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Abstract: We present results for the production of a pair of on-shell Z bosons via gluon fusion. This

process occurs both through the production and decay of the Higgs boson, and through continuum

production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate

the interference of the two processes and its contribution to the cross section up to and including

order O(α3
s). The two-loop contributions to the amplitude are all known analytically, except for the

continuum production through loops of top quarks of mass m. The latter contribution is important

for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products,

m4l), in a regime where m4l ≥ 2m because of the contributions of longitudinal bosons. We examine

all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top

quark limit. Comparison with the analytic results, where known, allows us to assess the validity of the

heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference,

including both real and virtual radiation.
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1 Introduction

The production of four charged leptons is a process of great importance at the LHC. It was one of

the discovery channels of the Higgs boson at the LHC. It also provides fundamental tests of the gauge

structure of the electroweak theory through the high energy behaviour. Four charged leptons are

predominantly produced by quark anti-quark annihilation; the mediation is by photons or Z bosons

dependent on the mass of the four leptons, m4l.

A smaller contribution, which however grows with energy is provided by gluon-gluon fusion. The

Higgs boson is of course produced in this channel; in the Standard Model (SM) this occurs predom-

inantly through the mediation of a loop of top quarks. As pointed out by Kauer and Passarino [1],

despite the narrow width of the Higgs boson, the Higgs-mediated diagram gives a significant contribu-

tion for m4l > mH . If we examine the tail of the Higgs-mediated diagrams there are three phenomena

occurring:
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• The opening of the threshold for the production of real on-shell Z bosons, m4l > 2mZ .

• The region m4l = 2m, (m is the top quark mass) where the loop diagrams develop an imaginary

part.

• The large m4l region, m4l > 2m, where the destructive interference between the Higgs-mediated

diagrams leading to Z bosons and the continuum production of on-shell Z bosons is most im-

portant.

Figure 1: Representative diagrams for the ZZ production. In the following we will suppress the

Z-decays to leptons.

A feature of this tail is that it depends on the couplings of the Higgs boson to the initial and

final state particles but not on the width of the Higgs boson. Assuming the couplings of the on- and

off-peak Higgs-mediated amplitudes are the same, it has been proposed to use this property to derive

upper bounds on the width of the Higgs boson [2]. Note that models with different on- and off-peak

couplings can be constructed [3].

In the following we shall refer to the production of the bosons V1, V2. Gluon-gluon fusion first

contributes to the cross section for electroweak gauge boson production pp → V1V2 as shown in

Fig. 1(c)-(e) at O(α2
S), which is the next-to-next-to-leading-order (NNLO) with respect to the leading-

order (LO) QCD process shown in Fig. 1(a); no two-loop gg → V1V2 amplitudes participate in this

order in perturbation theory.

In the context of the Higgs boson width, however, the interference between the Higgs-mediated

Z boson pair-production and the Standard Model continuum at next-to-leading-order (NLO) QCD

already requires knowledge of the one- and two-loop gg → (H →)V1V2 amplitudes. The requirement

for more precise estimates to the Higgs boson width were emphasised in [4–6]. Signal-background

interference effects beyond the leading order have been considered in ref. [7] for the process gg →
H → W+W− for the case of a heavy Higgs boson.

In this work we will limit ourselves to the Z boson pair final state, due to its importance at the

LHC. At LO [8] and NLO [9–12] the amplitudes for single Higgs boson production have been known for
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quite some time. At LO, the amplitude for the SM continuum gg → ZZ process occurs via massless

and massive fermion loops and results are available in each case [13–16].

The situation, however, is different for the NLO continuum process, although vast progress in

terms of two-loop amplitudes has been made [17–22]. Recently two-loop gg → ZZ amplitudes1 via

massless quarks became available [21, 22]. The complete computation of two-loop amplitudes with

massive internal quark loops, on the other hand, is commonly assumed to be just beyond present

technical capabilities. Although the contribution of the top quark loops to these diagrams is smaller

than the contribution of the light quarks in the region just above the Z-pair threshold, in the high m4l

region the amplitude is dominated by the contributions of longitudinal Z bosons that couple to the

top quark loops. Recently a first heavy top quark approximation for the two-loop gg → ZZ amplitude

with internal top quarks was published [6]. In that work only the leading term in the s/m2 expansion

was considered. In that approximation, the vector-coupling of the Z boson to the top quark does not

contribute.

In the present work we will push this analysis further. We start by presenting our results for the

LO and NLO Higgs-mediated ZZ production in terms of the s/m2 expansion in Sec. 2, despite the fact

that the full result is known. This part is required for the later interference with the SM continuum.

Furthermore, it is well suited to introduce our notation in Sec. 2.1 and to assess the validity of the

approximation methods with respect to the exact known (N)LO amplitudes in Sec. 2.2.

The results for the LO and virtual NLO contributions to the SM continuum with massive quark

loops will be given in Sec. 3 as a large-mass expansion (LME) with terms up to (s/m2)6. We will limit

our discussion to the interference between the Higgs-mediated term and the continuum term. Similar

to [6] we will consider on-shell Z bosons in the final state. A theoretical predictions for off-shell Z

bosons would be optimal, but in order to reduce the number of scales in the problem, we restrict

ourselves to on-shell Z bosons. Since we are primarily interested in the high-mass behaviour this is an

appropriate approximation. A limited number of scales is beneficial when we consider the extension

of our approach to a full calculation. In Sec. 4 we summarize our treatment of the real radiation

contribution, which makes use of results already presented in ref. [16].

The results of our calculation, including loops of both massless and massive quarks, will be pre-

sented in Sec. 5. We will compare the effects of the NLO corrections to the interference contribution

with the corresponding corrections to the Higgs diagrams alone. In addition, we will discuss the impact

of our results on analyses of the off-shell region that aim to bound the Higgs boson width.

All expansion results from Sec. 2 and Sec. 3.4.1 are provided via ancillary files on arXiv as FORM

and Mathematica readable code.

2 Higgs Production in Gluon Fusion and Decay to ZZ

In this section we give a detailed discussion of single Higgs boson production at LO and NLO QCD and

its subsequent decay to a pair of on-shell Z bosons. As mentioned earlier the LO and NLO amplitudes

for single Higgs boson production have been known for a long time; either approximate results in

terms of Taylor expansions in the inverse of the top quark mass s/m2 [8, 12, 23–26] or results keeping

the exact top mass dependence [12, 27].

It is understood that, whenever feasible and available, the exact results for LO and NLO amplitudes

are used. However, we are mainly interested in approximations to the interference contributions

Re
〈
ALO

∣∣B(N)LO

〉
, where A denotes the Higgs-mediated and B the SM continuum amplitude. Since

1Actually, the results in [21] and [22] allow for arbitrary off-shell electroweak gauge bosons in the final state.
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(a) (b)

(c) (d)

Figure 2: Representative diagrams for the LO+NLO virtual gg → H → ZZ amplitude.

no exact results are available for BNLO we will use the, so-called, large-mass expansion [28] as an

approximation of the SM continuum. Hence, for consistency, we also perform the expansion of the

Higgs-mediated amplitude A to high powers in s/m2. Expansion of the two-loop Higgs-mediated

amplitude ANLO and its comparison to available results from the literature provides moreover a helpful

check of our expansion routines due to the general structure of the LME.

Furthermore, the large-mass expansion in powers of s/m2 is formally only valid below the threshold

of top quark pair-production, as m is assumed to be much larger than any other scale in the problem,

e.g. s ≪ m2. As extensively discussed in literature the naive LME can be drastically improved at

(and even far above) threshold by taking the next mass threshold into account or by rescaling the

approximated NLO result by the exact LO result. We will address this issue in Sec. 2.2.3 and try to

draw conclusions for the SM continuum.

2.1 Preliminaries

The amplitudes for single Higgs boson production

g(p1, α, A) + g(p2, β, B) → H(p1 + p2), s = (p1 + p2)
2 , (2.1)

are illustrated in Fig. 2 for the one-loop and two-loop case. The largest contribution is due to the

internal massive top quark loop; in the following we will ignore the contribution of other quarks for

the Higgs production process.

The gg → H amplitude, with color (Lorentz) indices A,B(α, β) for the initial state gluons, can

be written as
∣∣∣A0,AB

αβ (α0
S ,m

0, µ, ǫ)
〉
= −iδAB gW

2mW

4

3
(gαβ p1 · p2 − p1,βp2,α)

∣∣A0(α0
S ,m

0, µ, ǫ)
〉
, (2.2)

such that the reduced matrix element
∣∣A0(α0

S ,m
0, µ, ǫ)

〉
is dimensionless and can be expressed as a

function of µ2/s and rt = m2/s. The bare on-shell amplitudes admit the perturbative expansion

∣∣A0(α0
S ,m

0, µ, ǫ)
〉
=

α0
S

4π

∣∣∣A0,(1)(m0, µ, ǫ)
〉
+

(
α0
S

4π

)2 ∣∣∣A0,(2)(m0, µ, ǫ)
〉
+O

(
(α0

S)
3
)
, (2.3)
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where we introduced the parameter ǫ from dimensional regularisation in d = 4 − 2ǫ space-time di-

mensions and µ to keep the amplitudes dimensionless. The calculation is performed in Conventional

Dimensional Regularisation (CDR) and the following definition of the d-dimensional loop integral

measure ∫
d4p

(2π)4
−→ µ2ǫ eǫγE

(4π)ǫ︸ ︷︷ ︸
≡Sǫ

·
∫

ddp

(2π)d
(2.4)

is used in accordance with the MS-scheme, to avoid the proliferation of unnecessary γE − log(4π)

terms.

The ultraviolet (UV) renormalised amplitudes are given by
∣∣∣Ar(α

(nf )
S (µ),m, µ, ǫ)

〉
= ZmZg

∣∣A0(α0
S ,m

0, µ, ǫ)
〉
, (2.5)

where Zg denotes the on-shell gluon renormalisation constant. The Htt̄ vertex is renormalised, accord-

ing to [29], by gbH = Zm gH with gH being the Yukawa coupling for the top quark. The bare top quark

mass is related to the renormalised mass, m, by m0 = Zmm. The necessary on-shell renormalisation

constants are given by

Zg = 1− α
(nf )
S

4π
TF

(
µ2

m2

)ǫ

· 4

3ǫ
+O

(
(α

(nf )
S )2, ǫ

)
and (2.6)

Zm = 1− α
(nf )
S

4π
CF

(
µ2

m2

)ǫ [
3

ǫ
+ 4

]
+O

(
(α

(nf )
S )2, ǫ

)
, (2.7)

with TF = 1/2. See appendix A of [30] and references therein for more information. The mass

renormalisation enters as an overall factor in Eq. (2.5) because of the renormalisation of the Yukawa

coupling, and also implicitly in the relationship between the bare and renormalised mass. We will

always present mass-renormalised results in the following.

The strong coupling constant is renormalised in the MS-scheme according to

α0
S = Z

(nf )
αS α

(nf )
S (µ) , (2.8)

with [30]

Z
(nf )
αS = 1− α

(nf )
S

4π

β
(nf )
0

ǫ
+O

(
(α

(nf )
S )2

)
and β

(nf)
0 =

11

3
CA − 4

3
TFnf , (2.9)

where nf = 6 denotes the number of fermions and β
(nf )
0 the coefficient of the beta function. The

explicit scale dependence of the renormalised strong coupling constant α
(nf )
S (µ) is dropped in the

following to simplify our notation. All of our quantities are computed in five-flavour (nl = 5) QCD.

Hence, we decouple the top quark from the QCD running via

α
(nf )
S = ξαS

α
(nl)
S and ξαS

= 1 +
α
(nl)
S

4π
TF

[
4

3
log

(
µ2

m2

)]
+O

(
(α

(nl)
S )2, ǫ

)
, (2.10)

with nl the number of light quarks.

After UV renormalisation the two-loop amplitude still contains divergences of infrared origin.

