic result than at NLO, but that excellent agreement is
still obtained for smaller values of T cut0 . The relatively poorer approach to the true result is
expected from the behaviour of the power corrections at NNLO, whose leading two terms
can be modeled after integration over the final-state phase space as

∆σNNLOjettiness (T cut0 ) = ∆σNNLO + c3×
(
T cut0

Q

)
× log3

(
T cut0

Q

)
+ c2×

(
T cut0

Q

)
× log2

(
T cut0

Q

)
,

(5.1)
where Q is the appropriate scale as before and c2,3 are unknown constants. Also shown in
Fig. 4 are fits of the results to Eq. (5.1), with the values of ∆σNNLO and c2,3 determined in
the fit. The subleading term is only important in the case of the gg → H process, in order
to capture the observed turn-over for larger values of T cut0 . For gg → H, ZH and W±H
production the fit value of ∆σNNLO differs from the known result given in Table 6 by less
than one per mille. For the Z and W+ processes the agreement is not as good, at the
level of approximately 4%. Again, the dominant NNLO power correction can be calculated
analytically from first principles [54] and its impact will be shown in Section 6.

5.2 Rapidity distributions at NNLO

Given the effect of the power corrections on the rapidity distribution at NLO, we expect
to see a similar pattern at NNLO. We compare predictions for T cut0 = 0.01 GeV and
T cut0 = 0.004 GeV. For the gg → H and ZH processes that we study here, the predictions
for T cut0 = 0.004 GeV should be a good proxy for the exact distribution given the small
deviations from the inclusive cross-section to which they correspond (around 0.8% for both).
For Z production, this value of T cut0 yields a total cross-section that differs by 10% from
the known result. To obtain an actual phenomenological result one must run with a lower
T cut0 . Nevertheless it is sufficient to demonstrate the pattern of the power corrections.

The dependence on T cut0 of the NNLO contributions to the rapidity distributions is
illustrated in Fig. 5. As observed at NLO, all three distributions are much less sensitive to
the choice of T cut0 in the central region than at large rapidities. The quality of the indepen-
dence from T cut0 deteriorates substantially for |y| & 2. However, even in the central region,
the Z process is far more affected by the choice of T cut0 than the other two calculations.
In the more forward regions, which still contribute to the cross-section at an appreciable
level, the T cut0 dependence rises to the level of a few tens of percent. For this reason it is
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Figure 4. The ratio of the MCFM calculation of the NNLO coefficient to the known result presented
in Table 6, as a function of the N -jettiness resolution parameter T cut

0 (in GeV). The comparison
is performed for gg → H, Z, W+, ZH and W±H production and the lines represent fits to the
individual points using the form given in Eq. (5.1).

crucial to apply the basic fiducial cuts introduced earlier in order to obtain a percent level
agreement with the NNLO coefficient.
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Figure 5. MCFM calculation of the NNLO contribution to the rapidity distributions of the Higgs
boson (left), Z boson (centre) and ZH system (right), in the gg → H, Z and ZH production
processes respectively. Results are shown for two values of T cut

0 , with the lower panel showing the
ratio of the T cut

0 = 0.01 GeV result to the T cut
0 = 0.004 GeV one.

In contrast, for phenomenology it is sufficient to study the effect of the value of T cut0

not on the effect of the NNLO correction itself, but on the total prediction at that level of
accuracy. In that case the smallness of the NNLO coefficient in the case of Z production
is an advantage as it suppresses the relative size of the power corrections in the total. On
the other hand the gg → H process, which receives a very large correction at NNLO,
is more easily subject to power corrections. In order to provide a full NNLO prediction
for the rapidity distributions discussed in this section we sum the results of a standard
MCFM calculation at NLO and a computation of only the NNLO correction using jettiness
subtraction. The resulting distributions are shown in Fig. 6. The gg → H and Z production
processes differ by a couple of percent in the tails of the distribution, for these two values
of T cut0 , but are otherwise in excellent agreement. The dependence on T cut0 is even smaller
for the case of ZH production.