The structure of these divergences is, however, completely understood at two-loop level. The finite

remainder is defined by infrared (IR) renormalisation

∣∣∣FA,B

(
α
(nl)
S ,m, µ

)〉
=
(
Ẑ

(nl)
gg

)−1 ∣∣∣Mr
A,B

(
α
(nl)
S ,m, µ, ǫ

)〉
. (2.11)
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Expanding Eq. (2.11) in α
(nl)
S /(4π) yields the explicit expressions for the LO and NLO finite remainders

∣∣∣F (1)
A,B(m,µ)

〉
=
∣∣∣Mr,(1)

A,B (m,µ)
〉

and (2.12)
∣∣∣F (2)

A,B(m,µ)
〉
=
∣∣∣Mr,(2)

A,B (m,µ, ǫ)
〉
− Ẑ

(nl,1)
gg

∣∣∣Mr,(1)
A,B (m,µ, ǫ)

〉
. (2.13)

The infrared renormalisation matrix Ẑ
(nl)
gg is taken from [30–32] and reads for the gluon-gluon initial

state with colourless final state in terms of the renormalised strong coupling constant

Ẑ
(nl)
gg = 1 +

α
(nl)
S

4π
Ẑ

(nl,1)
gg = 1 +

α
(nl)
S

4π

(
−2CA

ǫ2
− 2CA log

(
−µ2/s

)
+ β

(nl)
0

ǫ

)
+O

(
(α

(nl)
S )2

)
. (2.14)

In the end we are interested in the amplitude for the process

g(p1) + g(p2) → H → Z(p3) + Z(p4) , (2.15)

and we set up momentum conservation as p1 + p2 = p3 + p4. For the calculation at hand we also need

the decay amplitude H → ZZ, see Fig. 2(a), which is given by

|Mρσ〉H→ZZ = igW
mW

cos2 θW
gρσ . (2.16)

Combining Eqs. (2.2,2.16) the full amplitude for production and decay is

∣∣∣Aαβρσ,AB
ggHZZ (α

(nl)
S ,m, µ, ǫ)

〉
= N δAB 4

3

s

s−m2
H

∣∣∣A(α
(nl)
S ,m, µ, ǫ)

〉
·
(
gαβ − pα2 p

β
1

p1 · p2

)
gρσ, (2.17)

where we have defined an overall normalisation factor,

N = i

(
gW

2 cos θW

)2

. (2.18)

From this it is straightforward to square the amplitude to obtain the result for the Higgs-mediated

diagrams alone. The sum over the polarisations of the gluons and the Z bosons of momentum p can

be performed as usual with the projection operators,

Pµν
g = −gµν , P ρβ

Z (p) = −gρβ +
pρpβ

m2
Z

. (2.19)

Using these projectors we get the subsidiary result

P ρσ
Z (p3)PZ ρσ(p4) = 2

[
(d− 2)

2
+

1

8

(s− 2m2
Z)

2

m4
Z

]
. (2.20)

Including also the sum over colors yields the matrix element squared for the signal in this channel,

(The statistical factor for identical Z bosons is not included).

Sgg ≡
〈
Aαβρσ,AB

ggHZZ (α
(nl)
S ,m, µ, ǫ)

∣∣∣AAB
ggHZZ,αβρ′σ′(α

(nl)
S ,m, µ, ǫ)

〉
P ρ
Zρ′ (p3)P

σ
Zσ′ (p4) (2.21)

= |N |2 64NA

9

(
s

(s−m2
H)

)2 〈
A(α

(nl)
S ,m, µ, ǫ)

∣∣∣A(α
(nl)
S ,m, µ, ǫ)

〉
· (1− ǫ)

[
1− ǫ+

1

8

(
1

rZ
− 2

)2]
,

where we use the notation rZ = m2
Z/s and NA = N2

c − 1 = 8.
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2.2 Large-Mass Expansion and Improvements

Using the aforementioned conventions we can compute the leading- and next-to-leading-order am-

plitude
∣∣A(1,2)(m,µ, ǫ)

〉
for single Higgs boson production. Although we always work with the loop

measure Sǫ = exp(ǫγE)(4π)
−ǫ we factor out

SǫcΓ =
eǫγE

(4πǫ)
· Γ(1 + ǫ)(4π)ǫ = 1+ ǫ2

π2

12
+O(ǫ3) , (2.22)

in the results presented below to keep factors of π2 implicit. The dimensional dependent factor cΓ
denotes the somewhat more natural loop measure, because it cancels exactly the Γ(1 + ǫ) factor

obtained by the loop integration.

The exactly known leading-order result in d-dimensions (d = 4− 2ǫ) yields [8, 11, 25]

∣∣∣A(1)(m,µ, ǫ)
〉
= SǫcΓ · 3rt (2.23)

×
(

2ǫ

1− ǫ
B0 (p1 + p2;m,m)−

(
1− 4

1− ǫ
rt

)
sC0 (p1, p2;m,m,m)

)
,

where s = (p1 + p2)
2. The definitions of the integrals B0 and C0 are given in appendix A.

The essential idea of the large-mass expansion based on the method of expansion by regions [28]

is that the integration domain is divided into different regions where the loop momenta are soft,

ki ∼ pi ≪ m or hard, pi ≪ ki ∼ m. The external momenta pi ≪ m are always assumed to be

small. In the expansion of one-loop integrals only the region of a hard loop momentum k1 ∼ m exists,

because all propagators are associated with the large mass m. As a result the one-loop expansion

consists only of a naive Taylor expansion and its result is given in terms of simple massive one-loop

vacuum integrals.

The two-loop integral expansion is more involved since the hard as well as the soft region must

be considered. The first region results, with the help of [33], in scalar massive two-loop vacuum inte-

grals. The soft region produces a product of massive one-loop vacuum integrals and massless one-loop

bubble and triangle integrals. All occurring integrals are well known and, although, the intermediate

expressions become huge, the final results are remarkably simple, as can be seen below. We use our

own fully automatic in-house software to perform the large-mass expansion, relying extensively on the

features of FORM [34] and Mathematica. For a similar approach to Higgs boson pair-production, see

e.g. [35].

Using the large-mass expansion for the B0 and C0 integral, given in Sec. A, the corresponding

expansion of the full result for
∣∣A(1)(m,µ, ǫ)

〉
in d dimensions is (c.f. Eq. (2.3))

∣∣∣A(1)(m,µ, ǫ)
〉
= SǫcΓ

(
µ2

m2

)ǫ
{
1 +

1

rt

[
7(1 + ǫ)

120

]
+

1

r2t

[
1

336

(
2 + 3ǫ+ ǫ2

)]
(2.24)

+
1

r3t

[
13
(
6 + 11ǫ+ 6ǫ2

)

100800

]
+

1

r4t

[
24 + 50ǫ+ 35ǫ2

207900

]
+

1

r5t

[
19
(
120 + 274ǫ+ 225ǫ2

)

121080960

]

+
1

r6t

[
180 + 441ǫ+ 406ǫ2

55036800

]
+

1

r7t

[
1260 + 3267ǫ+ 3283ǫ2

2117187072

]
+

1

r8t

[
10080 + 27396ǫ+ 29531ǫ2

89791416000

]

+
1

r9t

[
31
(
10080 + 28516ǫ+ 32575ǫ2

)

14340021696000

]
+

1

r10t

[
50400 + 147620ǫ+ 177133ǫ2

11640723494400

]
+O

(
1/r11t , ǫ3

)
}
.
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Similarly the two-loop result can be expressed in terms of the leading-order amplitude
∣∣Ā(1)(m,µ, ǫ)

〉
=

(SǫcΓ(µ
2/m2)ǫ)−1

∣∣A(1)(m,µ, ǫ)
〉
and with only mass renormalisation included

∣∣∣A0,(2)(m,µ, ǫ)
〉
=

(
SǫcΓ

(
µ2

m2

)ǫ)2
{
CA

[(
− 2

ǫ2

(
m2

−s− iǫ

)ǫ

+
π2

3

) ∣∣∣Ā(1)(m,µ, ǫ)
〉

+ 5 +
1

rt

29

360
+

1

r2t

1

2520
− 1

r3t

29

56000
− 1

r4t

3329

24948000
− 1

r5t

1804897

63567504000
− 1

r6t

41051

7063056000

− 1

r7t

156811

132324192000
− 1

r8t

74906179

307984556880000
− 1

r9t

834852479

16562725058880000
− 1

r10t

2412657613

228565605812544000

]

− 3CF

[
1− 1

rt

61

270
− 1

r2t

554

14175
− 1

r3t

104593

15876000
− 1

r4t

87077

74844000
− 1

r5t

13518232199

62931828960000
(2.25)

− 1

r6t

673024379

16362275529600
− 1

r7t

225626468867

27815868400320000
− 1

r8t

51518310883673

31445839226561760000

− 1

r9t

24341081985219

72122692986023680000
− 1

r10t

2035074335031827

28792409364206167680000

]
+O

(
1/r11t , ǫ

)
}
.

The first terms of Eq. (2.24) and Eq. (2.25) fully agree with available results in the literature [25, 26].

Especially the NLO corrections presented in [25] cover terms in the expansion up to O
(
1/r2t , ǫ

2
)

and we find full agreement with our results for the amplitudes as well as the cross sections. The

analytic results for the exact LO and NLO amplitude A, keeping the full top mass dependence, can

be taken from [11, 36]2. The NLO results for the virtual amplitude have also been checked by our

own independent program, using GiNaC [37] to evaluate the harmonic polylogarithms. This serves as a

further independent check of the mass expansion results in Eq. (2.24) and Eq. (2.25). This agreement

will be illustrated in Sec. 2.2.3.

The radius of convergence of the large-mass expansion is given by s/(4m2) . 1. The poly-

nomial growth leads to an extremely good convergence below and close to threshold of top quark

pair-production, as shown later.

2.2.1 Rescaling with Exact Leading-Order Result

Above threshold, however, naively no convergence with respect to the exact result can be expected. At

least two procedures exist which lead to major improvements in terms of convergence of the expanded

result even above threshold3. We recall these procedures in this subsection and the next.

A well known method of extending the naive large-mass expansion of the NLO cross section beyond

its range of validity relies on factoring out the LO cross section with exact top mass dependence,

σNLO
imp,N ≡ σLO

exact ·
σNLO
exp

σLO
exp

= σLO
exact ·

N∑
n=0

cNLO
n (1/rt)

n

N∑
n=0

cLOn (1/rt)n
. (2.26)

2The overall sign of the NLO term differs between the published paper [11] and the thesis of Beerli [36]. We believe

that the sign in the latter is correct.
3The region above threshold could also be approximated by fitting a suitable ansatz to the high-energy limit [38–40].

This, however, would require additional knowledge of the high-energy behaviour and is beyond the scope of this work.
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The numerator and denominator are expanded to the same order in 1/rt. It was argued for single

Higgs boson production in [40] and for Higgs boson pair-production in [41] that varying N in the above

formula allows to check for additional power corrections. Including sufficient orders in the expansion

should lead to stable approximations σNLO
imp,N .

The method relies on the expansion of numerator and denominator in Eq. (2.26) and evidently,

requires the knowledge of all of the ingredients in terms of series expansions. Although this requirement

usually does not pose any problem per se it might turn out to be disadvantageous in certain cases. In

our particular case at hand, we require the SM continuum as well as the Higgs-mediated amplitude

as large-mass expansions. Certainly the Higgs-mediated amplitude is well known at LO and NLO

including its full top mass dependence. Any approximation of this amplitude poses a potential threat

of introducing unnecessary uncertainties. We will discuss this point further in Sec. 3.5 and see that

the method introduced in the next section provides a way to circumvent this issue.

2.2.2 Conformal Mapping and Padé Approximants

Having sufficiently many terms in the 1/m expansion at hand allows for a more powerful resummation

method, the Padé approximation [28, 42–45]. The univariate Padé approximant [n/m] to a given

Maclaurin series with a non-zero radius of convergence z0

f(z) =
∞∑

n=0

anz
n (2.27)

is defined via the rational function

f[n/m](z) =
b0 + b1z + b2z

2 + . . .+ bnz
n

1 + c1z + c2z2 + . . .+ cmzm
(2.28)

such that its Taylor expansion reproduces the first n+m coefficients of f(z); the coefficients bi and ci
are uniquely defined by this expansion. The advantage of Padé approximants over other techniques,

e.g. Chebyshev approximation, lies in the fact that they can provide genuinely new information about

the underlying function f(z), see [45] for more information.

The downside of Padé approximants is their uncontrollability. In general, there is no way to tell

how accurate the approximation is, nor how far the range z can be extended. Computing the Padé

approximants [n/n] or [n/n ± 1] for different orders n allows, at least, checking the stability of the

approximation. We will refer to [n/n] as diagonal and to [n/n±1] as non-diagonal Padé approximants

in the following.

Although the Padé approximation can be directly applied to Eq. (2.27), it is advantageous to

apply a conformal mapping

w(z) =
1−

√
1− z/z0

1 +
√
1− z/z0

(2.29)

first. The amplitudes at hand, gg(→ H) → ZZ, with z = s/m2 develop a branch cut starting from

z0 = 4 and extending to +∞ due to the top quark pair-production threshold. Applying the mapping,

Eq. (2.29), transforms the entire complex plane into the unit circle of the w-plane, such that the upper

(lower) side of the cut corresponds to the upper (lower) semicircle and the origin of the original z-plane

is left unchanged.

The initial power series can now be transformed into a new series in w [28]

f(w) =

∞∑

n=0

Φnw
n , (2.30)
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where

Φ0 = a0 and Φn =

n∑

k=1

(n+ k − 1)!(−1)n−k

(2k − 1)!(n− k)!
(4z0)

k ak , if n ≥ 1 , (2.31)

and, subsequently, its Padé approximants computed. We will illustrate these features using the exam-

ple of single Higgs boson production in the next section.

2.2.3 Comparison of LME with Full Result

Let us briefly compare the results from the large-mass expansions, Eq. (2.24) and Eq. (2.25), and

their, previously discussed, improvements to the known LO and NLO QCD result with full top mass

dependence [9–12]. We include the subsequent H → ZZ decay, as given in Eq. (2.16), perform the

UV+IR renormalisation and compute the phase space integral over Eq. (2.21) including all correspond-

ing phase space factors and coupling constants. The NLO contribution so obtained is not physical,

since we neglect the real-radiation contribution for now. Considering the obtained finite parts of the

LO and virtual NLO corrections alone, on the other hand, allow to better verify the validity of our

approximations. To be specific, we set

σLO
H ∼ Re

〈
F (1)

A (m,µ)
∣∣∣F (1)

A (m,µ)
〉

and σNLO
virt,H ∼ 2Re

〈
F (1)

A (m,µ)
∣∣∣F (2)

A (m,µ)
〉
. (2.32)

We utilise the CT 10nlo PDF set [46] within LHAPDF [47] to determine αS(µf ) and use the input

parameters
√
S = 13TeV , µf = µr =

√
s ,

m = 173.5GeV , mZ = 91.1876GeV , (2.33)

mW = 80.385GeV , GF = 1.16639 · 10−5GeV−2 ,

where S and s denote the hadronic and partonic center-of-mass energy, respectively.

The orange curves in Fig. 3 depict the large-mass expansion results of Eq. (2.32) for the LO and the

NLO case, where each4 finite remainder F (1,2)
A is expanded up to 1/m20. A minimum cut

√
s ≥ 2mZ

has been imposed and the threshold for top quark pair-production is given by s/m2 = 4. The relative

deviation
∆σ

σ
= 1− σ

(N)LO
approx

σ
(N)LO
exact

(2.34)

of the approximated results with respect to the exact result are shown in the bottom plots. The large-

mass expansion describes the exact LO and virtual NLO results up to the top threshold very well, with

only 5% deviation at LO and 7% at NLO at s = 4m2. As expected however the large-mass expansion

diverges for values above this threshold. Improvements to this naive approximation by means of the

conformal mapping, Eq. (2.29), are shown in blue. On top we compute the diagonal, [5/5] (brown) and

[4/4] (yellow), and non-diagonal, [4/5] (purple) and [5/4] (green), Padé approximants at amplitude

level for the mapped series expressions of each finite remainder, i.e. F (i)
A,[n/m]. Both results, using the

Padé approximants or the mapped series alone, excellently reproduce the exact results (black curve)

even far above threshold; with less than 1% deviation from the exact result over the considered range.

As a result the Padé approximant [5/5] overlays all other curves in Fig. 3, some of which are scarcely

visible.

4The ambiguity between expanding the product
〈

F
(1)
A

∣

∣

∣
F

(1,2)
A

〉

or expanding each
∣

∣

∣
F

(1,2)
A

〉

separately, consists only

of power corrections which are numerically negligible. We checked that the difference in ∆σ/σ at threshold of both

approaches is . 1%. The same arguments hold for the series expansions including the conformal mapping.
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Figure 3: Left panel: Leading-order gg → H → ZZ cross section. 1.) LME up to 1/m20

(orange). 2.) Exact result (black), LME with conformal mapping (blue) and Padé approximants

[4/4], [4/5], [5/4], [5/5] (yellow, purple, green, brown) agree perfectly. Right panel: Virtual NLO cor-

rections to gg → H → ZZ cross section. See text for details. Color code as in left panel. The bottom

plots show the relative deviations with respect to the exact (N)LO results. The vertical dashed line

denotes the top quark pair-production threshold.

The second choice of improving the naive LME is given by the rescaling from Eq. (2.26). The

results are shown in Fig. 4. The exact virtual NLO result is again shown in black. The rescaled LMEs

are indicated by the shaded grey area and its envelope is given by the expansions σNLO
imp,1 (orange)

and σNLO
imp,10 (blue). Although the heavy-quark approximation σNLO

imp,1 gives a reasonable estimate of

the exact result above threshold it fails to describe the threshold behaviour and peak structure of the

exact result. At threshold the deviation is 10%. Taking higher orders in the expansion into account

improves the threshold prescription, with 3% deviation for σNLO
imp,10 at threshold, but worsens the trend

for higher energies. In both cases we find more than 20% deviation for s/m2 > 20.

We end this section by drawing our conclusions from the results presented. We see that, at least

in the single-scale Higgs boson production and having a sufficient number of terms in the LME at

hand, applying the conformal mapping (and the Padé approximation) yields excellent prescriptions of

the exact results. The conformal mapping is imperative, whereas the additional Padé approximants

give only small improvements in terms of uncertainty reduction and stability of the approximations.

We conclude that we should favour these approximations over the rescaling method.

One important point to notice, however, is that the kinematics change when moving from the

single Higgs boson production to the SM Z boson pair-production5. Therefore, the results discussed

here may not necessarily transfer easily. Still, the comparisons within this chapter should give an idea

of the validity of the improved large-mass expansions. We will discuss analogous considerations for

the Z boson pair-production in Sec. 3.5.

5Even if the H → ZZ decay is included. Effectively, only the 2 → 1 kinematics of the Higgs boson production matter.
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Figure 4: Virtual NLO corrections to gg → H → ZZ cross section with rescaling from Eq. (2.26). See

text for details. 1.) Exact NLO result (black). 2.) Varying orders of rescaled LMEs are indicated by

shaded grey area. Its envelope is given by σNLO
imp,1 (orange) and σNLO

imp,10 (blue). The bottom plot shows

the relative deviations with respect to the exact NLO results. The vertical dashed line denotes the

top quark pair-production threshold.

3 Virtual Corrections to SM ZZ Production via Massive Quark Loops

After we set the stage in the previous chapters, including derivation of known results for the single

Higgs amplitudes and extending their expansion to higher orders, we can now tackle the unknown QCD

corrections to Z boson pair-production via massive quark loops in the SM. Representative diagrams

for the leading-order contribution are illustrated in Fig. 5(a) and for the virtual next-to-leading-order

diagrams in Fig. 5(b)-(f) and Fig. 6, respectively.

These amplitudes were first studied for on-shell Z bosons in Ref. [13]; more recently, the Z decay

and off-shell effects were also calculated at leading-order [15]. Virtual two-loop contributions with

massless internal quark loops (and subsequent Z boson decay) became available only recently[17–22].

Due to the complexity of the computation and present technical limitations no full two-loop correction

to the amplitudes with massive internal quarks is presently known. The authors of [6] made the

first attempt in approximating the virtual NLO corrections with internal top quarks. Their results,

however, includes only the first term of the 1/m expansion. At this order contributions from the vector

coupling of the Z bosons to the quarks are neglected completely. This is not necessarily troubling since

the vector coupling contribution is af/vf ∼ 2.5 times smaller than the axial coupling contribution.

However, to fully incorporate the physics of the Z boson interactions and to give an estimate
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(a) (b) (c)

(d) (e) (f)

Figure 5: Representative diagrams for the LO and virtual NLO gg → ZZ amplitude.

of power corrections s/m2 we compute the virtual two-loop corrections up to O
(
1/m7

)
. We keep

the Z bosons on-shell, sum over their polarisations and project onto the tensor structure of the

gg → H → ZZ amplitude (Eq. (2.17)) since we are only interested in the interference of both.

This chapter is structured as follows: In Sec. 3.1 we give our definitions of the SM ZZ amplitude,

as far as the conventions differ from Sec. 2.1. The leading-order and next-to-leading-order results are

presented in Sec. 3.3 and Sec. 3.4, respectively. The latter is divided into two parts; the first consists

of diagrams where both Z bosons couple to one fermion line and the second handles anomaly style

diagrams where a single Z boson is connected to one fermion string.

3.1 Preliminaries

The on-shell Z boson pair-production in gluon-gluon fusion

g(p1, µ, A) + g(p2, ν, B) → Z(p3,mZ , α) + Z(p4,mZ , β) , (3.1)

via the heavy top quark loop can be completely expressed in terms of kinematical invariants

p23 = m2
Z = p24 , s = (p1 + p2)

2 , t = (p1 − p3)
2 , u = (p2 − p3)

2 and s+ t+ u = 2m2
Z , (3.2)

or equivalently, using the on-shellness condition, by the rescaled variables

rt =
m2

s
, rZ =

m2
Z

s
, x =

m2
Z − t

s
=

p1p3
p1p2

and x̃ = (1− x)x . (3.3)

The SM continuum amplitudes
∣∣∣B0,AB

µναβ(α
0
S ,m

0, µ, ǫ)
〉
admit the same perturbative expansion as given

in Eq. (2.3) for the Higgs-mediated process. The bare amplitudes are renormalized in accordance

with Eqs. (2.5-2.14), omitting the superfluous Higgs vertex renormalisation. As mentioned earlier we

project onto the tensor and color structure of the Higgs-mediated amplitude (Eq. (2.17)) with

∣∣B0(α0
S ,m

0, µ, ǫ)
〉
=

δAB

NA
(gµν p1p2 − pµ2p

ν
1) P

αρ′

Z (p3)P
β
Z,ρ′ (p4)

∣∣∣B0,AB
µναβ(α

0
S ,m

0, µ, ǫ)
〉
, (3.4)
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where NA = N2
c − 1 = 8 and PZ,αβ(p) from Eq. (2.19).

We shall consider a single quark of flavor f to be circulating in the quark loop. The Standard Model

coupling of this fermion to a Z boson is given by,

− i
gW

2 cos θW
γµ (vf − afγ5) , vf = τf − 2Qf sin

2 θW , af = τf , τf = ±1

2
. (3.5)

The superposition of vector and axial coupling allows to write the scattering amplitude as
∣∣B0(α0

S ,m
0, µ, ǫ)

〉
= N

(
v2f

∣∣∣B̃0
V V (α

0
S ,m

0, µ, ǫ)
〉
+ a2f

∣∣∣B̃0
AA(α

0
S ,m

0, µ, ǫ)
〉)

, (3.6)

where we factored out the normalisation factor from Eq. (2.18). The mixed coupling structure vfaf
vanishes due to charge parity conservation. With the amplitudes outlined above it is straightforward

to compute the interference.