5.3 Cross-sections under cuts

Although the W and Z production cases are the most sensitive to T cut0 at NNLO, at
this order both ZH and W±H production also display a non-negligible dependence on
T cut0 . We therefore consider all four processes in this section. For W and Z production
we apply the same cuts as before. For the other processes we consider the final states
W±(→ e±ν)H(→ γγ) and Z(→ e+e−)H(→ bb̄) but do not apply any cuts to the Higgs
boson decay products in either case. In this way the results remain valid for any decay
channel of the Higgs boson. The W± and Z decay products are subject to the same cuts
as in the corresponding inclusive W and Z production processes.

The results of this study are shown in Fig. 7. For the W and Z cases, the improvement
is dramatic; for T cut0 = 0.02 GeV the difference from the asymptotic result improves from
approximately 35% in the inclusive case to 8% under cuts. A similar level of improvement
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Figure 6. MCFM calculation of the full NNLO result for the rapidity distributions of the Higgs
boson (left), Z boson (centre) and ZH system (right), in the gg → H, Z and ZH production
processes respectively. Results are shown for two values of T cut

0 , with the lower panel showing the
ratio of the T cut

0 = 0.01 GeV result to the T cut
0 = 0.004 GeV one.

Process σLO,fid ∆σNNLO,fid ∆σNNLO,fid/σLO,fid

Z 708.6 pb 44.8 pb 0.063
W+ 3.259 nb 270 pb 0.083
ZH 9.606 fb 1.126 fb 0.12
W±H 0.1337 fb 0.00353 fb 0.026

Table 7. NNLO corrections under the basic fiducial cuts described in the text.

applies in the case of W production. For ZH production the gain is less pronounced due
to the fact that only the Z decay products are restricted in rapidity, which results in a less
stringent constraint on the combined ZH system. Nevertheless, the agreement with the
asymptotic result improves by about a factor of two relative to the case of no cuts. The
asymptotic value of each NNLO N -jettiness calculation, together with the LO cross-sections
under the fiducial cuts used in this study, are shown in Table 7.

6 Analytic Power Corrections at NLO and NNLO

As is clear from the discussions in the earlier sections it is important to understand the T cut0

dependence. The choice of this cut is a balance between achievable statistical uncertainties
and the uncertainty due to the missing power corrections of Eq. (4.1) and Eq. (5.1). It
would therefore be highly beneficial if one could calculate some of the power corrections
analytically. This will both speed up the code and increase the accuracy.

A preliminary calculation of the dominant power correction for NLO and NNLO as a
function of the rapidity of the Higgs boson has been performed [54]. The results for the total
gg → H cross section are shown in Fig. 8. The full result for the leading power correction
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Figure 7. The ratio of the MCFM N -jettiness calculation of the NNLO coefficient to the (fitted)
asymptotic result, as a function of the N -jettiness resolution parameter T cut

0 (in GeV). The com-
parison is performed for Z, W+, ZH and W±H production and for both the inclusive case and for
a minimal set of fiducial cuts (detailed in the text). The lines represent fits to the individual points
using the form given in Eq. (5.1).

to Drell-Yan like processes will be discussed in a separate publication [54] and included in
a future version of MCFM.

As can be seen from Fig. 8 the effect of including this term into MCFM is substantial
and one can choose the T cut0 an order of magnitude larger and still obtain about the same
uncertainty due to the new subleading power corrections. This will have a large impact on
the ultimate achievable precision of the jettiness method as implemented in MCFM.
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Figure 8. The NLO T cut
0 dependence for gg → H of Fig. 1 is shown as the dashed red line in

the upper pane. The solid purple line gives the remaining T cut
0 dependence when the analytically

calculated expression for the leading power correction is added to MCFM. The lower pane gives the
same at NNLO for gg → H where the red line is taken from Fig. 4.

7 Numerics

In this section we discuss the numerical performance of MCFM. As an illustration we will
run the hybrid openMP/MPI version of MCFM on a modest sized cluster. This cluster
consists of 24 nodes, each node having of a motherboard with two Intel X5650 chips (2.67
GHz) using an unified memory. Each of the Intel chips has 6 cores, resulting in a total of
24×2×6 = 288 computing cores for the cluster. The nodes are connected using InfiniBand
NFS mounts.