Bgg = 2Re
{〈

AAB
αβρ′σ′(α

(nl)
S ,m, µ, ǫ)

∣∣∣BAB,αβρσ(α
(nl)
S ,m, µ, ǫ)

〉
P ρ′

Z,ρ(p3)P
σ′

Z,σ(p4)
}

= 2Re
{
N ∗ 8

3

sNA

s−m2
H

〈
A(α

(nl)
S ,m, µ, ǫ)

∣∣∣B(α(nl)
S ,m, µ, ǫ)

〉}
(3.7)

= |N |2 16
3

sNA

s−m2
H

Re
{〈

A(α
(nl)
S ,m, µ, ǫ)

∣∣∣
[
v2f

∣∣∣B̃V V (α
(nl)
S ,m, µ, ǫ)

〉
+ a2f

∣∣∣B̃AA(α
(nl)
S ,m, µ, ǫ)

〉]}
.

Writing Eq. (3.7) in this way establishes that A(α
(nl)
S ,m, µ, ǫ) and B(α(nl)

S ,m, µ, ǫ) are dimensionless

quantities, i.e. we compute B(α(nl)
S ,m, µ, ǫ) for s = 1 in the following.

3.2 Projected Exact Result at One Loop

The leading-order amplitude for the SM continuum production of two Z bosons is known exactly in

d = 4 − 2ǫ dimensions. The usual normalisation factor Eq. (2.22) is chosen. We split the result,

according to Eq. (3.6), into vector-vector (V V ) and axial-axial (AA) contribution.
∣∣∣B̃(1)

V V (rt, µ, ǫ)
〉
= Sǫ cΓ · 2

{
4ǫ(1− ǫ)B{1,2} + 2ǫ

(
B{1,3} +B{2,3} − 2B{3}

)
(3.8)

+ sC{1,2}

[
8rt + 2ǫ(1− 4rt)− 2ǫ2

]
+ sC{23,1} [2(1− 4rt − 2rZ)(1− x)− 4ǫ(1− rZ)(1− x)]

+ sC{12,3} [ǫ (2(1− 4rt − 2rZ)− 2ǫ(1− 2rZ))] + sC{1,3} [2(1− 4rt − 2rZ)x− 4ǫ(1− rZ)x]

+ s2D{1,2,3}

[
4rt(1− 2rt − rZ) + ǫ ((1− 4rt)(1 − rZ)− x) + ǫ2 (−1 + rZ + x)

]

+ s2D{2,1,3}

[
4rt(1− 2rt − rZ) + ǫ (4rt(−1 + rZ)− rZ + x) + ǫ2 (rZ − x)

]

+ s2D{1,3,2}

[
(1 − 4rt − 2rZ)

(
2rt − rZ + x− x2

)
+ ǫ (4rt(−1 + rZ) + (1− 2rZ)(rZ − (1 − x)x))

+ ǫ2 (rZ − (1− x)x)
] }

.

∣∣∣B̃(1)
AA(rt, µ, ǫ)

〉
=
∣∣∣B̃(1)

V V (rt, µ, ǫ)
〉
+ Sǫ cΓ · 2rt

{
sC{1,2}

[
(2− 4rZ)/r

2
Z

]
(3.9)

+ sC{23,1} [4(1− 6rZ)(−1 + x)/rZ − 16ǫ(1− x)] + sC{12,3}

[
ǫ
(
24 + (2− 8rZ)/r

2
Z − 16ǫ

)]

+ sC{1,3} [4 (6− 1/rZ)x− 16ǫx]

+ s2D{1,2,3}

[
−4 + 24rt + 2rt/r

2
Z − 8rt/rZ + ǫ

(
10− 16rt + (1 − x)/r2Z − (3 − 2x)/rZ

)
− 4ǫ2

]

+ s2D{2,1,3}

[
−4 + 24rt + 2rt/r

2
Z − 8rt/rZ + ǫ

(
10− 16rt − (1 + 2x)/rZ + x/r2Z

)
− 4ǫ2

]

+ s2D{1,3,2}

[
2rt/r

2
Z − 12rZ − (8rt + 2(1− x)x)/rZ + 2

(
1 + 12rt + 6x− 6x2

)

+ ǫ
(
8rZ − 2

(
8rt − (1− 2x)2

)
+ (1− x)x/r2Z − (1− 2x+ 2x2)/rZ

)
− 4ǫ2

]}
.

– 14 –



D{1,2,3} D0(q1, q2, q3;m,m,m,m) C{1,2} C0(q1, q2;m,m,m) B{1,2} B0(q12;m,m)

D{1,3,2} D0(q1, q3, q2;m,m,m,m) C{1,3} C0(q1, q3;m,m,m) B{1,3} B0(q13;m,m)

D{2,1,3} D0(q2, q1, q3;m,m,m,m) C{12,3} C0(q12, q3;m,m,m) B{2,3} B0(q23;m,m)

C{23,1} C0(q23, q1;m,m,m) B{3} B0(q3;m,m)

Table 1: Scalar integrals occurring in full LO SM continuum ZZ production. The momenta are defined

as q1 = p1, q2 = p2, q3 = −p3 and qij = qi + qj . The scalar integrals are defined in appendix A.

The notation for the scalar integrals B,C and D is given in Table 1. We re-introduced factors of s

in Eq. (3.8) and Eq. (3.9) to indicate the correct dimensionality of the expressions. We note that, in

contrast to the case where the Z bosons are off-shell and their decays included, these formulae for the

interference take a very simple form. Eq. (3.8,3.9) extend the results of ref. [16] to include the terms

of order ǫ1 and ǫ2.

3.3 Large-Mass Expansion at One Loop

Equivalently, Eq. (3.8) and Eq. (3.9) can be expressed by means of the large-mass expansion. The

result for the vector-vector part yields

∣∣∣B̃(1)
V V (rt, µ, ǫ)

〉
= Sǫ cΓ

(
µ2

m2

)ǫ
{

1

r2t

[
1

10
− rZ

5
+ ǫ2

(
− 1

10
+

4rZ
15

− x̃

15

)
+ ǫ

(
1

15
− 17rZ

45
+

11x̃

45

)]

+
1

r3t

[
2

315
+

rZ
21

− 4r2Z
35

− 4x̃

315
+ ǫ2

(
− 4

315
− 149rZ

3780
+

17r2Z
315

+

(
143

3780
+

2rZ
45

)
x̃

)

+ ǫ

(
− 1

105
+

61rZ
945

− 68r2Z
315

+

(
37

1890
+

8rZ
63

)
x̃

)]
+

1

r4t

[
1

1080
− rZ

1260
+

41r2Z
1890

− r3Z
21

+

(
1

945
− 2rZ

315

)
x̃+ ǫ

(
131

45360
− 61rZ

4200
+

2171r2Z
56700

− 59r3Z
630

+

(
− 47

28350
+

319rZ
18900

+
16r2Z
315

)
x̃

− 13x̃2

2700

)
+ ǫ2

(
1

1008
− 31rZ

3240
− 7r2Z

810
− 2r3Z

945
+

(
− 7

1620
+

659rZ
22680

+
37r2Z
945

)
x̃− 43x̃2

22680

)]

+
1

r5t

[
4

17325
+

rZ
2475

− 43r2Z
20790

+
r3Z
110

− 4r4Z
231

+

(
− 1

2079
+

13rZ
20790

− r2Z
693

)
x̃+

x̃2

2310
(3.10)

+ ǫ

(
− 1

4725
+

rZ
330

− 2671r2Z
249480

+
2533r3Z
138600

− 53r4Z
1485

+

(
349

311850
− 733rZ

178200
+

67r2Z
5940

+
188r3Z
10395

)
x̃

+

(
37

59400
− 4rZ

825

)
x̃2

)
+ ǫ2

(
− 67

103950
+

73rZ
32400

− 16871r2Z
2494800

+
323r3Z
831600

− 67r4Z
8910

+

(
5939

2494800
− 451rZ

75600
+

839r2Z
51975

+
611r3Z
31185

)
x̃+

(
− 2083

2494800
− 61rZ

17325

)
x̃2

)]

+
1

r6t

[
1

108108
+

5rZ
54054

+
569r2Z
1801800

− 163r3Z
108108

+
7r4Z
1980

− 5r5Z
858

+

(
1

9009
− 19rZ

42900
− r2Z

90090
+

4r3Z
19305

)
x̃

+

(
− 97

600600
+

29rZ
60060

)
x̃2 + ǫ2

(
191

1853280
− 28507rZ

32432400
+

444149r2Z
216216000

− 263839r3Z
64864800

+
301471r4Z
194594400
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− 5743r5Z
1297296

+

(
− 8269

16216200
+

82241rZ
24948000

− 23113r2Z
4633200

+
11041r3Z
1389960

+
5185r4Z
648648

)
x̃+

46x̃3

405405

+

(
98009

216216000
− 58703rZ

64864800
− 9979r2Z

3243240

)
x̃2

)
+ ǫ

(
617

6486480
− 13037rZ

22702680
+

1785391r2Z
756756000

− 274301r3Z
45405360

+
19199r4Z
2494800

− 19r5Z
1512

+

(
− 53

291060
+

60449rZ
34398000

− 153919r2Z
37837800

+
137r3Z
21450

+
25r4Z
4158

)
x̃

+

(
− 1091

19404000
+

47153rZ
75675600

− 167r2Z
54054

)
x̃2 +

29x̃3

189189

)]
+O

(
1/r7t , ǫ

3
)
}
.

The result for the axial-axial part is

∣∣∣B̃(1)
AA(rt, µ, ǫ)

〉
= Sǫ cΓ

(
µ2

m2

)ǫ
{

1

rt

[
−2− 1

6r2Z
+

2

3rZ
+ ǫ2

(
4

3
+

1

6r2Z
− 1

rZ
+

(
1

3r2Z
+

2

3rZ

)
x̃

)

+ ǫ

(
2− 1

3rZ
+

(
1

3r2Z
+

2

3rZ

)
x̃

)]
+

1

r2t

[
7

30
+

1

90r2Z
− 7

90rZ
− 3rZ

5
+

(
− 1

30r2Z
+

1

15rZ

)
x̃

+ ǫ2
(
−31

90
− 1

90r2Z
+

17

180rZ
+

7rZ
9

+

(
2

9
+

1

60r2Z

)
x̃

)
+ ǫ

(
1

180r2Z
− 1

36rZ
+

4rZ
45

(3.11)

+

(
17

45
− 1

36r2Z
+

7

90rZ

)
x̃

)]
+

1

r3t

[
− 13

210
− 1

280r2Z
+

13

630rZ
+

2rZ
21

− 6r2Z
35

+

(
4

63
+

1

126r2Z

− 13

315rZ

)
x̃+ ǫ2

(
149

1890
+

1

336r2Z
− 403

15120rZ
− 2rZ

15
+

23r2Z
105

+

(
− 71

1260
+

43

15120r2Z
+

337

7560rZ

+
32rZ
315

)
x̃+

(
− 11

840r2Z
− 11

420rZ

)
x̃2

)
+ ǫ

(
− 101

3780
− 1

336r2Z
+

13

1080rZ
+

4rZ
135

− 17r2Z
315

+

(
73

1890
+

89

7560r2Z
− 109

3780rZ
+

8rZ
63

)
x̃+

(
− 1

140r2Z
− 1

70rZ

)
x̃2

)]
+

1

r4t

[
517

37800
+

2

4725r2Z

− 2

525rZ
− 13rZ

420
+

13r2Z
378

− r3Z
21

+

(
− 32

945
− 2

945r2Z
+

4

315rZ
+

4rZ
105

)
x̃+

(
1

945r2Z
− 2

945rZ

)
x̃2

+ ǫ

(
127

11340
+

13

28350r2Z
− 1

270rZ
− 23rZ

1050
+

1163r2Z
56700

− 19r3Z
630

+

(
− 257

11340
− 11

4050r2Z
+

19

1350rZ

+
71rZ
2700

+
4r2Z
105

)
x̃+

(
− 283

18900
+

167

56700r2Z
− 17

4050rZ

)
x̃2

)
+ ǫ2

(
− 6829

453600
− 1

3780r2Z
+

37

11340rZ

+
863rZ
25200

− 811r2Z
18900

+
17r3Z
315

+

(
568

14175
+

1

2268r2Z
− 11

1512rZ
− 4157rZ

113400
+

4r2Z
105

)
x̃

+

(
− 401

16200
+

1

324r2Z
− 1

378rZ

)
x̃2

)]
+

1

r5t

[
− 767

207900
− 1

8316r2Z
+

13

13860rZ
+

1699rZ
207900

− 31r2Z
2310

+
8r3Z
693

− r4Z
77

+

(
83

6930
+

1

1980r2Z
− 13

3465rZ
− 437rZ

20790
+

r2Z
55

)
x̃+

(
− 1

315
− 1

1980r2Z
+

1

420rZ

)
x̃2

+ ǫ

(
− 9299

2494800
− 1

6480r2Z
+

871

831600rZ
+

19651rZ
2494800

− 5209r2Z
415800

+
167r3Z
17325

− 43r4Z
3780

+

(
5323

415800
+

223

277200r2Z

− 244

51975rZ
− 21121rZ

1247400
+

3271r2Z
207900

+
113r3Z
10395

)
x̃+

(
− 383

207900
− 313

277200r2Z
+

349

92400rZ
− 53rZ

5775

)
x̃2

+

(
1

4158r2Z
+

1

2079rZ

)
x̃3

)
+ ǫ2

(
16273

4989600
+

7

142560r2Z
− 923

1247400rZ
− 3497rZ

453600
+

30463r2Z
2494800
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− 305r3Z
24948

+
3089r4Z
249480

+

(
− 1493

166320
+

47

311850r2Z
+

4507

2494800rZ
+

5191rZ
226800

− 19627r2Z
1247400

+
227r3Z
17820

)
x̃

+

(
5161

1247400
− 4451

4989600r2Z
+

1123

1663200rZ
− 3187rZ

207900

)
x̃2 +

(
137

249480r2Z
+

137

124740rZ

)
x̃3

)]

+
1

r6t

[
2603

2910600
+

1

56056r2Z
− 1

5096rZ
− 1223rZ

491400
+

22381r2Z
5405400

− 34r3Z
6435

+
19r4Z
5148

− r5Z
286

+

(
− 1019

257400

− 1

8008r2Z
+

941

900900rZ
+

11447rZ
1351350

− 5897r2Z
540540

+
293r3Z
38610

)
x̃+

(
5167

1801800
+

167

900900r2Z
− 697

600600rZ

− 493rZ
180180

)
x̃2 +

(
− 1

24024r2Z
+

1

12012rZ

)
x̃3 + ǫ2

(
− 50693

87318000
− 1

288288r2Z
+

59

720720rZ

+
2049041rZ
1135134000

− 3861083r2Z
1238328000

+
5078077r3Z
1362160800

− 616361r4Z
194594400

+
17341r5Z
6486480

+

(
863221

378378000
− 1

51480r2Z

− 2159

11583000rZ
− 41229697rZ

6810804000
+

6865009r2Z
681080400

− 26227r3Z
4864860

+
12911r4Z
3243240

)
x̃+

(
− 651821

412776000
+

2917

11583000r2Z

− 1741

3861000rZ
+

162983rZ
34927200

− 24883r2Z
3243240

)
x̃2 +

(
36731

22702680
− 43

154440r2Z
+

1

5616rZ

)
x̃3

)

+ ǫ

(
2523253

2270268000
+

29

1121120r2Z
− 23

86240rZ
− 932231rZ

324324000
+

503059r2Z
108108000

− 674147r3Z
113513400

+
3541r4Z
926640

− 4051r5Z
1081080

+

(
− 3717937

756756000
− 223

1121120r2Z
+

63961

42042000rZ
+

908203rZ
94594500

− 802811r2Z
75675600

+
3889r3Z
491400

+
163r4Z
54054

)
x̃+

(
862991

252252000
+

48721

126126000r2Z
− 164711

84084000rZ
− 7159rZ

5821200
− 239r2Z

54054

)
x̃2

+

(
283

378378
− 1789

10090080r2Z
+

1009

5045040rZ

)
x̃3

)]
+O

(
1/r7t , ǫ

3
)
}
.

The leading term in the vector-vector expansion is sub-dominant with respect to the axial-axial part.

The reason for this difference has been given in [6].

3.4 Large-Mass Expansion at Two Loops

The two-loop SM continuum amplitude consists in total of 93 + 16 non-zero diagrams. 93 diagrams

belong to topologies where both Z bosons couple to the same fermion string, as illustrated in Fig. 5.

Due to momentum conservation and assuming an anti-commuting γ5 in d-dimensions, no γ5 contribu-

tion arises in the fermion traces of the respective diagrams. The large-mass expansion results for the

vector-vector and axial-axial part of these diagrams are shown in Sec. 3.4.1.

The remaining 16 anomaly style diagrams belong to the topology shown in Fig. 6, where the

Z bosons couple to distinct fermion lines. These diagrams must, in principle, be handled with care

when using dimensional regularisation due to the non-conservation of the axial-current. Furthermore,

contributions from each quark-doublet have to be considered simultaneously. Only the sum over one

quark-doublet leads to a gauge anomaly free theory. In case of massless quark doublets all contributions

vanish and we only have to consider the third-generation quark doublet, i.e. top and bottom quarks.

Results for these diagrams are presented in Sec. 3.4.2.
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3.4.1 Non-Anomalous Diagrams

In this section we give explicit formulae for the large-mass expansions for the sum of the 93 anomaly free

diagrams. Including again only mass renormalisation, setting
∣∣∣B̄(1)

XX(rt, µ, ǫ)
〉
=
(
SǫcΓ (µ

2/m2)ǫ
)−1

∣∣∣B̃(1)
XX(rt, µ, ǫ)

〉

and log(−rt) = log
(
m2/(−s− iǫ)

)
, we can write the divergent two-loop V V part as

∣∣∣B̃(2)
V V (rt, µ, ǫ)

〉
=

(
Sǫ cΓ

(
µ2

m2

)ǫ)2
{
CA

[(
− 2

ǫ2

(
m2

−s− iǫ

)ǫ

+
π2

3

) ∣∣∣B̄(1)
V V (rt, µ, ǫ)

〉

+
1

r2t

[
251

540
− 317rZ

270
− 11x̃

135

]
+

1

r3t

[
− 158129

1587600
+

127817rZ
396900

− 5563r2Z
9450

+

(
22558

99225
− 8rZ

189

)
x̃

+ log(−rt)

(
− 4

315
− 8rZ

315
+

8x̃

105

)]
+

1

r4t

[
132779

9525600
− 10421rZ

119070
+

4411999r2Z
23814000

− 14521r3Z
66150

+

(
− 252937

5953500
+

260483rZ
1701000

− 16r2Z
945

)
x̃+

13x̃2

20250
+ log(−rt)

(
1

945
− 4rZ

945
− 4r2Z

315
+

(
− 2

315
+

4rZ
105

)
x̃

)]

+
1

r5t

[
− 19803283

5762988000
+

93293203rZ
5762988000

− 61920091r2Z
1152597600

+
259936363r3Z
2881494000

− 236332r4Z
3274425

+

(
3048977

209563200

− 55307339rZ
1280664000

+
4889447r2Z
68607000

− 188r3Z
31185

)
x̃+

(
− 32556823

2881494000
+

8rZ
12375

)
x̃2 + log(−rt)

(
− 17

41580

− rZ
2970

+
r2Z
4158

− 2r3Z
693

+

(
1

315
− 2rZ

693
+

2r2Z
231

)
x̃− 5x̃2

1386

)]
+

1

r6t

[
132076261729

204528444120000
(3.12)

− 857498948879rZ
204528444120000

+
16366567901r2Z
1377295920000

− 1148974648051r3Z
40905688824000

+
22637379733r4Z
584366983200

− 165500519r5Z
7491884400

+

(
− 101592736891

25566055515000
+

32900707079rZ
1826146822500

− 57230507981r2Z
2065943880000

+
2366153189r3Z
83480997600

− 25r4Z
12474

)
x̃

+

(
341063392349

68176148040000
− 1401690458627rZ

102264222060000
+

167r2Z
405405

)
x̃2 − 29x̃3

2648646
+ log(−rt)

(
101

1201200
− 23rZ

163800

− 1907r2Z
1801800

+
361r3Z
540540

+
8r4Z
19305

+

(
− 697

900900
+

2393rZ
900900

+
31r2Z
30030

− 8r3Z
6435

)
x̃+

(
97

72072
− 145rZ

36036

)
x̃2

)]]

+ CF

[
1

r2t

[
83

54
− 83rZ

27

]
+

1

r3t

[
1271

5400
+

2297rZ
2700

− 1627r2Z
675

− 841x̃

2025

]
+

1

r4t

[
18997

1587600
+

46231rZ
793800

+
1859807r2Z
3969000

− 1516r3Z
1225

+

(
42367

567000
− 11663rZ

36750

)
x̃

]
+

1

r5t

[
533671

47628000
− 41471rZ

5103000
− 28573r2Z

1984500

+
16657657r3Z
71442000

− 312829r4Z
595350

+

(
− 2963

105840
+

278843rZ
3572100

− 833081r2Z
5953500

)
x̃+

229471x̃2

11907000

]

+
1

r6t

[
− 100790441

302556870000
+

10415465807rZ
1210227480000

− 2539049r2Z
488980800

− 3259592869r3Z
121022748000

+
904486537r4Z
8644482000

− 1175777r5Z
5880600

+

(
3025021753

403409160000
− 513331337rZ

14407470000
+

1216539691r2Z
27505170000

− 10216127r3Z
246985200

)
x̃

+

(
− 10969455173

1210227480000
+

3151546457rZ
121022748000

)
x̃2

] ]
+O

(
1/r7t , ǫ

)
}
.
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And the AA part as

∣∣∣B̃(2)
AA(rt, µ, ǫ)

〉
=

(
Sǫ cΓ

(
µ2

m2

)ǫ)2
{
CA

[(
− 2

ǫ2

(
m2

−s− iǫ

)ǫ

+
π2

3

) ∣∣∣B̄(1)
AA(rt, µ, ǫ)

〉

+
1

rt

[
−6− 5

9r2Z
+

25

9rZ
+

(
− 1

9r2Z
− 2

9rZ

)
x̃

]
+

1

r2t

[
3563

2700
− 17

450r2Z
− 761

2700rZ
− 367rZ

270
+

(
− 17

135

+
47

108r2Z
− 1127

1350rZ

)
x̃+ log(−rt)

(
2

15
− 1

30r2Z
+

(
1

5r2Z
− 2

5rZ

)
x̃

)]
+

1

r3t

[
− 27023

176400
+

5

294r2Z

− 23623

793800rZ
+

8062rZ
14175

− 37r2Z
135

+

(
−142847

198450
− 2419

22050r2Z
+

28793

56700rZ
− 8rZ

189

)
x̃+

(
1

1050r2Z

+
1

525rZ

)
x̃2 + log(−rt)

(
− 2

105
+

1

126r2Z
− 8

315rZ
+

8rZ
63

+

(
− 8

21
− 1

21r2Z
+

26

105rZ

)
x̃

)]

+
1

r4t

[
− 60007

4762800
− 1322471

285768000r2Z
+

2690033

142884000rZ
− 100241rZ

1190700
+

5018071r2Z
23814000

− 101r3Z
2100

(3.13)

+

(
312127

793800
+

321799

10206000r2Z
− 736874

4465125rZ
− 1195489rZ

2976750
− 4r2Z

315

)
x̃+

(
283

141750
− 609137

28576800r2Z

+
2876437

71442000rZ

)
x̃2 + log(−rt)