We will use 4×100, 000+10×1, 000, 000 VEGAS events in the remainder of this section.
It is straightforward to scale the results obtained for this particular cluster to other cluster
configurations. Specifically we examine two important performance issues. First, we will
look at the time required to calculate the cross section as a function of the number of cores
used. Second, we will look at the obtained statistical precision due to the Monte Carlo
integration as a function of the T cut0 parameter. For all the runs in this section we use, in
addition to the input parameters of Table 2, a collision energy of 14 TeV and an inclusive
anti-kT jet algorithm with a cone size of 0.4. We apply, where applicable, the following
cut on the transverse momenta of the final state objects pJET

T > 20 GeV, pl±T > 25 GeV,
pMISS
T > 40 GeV, pγ1T > 40 GeV and pγ2T > 20 GeV. The rapidity of all final state objects

is required to be less than 2.5 and we require a separation between the observable final
state objects of ∆R > 0.4. When a Z-boson is produced we apply the additional cut on
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the di-lepton invariant mass of 40 GeV with no separation requirement between the two
charged leptons.

Calculating cross sections at higher order requires a significant amount of computing
power. In Ref. [53] several of us extended MCFM to use openMP by modifying VEGAS in
such a manner that it distributes the event generation and evaluation over the computing
cores of a single node/motherboard. By using multiple computing cores openMP makes the
evaluation of NLO cross sections on desktops efficient, while still using a single VEGAS grid
for the optimization of the numerical integration. For a timely evaluation of cross sections
at NNLO it is desirable to use a cluster combining many processors. As the processors in a
cluster do not share the same physical memory one has to use MPI. We extend VEGAS to
use MPI to distribute the event generation and evaluation further over all processors, while
openMP still distributes the events per processor over its computing cores. Again a single
VEGAS grid is used to optimize the numerical integration. It is important to use openMP
to distribute the events on a single processor as it keeps only one version of shared variables,
while MPI would keep a separate copy of those variables for each MPI process thereby using
the limited cache memory in an inefficient manner. This is particularly important as MCFM
use large shared arrays such as for example the VEGAS grid, PDF grids, histograms, etc.
which are common for all computing cores. It is therefore beneficial to maintain a hybrid
openMP/MPI version of VEGAS, especially given the continuing increase of the number of
cores per processor.

There are two limits which come into play when executing parallel code. The first limit
is the memory bound limit. Here the evaluation time is determined by memory transfers and
not by computations. In this limit the evaluation time will not scale well when adding more
computing cores and improving the scaling behavior will be difficult, necessitating a better
management of cache memory by the openMP code and/or more efficient message passing
by the MPI code. In the other limit the evaluation time is determined by the computations
and time used for memory management is negligible. In this limit the execution time will
scale perfectly with the number of processors, i.e. doubling the number of processors will
half the execution time. These limits are important in order to understand the scaling
behavior seen in MCFM.

The scaling of the computing time with the number of processing cores for the process
pp → W+ → l+ν is given in Table 8, with a visible representation in Figure 9. We have
the option to run one MPI process per node and let openMP distribute the events over the
12 cores of the two processors (indicated by the 1 × 12 column). This in general is not a
preferred mode of operating because the cache memory is divided over the two processors,
requiring openMP to make sure the two cache memories are synchronized, unduly invoking
a memory management overhead on the time needed for the evaluation. Alternatively, by
running two MPI jobs per node openMP is used on a single processor thereby optimizing
the cache usage and minimizing memory management overhead (2 × 6 column). This is
clearly demonstrated in Table 8. For example using all 288 processors on the cluster we
can use of 48 MPI jobs (2 MPI jobs per node) to evaluate the NNLO cross section in 328
seconds, or use 24 MPI jobs (1 MPI job per node) requiring 358 seconds to evaluate the
NNLO cross section. The time difference is due to the fractured cache memory caused by
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LO NLO NNLO
cores W+ (2× 6) W+ (1× 12) W+ (2× 6) W+ (1× 12) W+ (2× 6) W+ (1× 12)