(
− 1

135
− 11

5670r2Z
+

23

2835rZ
− 2rZ

63
+

8r2Z
105

+

(
188

945
+

38

2835r2Z

− 214

2835rZ
− 8rZ

35

)
x̃+

(
− 5

567r2Z
+

10

567rZ

)
x̃2

)]
+

1

r5t

[
37805989

2881494000
+

163591

137214000r2Z
− 22106653

3293136000rZ

− 48911rZ
426888000

− 236326427r2Z
5762988000

+
12436082r3Z
180093375

− 32867r4Z
5239080

+

(
− 857358413

5762988000
− 19562657

2305195200r2Z

+
620361529

11525976000rZ
+

80429929rZ
349272000

− 74350621r2Z
411642000

− 113r3Z
31185

)
x̃+

(
10032541

174636000
+

121092001

11525976000r2Z

− 532057187

11525976000rZ
+

106rZ
86625

)
x̃2 +

(
− 1

58212r2Z
− 1

29106rZ

)
x̃3 + log(−rt)

(
13

3780
+

1

2376r2Z
− 13

5544rZ

+
221rZ
41580

− 281r2Z
10395

+
2r3Z
55

+

(
− 1439

20790
− 1

297r2Z
+

16

693rZ
+

83rZ
693

− 6r2Z
55

)
x̃+

(
5

189
+

5

1188r2Z

− 5

252rZ

)
x̃2

)]
+

1

r6t

[
− 2192630176559

409056888240000
− 940653073

3408807402000r2Z
+

794421072481

409056888240000rZ

+
213480554017rZ
37186989840000

+
1605227229157r2Z
409056888240000

− 140834719651r3Z
8181137764800

+
568078963r4Z
27826999200

− 2423r5Z
152895600

+

(
11162940545851

204528444120000
+

4147271311

1818030614400r2Z
− 6823304481131

409056888240000rZ
− 2930170878121rZ

29218349160000

+
2108194453399r2Z
18593494920000

− 209636149507r3Z
2921834916000

− 163r4Z
162162

)
x̃+

(
− 11003872588483

204528444120000
− 819450691

202905202500r2Z

+
1913822650681

81811377648000rZ
+

972425439991rZ
20452844412000

+
239r2Z
405405

)
x̃2 +

(
− 283

5297292
+

15282853319

14609174580000r2Z

− 11256827563

5681345670000rZ

)
x̃3 + log(−rt)

(
− 13043

10810800
− 1031

10810800r2Z
+

311

514800rZ
− 983rZ

900900
+

48407r2Z
5405400

− 1019r3Z
60060

+
293r4Z
19305

+

(
9689

415800
+

9391

10810800r2Z
− 4001

600600rZ
− 2434rZ

51975
+

386r2Z
6435

− 293r3Z
6435

)
x̃
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+

(
− 733

30888
− 1697

1081080r2Z
+

3473

360360rZ
+

2465rZ
108108

)
x̃2 +

(
7

17160r2Z
− 7

8580rZ

)
x̃3

)]]

+ CF

[
1

rt

[
−20− 5

3r2Z
+

20

3rZ

]
+

1

r2t

[
289

90
+

3

20r2Z
− 148

135rZ
− 1241rZ

135
+

(
− 74

135r2Z
+

28

27rZ

)
x̃

]

+
1

r3t

[
−49789

37800
− 2377

28350r2Z
+

52057

113400rZ
+

104413rZ
56700

− 15919r2Z
4725

+

(
38069

28350
+

347

1890r2Z
− 7463

8100rZ

)
x̃

]

+
1

r4t

[
1401083

3969000
+

179797

15876000r2Z
− 115447

1134000rZ
− 618371rZ

793800
+

3248243r2Z
3969000

− 36853r3Z
33075

+

(
−904243

992250
− 469939

7938000r2Z
+

2780101

7938000rZ
+

643859rZ
661500

)
x̃+

(
11717

396900r2Z
− 1907

33075rZ

)
x̃2

]

+
1

r5t

[
− 30333497

261954000
− 154673

38808000r2Z
+

18997889

628689600rZ
+

385440967rZ
1571724000

− 100907407r2Z
261954000

+
250618673r3Z
785862000

− 4549253r4Z
13097700

+

(
600883

1587600
+

138091

8316000r2Z
− 2467709

20412000rZ
− 127455007rZ

196465500
+

6359273r2Z
11907000

)
x̃

+

(
− 7134431

71442000
− 415409

24948000r2Z
+

120692261

1571724000rZ

)
x̃2

]
+

1

r6t

[
611068021

19209960000
+

10264144487

15732957240000r2Z

− 5329718861

749188440000rZ
− 75765552307rZ

874053180000
+

2191285707617r2Z
15732957240000

− 88529188963r3Z
524431908000

+
12872473853r4Z
112378266000

− 390253649r5Z
3745942200

+

(
−1119558376063

7866478620000
− 582826007

125863657920r2Z
+

300649440137

7866478620000rZ
+

1495708237rZ
5016886875

− 983884905989r2Z
2622159540000

+
27984051973r3Z
112378266000

)
x̃+

(
60247899487

582702120000
+

7750560019

1123782660000r2Z
− 335249449013

7866478620000rZ

− 756269740169rZ
7866478620000

)
x̃2 +

(
− 1732023911

1123782660000r2Z
+

70960381

23412138750rZ

)
x̃3

]]
+O

(
1/r7t , ǫ

)
}
.

The leading term in Eq. (3.13) can be compared to the projected results of [6]. We find agreement

with their formula6. We also performed a consistency check of the renormalisation scale dependence

of the presented two-loop expansions by means of the technique given in Sec. B.

3.4.2 Anomalous Diagrams

The two-loop gg → ZZ amplitude contains, in addition, two topologies which consist of products of

one-loop sub-diagrams. On the one hand diagrams containing gluon self-energy contributions vanish

due to color conservation. The diagrams in Fig. 6, on the other hand, give a finite mass dependent

contribution as long as both Z bosons couple to distinct fermion loops. These diagrams are propor-

tional only to the axial coupling of the Z bosons to fermions; the vector component vanishes due to C

invariance (Furry’s theorem). The diagrams have been omitted in the previous section since they can

be computed with their full top mass dependence and, therefore, need no large-mass expansion [48, 49].

In brevity we repeat the results from [49] and give the result in terms of our conventions. Let

us denote the amplitude for a Z coupling to two gluons by T µνρ
AB . We calculate the triangle shown in

Fig. 7, where all momenta are outgoing q1 + q2 + q3 = 0 and to begin with q21 6= 0, q22 6= 0. The result

6Both Eq.(5) and Eq.(7) of [6] contain typographical errors.
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for the two triangle diagrams (including the minus sign for a fermion loop) is,

T µνρ
AB (q1, q2) = i

g2s
16π2

1

2
δAB

( gW
2 cos θW

)
τf Γµνρ , (3.14)

where τf = ±1/2 and,

Γµνρ(q1, q2,m) =
2

iπ2

∫
ddl Tr

{
γργ5

1

6l −m
γµ 1

6l + 6q1 −m
γν 1

6l + 6q1 + 6q2 −m

}
. (3.15)

The most general form of Γ consistent with QCD gauge invariance,

qµ1Γµνρ = qν2Γµνρ = 0 , (3.16)

can be written as,

Γµνρ = F1(q1, q2,m)
{
Tr[γργν 6q16q2γ5]qµ1 +Tr[γργµγν 6q2γ5]q21

}

+ F2(q1, q2,m)
{
Tr[γργµ6q16q2γ5]qν2 +Tr[γργµγν 6q1γ5]q22

}

+ F3(q1, q2,m) (qρ1 + qρ2)
{
Tr[γµγν 6q16q2γ5]

}

+ F4(q1, q2,m) (qρ1 − qρ2)
{
Tr[γµγν 6q16q2γ5]

}
. (3.17)

By direct calculation it is found that F4 = 0.

Contracting with the momentum of the Z boson we find that, q3 = −q1 − q2

(q3)ρ Γ
µνρ =

[
− q21 F1(q1, q2,m) + q22 F2(q1, q2,m)− q23 F3(q1, q2,m)

]
Tr[γµγν 6q16q2γ5] . (3.18)

The divergence of the axial current is found by direct calculation to be,

(q3)ρ Γ
µνρ =

[
4m2C0(q1, q2;m,m,m) + 2

]
Tr[γµγν 6q16q2γ5] (3.19)

showing the contribution of the pseudoscalar current proportional to m2 and the anomalous piece.

Summation over one complete quark doublet (τf = ±1/2) cancels the anomaly term and solely the

piece proportional to the top mass remains.

(a) (b)

Figure 6: Two-loop anomaly style diagrams for the production of Z boson pairs.
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Figure 7: Triangle diagrams representing the Zgg form factor at lowest order.

For the particular case at hand we are interested in on-shell Z’s and in q22 = ε2 · q2 = 0, ε3 · q3 =

0, q3 = −q1 − q2, so we get a contribution only from F1. The result for F1 is

F1(q1, q2,m) =
1

2q1 · q2

[
2 + 4m2C0(q1, q2;m,m,m)

+
(
2 +

q21
q1 · q2

)[
B0(q1 + q2;m,m)−B0(q1;m,m)

]]
, (3.20)

F1(q1, q2, 0) =
2

(q23 − q21)

[
1 +

q23
(q23 − q21)

log

(
q21
q23

)]
. (3.21)

We further define a subtracted F1 to take into account the contribution of the top and the bottom

quarks,

F1(q1, q2,m) =
[
F1(q1, q2,m)− F1(q1, q2, 0)

]
. (3.22)

Analogous to Eq. (3.4) we define the projected matrix element for the anomaly piece

∣∣B0
anom(α

0
S ,m

0, µ, ǫ)
〉
=

δAB

NA
(gµν p1p2 − pµ2p

ν
1)P

αρ′

Z (p3)P
β
Z,ρ′ (p4)

∣∣∣B0,AB
anom,µναβ(α

0
S ,m

0, µ, ǫ)
〉
. (3.23)

The amplitude defined in Eq. (3.23) is UV and IR finite and requires no renormalisation. Including

the effect of both the b quark (taken to be massless) and the t quark we obtain (No statistical factor

for identical Z bosons is included).

∣∣∣Banom(α
(nl)
S ,m, µ)

〉
= a2t s

2N ·
(
α
(nl)
S

4π

)2

(3.24)

×
{[

(rZ − x)
(
1 + (rZ − x)(1/rZ − 1/(2r2Z))

)]
F1(p1 − p3,−p1,m)F1(p3 − p1,−p2,m)

+
[
(rZ − 1 + x)

(
1 + (rZ − 1 + x)(1/rZ − 1/(2r2Z))

)]
F1(p1 − p4,−p1,m)F1(p4 − p1,−p2,m))

}
,

where N is given in Eq. (2.18). Again we include the factors s2 to indicate the correct dimensionality

of F1(p1, p2,m). For completeness we also give the mass expansion of Eq. (3.24) in case only the top
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quark contribution is considered, i.e. F1(p1, p2, 0) → 0. As expected the expansion starts at 1/m4.

∣∣∣Banom,t(α
(nl)
S ,m, µ)

〉
= a2tN ·

(
α
(nl)
S

4π

)2 {
1

r2t

[
−1

9
+

rZ
9

+
1− x̃

18rZ
+

−1 + 2x̃

72r2Z

]
+

1

r3t

[
−8rZ
135

+
2r2Z
45

+
(13− 18x̃)

270
+

1− 3x̃

270r2Z
+

−11 + 26x̃

540rZ

]
+

1

r4t

[
−22r2Z

945
+

22r3Z
1575

+
rZ(1511− 2362x̃)

56700

+
−3845 + 9892x̃

226800
− 191

(
1− 4x̃+ 2x̃2

)

226800r2Z
+

646− 2129x̃+ 382x̃2

113400rZ

]
+

1

r5t

[
−38r3Z
4725

+
19r4Z
4725

+
r2Z(113− 188x̃)

9450
+

rZ(−783 + 2104x̃)

75600
+

−111 + 472x̃− 306x̃2

75600rZ
+

1− 5x̃+ 5x̃2

5400r2Z

+
197− 688x̃+ 194x̃2

37800

]
+

1

r6t

[
−1613r4Z
623700

+
1613r5Z
1455300

+
r3Z(41432− 71573x̃)

8731800
(3.25)

+
r2Z(−457682 + 1261401x̃)

87318000
+

−1049213+ 4652126x̃− 3464248x̃2

698544000

+
rZ
(
622783− 2250826x̃+ 764954x̃2

)

174636000
+

42658− 222727x̃+ 251038x̃2 − 18874x̃3

116424000rZ

+
9437

(
−1 + 6x̃− 9x̃2 + 2x̃3

)

232848000r2Z

]
+O

(
1/r7t , ǫ

)
}
.

3.5 Visualisation of Large-Mass Expansion Results for gg → ZZ

Let us turn towards the graphical representations of the large-mass expansion results for the SM

continuum, Eqs. (3.10-3.13), and their improvements. We proceed analogously to Sec. 2.2.3 and

compute the UV+IR renormalised version of Eq. (3.7) and again integrate over the ZZ phase space.

The setup from Eq. (2.33) is utilised. Since we focus our discussion in this section mainly on the

different improvements of the large-mass expansions we, again, do not take into account the full

NLO correction. We merely focus on the unknown virtual massive two-loop contribution of the SM

continuum interfered with the Higgs-mediated process. That is, we set

σLO
int ∼ 2Re

〈
F (1)

A (m,µ)
∣∣∣F (1)

B (m,µ)
〉

and σNLO
virt,int ∼ 2Re

〈
F (1)

A (m,µ)
∣∣∣F (2)

B (m,µ)
〉
, (3.26)

which also excludes the anomaly style contribution from eq (3.24) since this part can be computed

without the necessity of any approximation.

It is important to notice the following conventions for our approximations using Padé approxi-

mants below. As in Sec. 2.2.3 the Padé approximants are computed at amplitude level for each finite

remainder FA,B, including the conformal mapping7. We know from our previous discussion that the

best approximation of the LO as well as the virtual NLO contribution of the Higgs-mediated process

is given by F (1,2)
A,[5/5]. It is understood that we will always use this approximant in the following con-

siderations. In principle, we can also substitute the approximated Higgs-mediated amplitude F (1)
A,[5/5]

7Computing the Padé approximants for the expanded product
〈

F
(1)
A

∣

∣

∣
F

(1,2)
B

〉

yield no reasonable result above thresh-

old. We have checked this by explicitly computing the homogeneous bivariate Padé Approximants [2/2]-[3/3] [50, 51] for

the LO interference Re
〈

F
(1)
A

∣

∣

∣
F

(1)
B

〉

, where we treated the mapped variable w, Eq. (2.29), and its complex conjugated

w̄ as independent variables.
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with its exact LO result. Doing so would remove any uncertainties from the Higgs-mediated contribu-

tion. On the other hand the numerical difference between both approaches is negligible as discussed

in Sec. 2.2.3.

The vector-vector part of the SM continuum gives only a minor contribution to the total cross

section, σV V /σAA ∼ 10−3. This relies on the fact that the mass expansion of the V V part starts only

at 1/m4 whereas the AA part starts at 1/m2 and additionally a2t /v
2
t ∼ 7.

The interference including the exact top mass dependence is only known at leading-order, which

is shown in the left panel of Fig. 8. Comparing the exact result (black) and its naive large-mass

approximation up to 1/m12 (orange) shows excellent agreement up to s ∼ 3m2, with approximately

1% deviation from the exact result. At threshold the deviation rises to 12%. In contrast the Padé

approximant F (1)
B,[3/3] (blue) deviates from the exact result by 6% at threshold. The shaded grey area

indicates the variation from computing the Padé approximants [2/2], [2/3], [3/2], [3/3] with 3 − 8%

deviation at threshold. Due to the change of sign of their derivatives we get a better approximation

closely above threshold, as can be seen in the bottom plot of Fig. 8. Nevertheless, the peak of the

exact LO result at s ∼ 5.2m2 is with 10 − 11% deviation quite poorly approximated. Ineptly this

is the region of interest for our later analysis of the Higgs boson width. Going to large values of s

the deviations inevitably become larger, but the contribution to the cross section small due to the

suppression by the flux.

This situation seems to continue in case of the next-to-leading-order large-mass expansion as

shown in the right panel of Fig. 8. Evidently no exact result is available and we have to rely on the

approximate results. All Padé approximants [2/2], [2/3], [3/2], [3/3] for F (2)
B show a stable trend over

the entire s/m2 range. The deviations between the diagonal and non-diagonal Padé approximants

are again indicated by the shaded grey area and the approximant F (2)
B,[3/3] is shown in orange. The

steeper rise near the top threshold suggests a better description of the actual threshold properties of

the NLO result with exact top mass dependence in contrast to the naive large-mass expansion (black).

Comparing the trend above threshold with its analogous LO situation we can only guess that we have

to expect comparable deviations from our Padé approximations with respect to the unknown exact

NLO result.

We can also consider rescaling the NLO large-mass expansion as described in Eq. (2.26). The

resulting curves are shown in the left panel of Fig. 9. To guide the eye we also include F (2)
B,[3/3] (black).

The envelope of the different orders n in the expansion σNLO
imp,n is shown as grey area. For s ≤ 20m2

the envelope is determined from n = {1, . . . , 6}, whereas for s > 20m2 we only use n = {1, . . . , 5}
due to the instabilities for n = 6 in the high energy regime. The most interesting curves, namely the

heavy-quark approximation n = 1 and the highest order in the expansion n = 6, are shown in orange

and blue, respectively. Factoring out the exact LO result seems to give a more natural description of

the threshold behaviour and peak structure in comparison to the plain use of the Padé approximation.

The origin of the numerical instabilities of the n = 6 expansion is probably due to delicate

numerical cancellations in the (s/m2)6 coefficients. One could try to cure this problem by switching

to a higher numerical precision or by a proper economisation [45] of the power series. With the Padé

approximation we already have an excellent method at hand and we adopt the idea of factoring out

the exact LO interference,

σNLO
imp,[n/m] = σLO

exact ·
σNLO
[n/m]

σLO
[n/m]

. (3.27)

Keeping our usual definition in mind σ
(N)LO
imp,[n/m] denotes the (virtual N)LO contribution using F (1)

A,[5/5]

and F (1,2)
B,[n/m]. The result is shown in Fig. 9, right panel. We immediately see the advantages of
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Figure 8: Left panel: Leading-order interference Re
〈
F (1)

A (m,µ)
∣∣∣F (1)

B (m,µ)
〉
. Exact result (black),

LME up to 1/m12 (orange) and envelope of Padé approximants [2/2], [2/3], [3/2] and [3/3] (blue) as

grey area. Bottom plot shows the relative deviation from the exact result. Right panel: Next-

to-leading-order interference Re
〈
F (1)

A (m,µ)
∣∣∣F (2)

B (m,µ)
〉
. LME up to 1/m12 (black) and envelope of

Padé approximants [2/2], [2/3], [3/2] and [3/3] (orange) as grey area. The vertical dashed line denotes

the top quark pair-production threshold. See text for details.

Figure 9: Next-to-leading-order interference Re
〈
F (1)

A (m,µ)
∣∣∣F (2)

B (m,µ)
〉
. Left panel: Interference

by rescaling, Eq. (2.26). Padé approximant [3, 3] as comparison (black). Envelope of σNLO
imp,n for

n = {1, . . . , 6} as grey area; n = 1 (orange) and n = 6 (blue) shown explicitly. Right panel:

Interference by alternative rescaling, Eq. (3.27). Padé approximant [3, 3] as comparison (black). Grey

area given by envelope of σNLO
imp,[n/m] with n,m = {2, 3}; [3/3] shown explicitly (orange). The vertical

dashed line denotes the top quark pair-production threshold. See text for details.
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this approach. Firstly we also get a similar, more natural behaviour at threshold and of the peak

structure above threshold. Secondly we get a stable result across the entire range of s/m2. The grey

area is again given by the envelopes due to the variation between the (non-)diagonal Padé approxi-

mants [2/2], [2/3], [3/2] and [3/3](orange). Ultimately by using the Padé approximants in contrast to

Eq. (2.26) we could entirely remove the uncertainty of having to use an approximation for the involved

Higgs-mediated amplitude and fall back to using the exactly known result for F (1)
A .

Some concluding remarks. In contrast to the purely Higgs-mediated case, Sec. 2.2.3, it turns out

that we require the Padé approximation in the interference case. Using the conformal mapping alone

without an additional Padé approximant on top gives no reasonable approximation for the quantities

discussed above. On the other hand we have seen that we hugely benefit by using Padé approximations

due to their stability and the possibility of removing any uncertainty besides the approximated virtual

massive two-loop gg → ZZ amplitude.

4 Real Corrections to SM ZZ Production

Figure 10: Representative diagrams for the 0 → ggHg and the 0 → gHqq̄ amplitudes.

Representative diagrams for the real radiation contributions to this process are shown in Figs. 10

and 11. The Higgs-mediated diagrams have previously been computed in [52]. They can easily be

adapted to our calculation by combining those results with the decay amplitude given in Eq. (2.16)

and N from Eq. (2.18). This procedure, together with the strategy for handling the amplitudes for

diagrams without a Higgs boson, is described in detail in [16]. We adopt this implementation here.

Our calculation of the pure-Higgs contribution involves the computation of the square of the diagrams

shown in Fig. 10, together with all crossings of the the quarks in Fig. 10 (right) into the initial state.

Similarly, the interference contribution includes all crossings of the diagrams shown in Fig. 11. In

principle another contribution to the interference occurs at this order, between tree-level amplitudes

for the process qg → ZZq and the qg-initiated diagrams shown in Fig. 10 (right) and 11 (bottom-left).

However this contribution is subleading [16], particularly for high invariant masses of the ZZ system,

so we do not consider it here.

The real radiation diagrams contain infrared singularities, of soft and collinear origin, that must

be isolated and combined with the corresponding poles in the two-loop amplitudes. This is handled

using the dipole subtraction procedure [53].
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Figure 11: Representative diagrams for the 0 → ggZZg and the 0 → gZZqq̄ amplitudes.

5 Results

The individual components of the calculation that have been extensively discussed above have been

included in the parton-level Monte Carlo code MCFM [54–56]. The bulk of the calculation is performed

in a straightforward manner using the normal operation of MCFM at NLO. The exception is the

finite contribution to the two-loop amplitude containing a closed loop of massless quarks. Since

these contributions are computationally expensive to evaluate, we choose to include their effects by

reweighting an unweighted sample of LO events.

For the two-loop amplitudes containing massive loops of quarks the approximations used are

as follows. The Higgs amplitude is evaluated using the [5/5] Padé approximant to the LME after

conformal mapping. As demonstrated in Sec. 2, this is virtually identical to the exact result. The

massive quark box contributions are computed by factoring out the exact LO amplitude according

to Eq. (3.27), with the Padé approximant corresponding to n = m = 3 in the definition given in

Eq. (2.28). The anomalous diagrams of Sec. 3.4.2 are not include in the discussion of the massive

quark loops below, but instead are accounted for only when the sum of all loops is considered.

For massless quarks circulating in the loop the calculation is simplified by the fact that the entire

amplitude is proportional to the combination of couplings (v2f + a2f ), i.e. in the decomposition given

in Eq. (3.6) the quantities
∣∣∣B̃0

V V

〉
and

∣∣∣B̃0
AA

〉
are equal. The calculation requires the one-loop master

integrals up to ǫ2, for which all orders results are given in ref. [57] for bubble integrals and refs. [58–62]

for the easy box (two opposite off-shell legs). The necessary results for the three-mass triangle with

massless propagators and the hard box (two adjacent off-shell legs) can be taken from refs. [63] and [64]

respectively. We use the coproduct formalism [65, 66] to analytical continue the results to the physical

phase space regions. All master integrals have been numerically cross-checked with SecDec [67]. The

two-loop master integrals for gg → ZZ are taken from ref. [17] and GiNaC is used to evaluate the
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polylogarithms. Our results for this contribution agree with the earlier calculation of ref. [22].