6 11.15 308.9 10022
12 5.99 8.97 159.1 171.6 5068 5214
24 3.45 5.44 82.2 89.5 2559 2645
48 2.25 3.81 44.8 48.3 1326 1368
72 2.01 3.21 32.1 36.9 911 922
96 1.96 2.81 26.4 33.8 702 715
144 1.95 2.47 23.7 29.4 505 506
216 1.93 2.28 22.9 26.7 381 386
288 2.20 2.32 23.3 25.4 328 358

Table 8. The time required (in seconds) to evaluate the pp→W+ → l+ν total cross section using
the given number of cores for the node openMP texture of one MPI job per processor (2× 6) and
a single MPI job per node (1× 12). Results are given for LO, NLO and NNLO total cross sections.
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Figure 9. The evaluation time (in seconds) to calculate the total cross section for the process
pp → W+ → l+ν at LO, NLO and NNLO as a function of the number of cores used for both the
1× 12 and 2× 6 node texture.

forcing openMP to use two processors in the case of running with 24 MPI jobs. Therefore in
the remainder of this section we will use 2 MPI jobs per node, allowing openMP to operate
on a single processor.

Especially at LO, and to some extent at NLO, the computation effort to evaluate this
process is minimal, making the execution time operate close to the memory bound limit.
This behavior is exhibited in Table 8 and Figure 9 where for LO the evaluation time no
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MPI jobs W+ Z H HW+ HZ γγ

1 10022 20283 9079 9128 14357 27274
2 5068 10173 4530 4639 7222 13704
4 2559 5109 2339 2349 3655 6922
8 1326 2581 1196 1211 1846 3492
12 911 1752 821 823 1276 2352
16 702 1336 637 634 954 1773
24 585 915 466 452 662 1219
36 381 643 360 340 473 839
48 328 505 323 283 378 657

Table 9. The time required (in seconds) to evaluate the pp → W+ → l+ν, pp → Z → l+l−,
pp→ H → γγ, pp→ H +W+ → γγ + l+ν, pp→ H + Z → γγ + l+l− and pp→ γγ cross sections
at NNLO using a given number of MPI processes for the node openMP texture of one MPI job per
6-core processor (2× 6).

longer improves when using more than 12 MPI jobs (and for NLO more than 18 MPI
jobs). At NNLO using more cores still improves the evaluation time, as a consequence of
the need to evaluate a large number of the more computational intensive double parton
bremsstrahlung events. It is worth noting that the execution time on a single processor
using openMP executes in under 3 hours making the evaluation of this process on desktops
very feasible. Running on the full cluster using the 48 processors results in an execution
time of less than 4 minutes. This means one can easily increase the number of events and
lower the tau cut value to obtain better statistics.

Next we look at all the new NNLO processes added to MCFM in Table 9 and Figure 10
where the time in seconds is given as a function of the number of MPI jobs (= number
of processors) used. As can be seen, the processes scale well all the way up to the 288
processors. Some indication of a less than perfect scaling can be seen in the simplest of
the NNLO processes pp→ H → γγ when we get to a high number of processors indicating
there is some memory overhead. All other processors still are computing dominated which
will allow easy speed-up by invoking even more processors. The most complicated NNLO
process pp → γγ takes just under 11 minutes to evaluate using 48 processors. Therefore
obtaining higher statistics is rather easy. This process would still only take a bit less than
8 hours on a single processor desktop.

Finally, the statistical integration error obtained for the inclusive cross section given the
cuts using the 10,000,000 VEGAS events as a function of the T cut0 is given in Table 10. The
evaluation times are given for using 8 processors. As can be seen there is a small dependence
of the evaluation time on the choice of the T cut0 . As we choose the T0 cut smaller the Monte
Carlo becomes more “efficient” because it will generate more soft/collinear events. That is,
less events will be rejected by the cuts hence the evaluation time will grow.

As can be seen from table 10, the acquired statistical uncertainty is quite process
dependent. However the value of the T cut0 will also determine the systematic error due to
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Figure 10. The evaluation time (in seconds) needed to calculate the total cross section for the
processes pp → W+ → l+ν, pp → Z → l+l−, pp → H → γγ, pp → H + W+ → γγ + l+ν,
pp → H + Z → γγ + +l− and pp → γγ at NNLO as a function of the number of MPI processes
used (each MPI process uses openMP on 6 cores).

T cut0 W+ Z H HW+ HZ γγ

0.001 2% (1397) 0.9% (2770) 0.05% (1256) 10% (1263) 6% (1939) 0.4% (3706)
0.005 0.7% (1358) 0.4% (2701) 0.04% (1234) 3% (1238) 2% (1906) 0.2% (3661)
0.01 0.5% (1356) 0.2% (2677) 0.04% (1214) 2% (1222) 1% (1847) 0.15% (3585)
0.05 0.2% (1315) 0.08% (2572) 0.04% (1197) 0.6% (1206) 0.4% (1841) 0.09% (3492)
0.1 0.09% (1307) 0.05% (2526) 0.04% (1186) 0.3% (1186) 0.2% (1847) 0.08% (3427)
0.5 0.04% (1266) 0.04% (2356) 0.04% (1176) 0.1% (1150) 0.09% (1768) 0.07% (3376)

Table 10. The relative statistical precision (in percentages) on the pp→ W+ → l+ν, pp→ Z →
l+l−, pp → H → γγ, pp → H + W+ → γγ + l+ν pp → H + Z → γγ + l+l− and pp → γγ cross
sections at NNLO as a function of T cut

0 (in GeV) using 4 × 2 × 6 cores. Also given in brackets is
the evaluation time (in seconds).

the power corrections. Looking at Table 11 we see the required value of T cut0 to reduce the
power corrections to a 1% or a 0.2% level.3 First, focussing on the 1% uncertainty we see
that in all cases statistical error obtained with the 10,000,000 events is smaller than 1%.
The worst case is the inclusive W+ production with a statistical uncertainty of 0.7%. For
all other cases the statistical error is more than on order of magnitude smaller. To achieve
a systematic error of about 0.2% we see that we need to reduce the statistical uncertainty
significantly in order to be smaller than the systematic error. The reduction for some

3The size of the power corrections for the diphoton process is obtained from the results of ref. [33].
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Process σNNLO

1% accuracy 0.2% accuracy
gg → H inclusive 0.03 0.002

Z inclusive 0.01 0.002
lep. cuts 0.07 0.005

W+ inclusive 0.005 0.001
lep. cuts 0.03 0.003

ZH inclusive 0.3 0.02
lep. cuts 0.8 0.04

W±H inclusive 0.2 0.01
lep. cuts 0.8 0.08

γγ cuts [33] 0.01 0.001

Table 11. Values of T cut
0 (in GeV) required to perform the NNLO N -jettiness calculation to a

given accuracy, for the processes studied in this paper. At larger T cut
0 the accuracy deteriorates

because of increased power corrections.

processes is about an order of magnitude, requiring of the order of 100 times more events.
This means that an overall uncertainty of order 1% is easily obtainable using a desktop,
however going to the per-mille level will require a modest computer cluster such as the one
used for the numerical results in this section.

8 Summary

In this paper we detailed the performance of the first NNLO version of MCFM. Using the
non-local N -jettiness subtraction method, we included the NNLO corrections for six final
states: pp → W±, pp → Z/γ∗, pp → H, pp → W±H, pp → ZH and pp → γγ. For each
process decays of the unstable vector bosons are included where appropriate. The method
was checked at NLO against existing calculations and excellent agreement was found. At
NNLO the dependence on the jettiness cut was studied in great detail and some guidelines
on the choice of the jettiness cut were given for all NNLO processes added to MCFM.

Another addition to MCFM is the ability to run in a hybrid openMP/MPI mode,
enabling the Monte Carlo to use clusters efficiently while still maintaining a single VEGAS
grid. The evaluation time for NNLO inclusive cross sections with an overall precision better
than 1% on a single 8-core processor using openMP ranges from 3 hours to 8 hours depending
on the specific process. It was shown all processes scaled well on a multi-processor cluster
using MPI in addition to openMP, giving an evaluation time of 5 minutes to 11 minutes
on a 48 8-core processor cluster. A small cluster of 50+ cores will give good statistics for
distributions at NNLO in a short time-frame.

The N -jettiness subtraction method in MCFM is now well tested. Combined with
the hybrid openMP/MPI option, MCFM is now ready to include in the near future more
complicated processes including jet final states.
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