The parameters for the following results have already been specified in Sec. 2.2.3. Here we make

only one change: our central scale corresponds to the choice µr = µf = MZZ/2, where MZZ is the

invariant mass of the ZZ pair. As an estimate of the theoretical uncertainty we consider variations by

a factor of two about this value. We also introduce an uncertainty that is based on our combination

of LME and Padé approximants in the calculation of the massive quark loops, that has already been

explored in Fig. 9 (right). In order to obtain a more conservative error estimate we multiply the

deviations of the extremal values in the grey area with respect to σNLO
imp,[3/3] by a factor of two. The

impact of this variation on the complete NLO prediction for the massive loop is shown in Fig. 12.

Even for this choice, the impact of the approximation is estimated to be less than 20% throughout the

distribution. For the remaining plots in this section we no longer show the impact of this uncertainty,

but it will be explicitly included in Tables 2 and 3 later on.

Figure 12: The uncertainty on the calculation of the massive loop interference contribution stemming

from the use of the LME expansion and Padé approximants. The central result is shown as a solid

histogram, with the dashed lines indicating deviations that correspond to the grey area in Fig. 12,

multiplied by a factor of two. All curves are computed for the central scale choice, µr = µf = MZZ/2.

Results for both the massless and massive quark contributions to the interference, including the

effects of scale variation, are shown in Fig. 13. The interference is negative for both the massless

and massive quark contributions and is shown in Fig. 13 reversed in sign. In both cases the K-factor

decreases as the invariant mass of the Z-boson pair increases. The K-factor at small invariant masses is

larger for the massless loops; as the invariant mass increases, the NLO corrections are more important

for the massive loop. The NLO corrections are larger for the top quark loops and exhibit a stronger

dependence on MZZ . In both cases the NLO result lies outside the estimated LO uncertainty bands

and the scale uncertainty is not significantly reduced at NLO.

The relative importance of the massive and massless loops can be better-assessed from the NLO

predictions shown in Fig. 14. At smaller invariant masses, below the top-pair threshold, the massless

loops are most important. Around the top-pair threshold the two are of a similar size, but at high

energies the massless loops are insignificant. In contrast, the top quark loop quickly becomes the

dominant contribution beyond this threshold and exhibits a long tail out to invariant masses of around
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Figure 13: Left panel: Interference of the Higgs amplitude and massless quark loops at LO and NLO,

with the scale uncertainty indicated by the dashed histograms. The ratio of the NLO and LO results

is shown in the lower panel. Right panel: The equivalent results for the interference of the Higgs

amplitude and the top quark loops.

one TeV. The full prediction for the interference that is obtained by summing over both massless and

Figure 14: Comparison of the effect of the massless (magenta) and massive (red) loops in the NLO

interference. Also shown is the sum (blue) and the corresponding result for the Higgs amplitude

squared (black). All curves are computed for the central scale choice, µr = µf = MZZ/2.

top quark loops, as well as the numerically-small anomalous contribution discussed in Sec. 3.4.2, is

shown in Fig. 15. The relative size of the massless and top quark loops discussed above means that the

behaviour of the K-factor for the sum of both contributions interpolates between the massless-loop

K-factor for small MZZ and the massive loop one for high MZZ . It therefore decreases from around

3 at the peak of the distribution to approximately 1.8 in the tail. This is to be contrasted with the

K-factor distribution for the pure Higgs amplitudes alone, shown in the right panel of Fig. 15. In that
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case the K-factor decreases slowly from around 2.2 at small invariant masses to around 1.8 in the far

tail. We note that the K-factor for the Higgs amplitudes alone, and the one for the interference with

the top quark loops, is almost identical. In the high-energy limit this is guaranteed to be the case,

due to the cancellation between these two processes. This behaviour is shown explicitly in Fig. 16.

Figure 15: Left panel: Interference of the Higgs amplitude and quark loops at LO and NLO, with

the scale uncertainty indicated by the dashed histograms. The ratio of the NLO and LO results is

shown in the lower panel. Right panel: The equivalent results for the Higgs amplitude squared.

Figure 16: The ratio of the K-factors for the square of the Higgs diagrams alone (Khiggs) and the one

for the interference (Kinter). The lines are fits to the individual histogram bins that are good to the

level of a few percent and are shown for the central scale (blue) as well as the scale variations (red,

green).

The integrated cross-sections for the interference contributions and the Higgs amplitude squared

are shown in Table 2. Note that, in this table, the total interference differs from the sum of the massive

and massless loops by a small amount that is due to the anomalous contribution. At this level the
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Contribution σLO [fb] σNLO [fb] σNLO/σLO

Higgs mediated diagrams 56.3+15.3
−11.4 111.0+20.1

−16.6 1.97

interference (total) −113.5+22.2
−29.5 −237.8+36.4

−45.4(scale)
+5.4
−0.4(LME) 2.09

interference (massless loops) −60.2+11.0
−14.2 −132.7+20.5

−26.3 2.20

interference (massive loop) −53.3+11.2
−15.3 −104.2+15.8

−18.7(scale)
+5.4
−0.4(LME) 1.95

Table 2: Integrated cross-sections at
√
S = 13 TeV, using the input parameters of Sec. 2.2.3. Un-

certainties correspond to scale variation as described in the text and, for NLO results that include

massive quarks, an estimate of the limitations of the LME. The K-factor is computed using only the

central result.

differences between the effects of the NLO corrections on the various contributions is quite small, with

all corresponding to a NLO enhancement by close to a factor of two. The K-factor for the massless

loops is slightly larger, which is also reflected in the result for the total interference. In addition to the

scale uncertainty, we have also indicated our estimate of the residual uncertainty related to the LME

expansion that is indicated in Fig. 12. The impact of this uncertainty is relatively small, at the level of

around 5%, due to the fact that the integrated cross-section is dominated by the region M2
ZZ . 5m2

t

where the LME is expected to work well.

For obtaining a bound on the width of the Higgs boson it is useful to focus on a high-mass region

where backgrounds from the continuum processes, represented at tree-level by qq̄ → ZZ, are small

but the effect of the interference is still significant [2, 15]. To that end, in Table 3 we show the cross-

sections after the application of the cut mZZ > 300 GeV. We see that, as expected, the impact of the

massive top loop on the interference is much greater, compared to the massless loops. This also has

the effect of ensuring that the K-factors for the Higgs amplitude squared and the total interference

are almost equal. To estimate the cross-section after the decays of the Z-bosons into electrons and

muons we can simply take these results and multiply by a factor of 4 × BR(Z → e−e+)2, where

BR(Z → e−e+) = 3.363 × 10−2. Assuming that the on-shell Higgs cross-section takes its Standard

Model value and that the Higgs boson couplings and width are related accordingly, we can write the

predictions for the off-shell region as,

σLO
4ℓ (m4ℓ > 300 GeV) =

(
0.190+0.055

−0.040

)
×
(

ΓH

ΓSM
H

)
−
(
0.275+0.079

−0.058

)
×
√

ΓH

ΓSM
H

fb , (5.1)

σNLO
4ℓ (m4ℓ > 300 GeV) =

(
0.365+0.064

−0.054

)
×
(

ΓH

ΓSM
H

)
−
(
0.526+0.092

−0.103

)
×
√

ΓH

ΓSM
H

fb . (5.2)

The linear terms derive from the Higgs cross-sections in Table 3 while the terms that scale as the

square-root of the modified width reflect the total interference contributions. The uncertainties reflect

those shown in Table 3, with the scale and LME uncertainties added linearly. It is interesting to

compare these results with the corresponding on-shell Higgs cross-sections. These are given by,

σLO
4ℓ (m4ℓ < 130 GeV) = 1.654+0.249

−0.220 fb , σNLO
4ℓ (m4ℓ < 130 GeV) = 3.898+0.770

−0.560 fb , (5.3)

– 31 –



Contribution σLO [fb] σNLO [fb] σNLO/σLO

Higgs mediated diagrams 42.1+12.1
−8.8 80.7+14.2

−12.0 1.92

interference (total) −60.7+12.8
−17.4 −116.3+17.5

−19.9(scale)
+5.4
−0.4(LME) 1.91

interference (massless loops) −12.5+2.5
−3.4 −22.5+3.2

−3.2 1.80

interference (massive loop) −48.2+10.3
−14.1 −93.0+14.0

−16.4(scale)
+5.4
−0.4(LME) 1.93

Table 3: Cross-sections at
√
S = 13 TeV in the region defined by mZZ > 300 GeV, using the input

parameters of Sec. 2.2.3. Uncertainties correspond to scale variation as described in the text and, for

NLO results that include massive quarks, an estimate of the limitations of the LME. The K-factor is

computed using only the central result.

where the uncertainties correspond to our usual scale variation procedure. From the results in

Eqs. (5.1) and (5.2) it is clear that the absolute rate of off-shell events varies considerably between

LO and NLO. On the other hand, the cross-sections in Eq. (5.3) imply that the ratio of the number

of events in the off-shell region compared to the peak region is much better predicted,

σLO
4ℓ (m4ℓ > 300 GeV)

σLO
4ℓ (m4ℓ < 130 GeV)

=
(
0.115+0.014

−0.010

)
×
(

ΓH

ΓSM
H

)
−
(
0.166+0.020

−0.015

)
×
√

ΓH

ΓSM
H

,

σNLO
4ℓ (m4ℓ > 300 GeV)

σNLO
4ℓ (m4ℓ < 130 GeV)

=
(
0.094+0.000

−0.002

)
×
(

ΓH

ΓSM
H

)
−
(
0.135+0.000

−0.008

)
×
√

ΓH

ΓSM
H

. (5.4)

The uncertainties in this equation are obtained by using both the LME uncertainty estimate and the

scale variation, but ensuring that the cross-sections that appear in the numerator and denominator

are evaluated at the same scale.

6 Conclusions

In this paper we have presented a calculation of on-shell Z-boson pair production via gluon fusion

at the two-loop level. This occurs both through diagrams that are mediated by a Higgs boson, with

H → ZZ, and by continuum contributions in which the Z bosons couple through loops of quarks.

We have considered contributions up to the two-loop level, corresponding to NLO corrections, for the

Higgs diagrams alone and also for the interference between the two sets of diagrams.

In the continuum contribution the two-loop corrections containing loops of massless quarks are

known and we have reproduced results from the literature. Our treatment of the massive quark loops

is based on a large-mass expansion up to order 1/m12
t , that is extended to the high-mass region by

using a combination of conformal mapping and Padé approximation. This procedure was shown to

provide an excellent approximation of the Higgs contribution alone, where the exact result is known.

We have used our calculation to provide theoretical predictions for the impact of the interference

contribution on the invariant mass distribution of Z-boson pairs at the 13 TeV LHC. In the high-

mass region we have shown that the impact of the NLO corrections to the interference are practically

identical to those for Higgs production alone. This explicit calculation justifies using a procedure for
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estimating the number of off-shell events due to the interference by rescaling the LO prediction by the

on-shell K-factor.
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A Definition of Scalar Integrals

We work in the Bjorken-Drell metric so that l2 = l20 − l21 − l22 − l23. The definition of the integrals is as

follows

A0(m) =
µ4−d

iπ
d
2 rΓ

∫
ddl

1

(l2 −m2 + iε)
, (A.1)

B0(p1;m,m) =
µ4−d

iπ
d
2 rΓ

∫
ddl

1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)
, (A.2)

C0(p1, p2;m,m,m) =
µ4−d

iπ
d
2 rΓ

(A.3)

×
∫

ddl
1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)((l + p1 + p2)2 −m2 + iε)
,

D0(p1, p2, p3;m,m,m,m) =
µ4−d

iπ
d
2 rΓ

(A.4)

×
∫

ddl
1

(l2 −m2 + iε)((l + p1)2 −m2 + iε)((l + p1 + p2)2 −m2 + iε)((l + p1 + p2 + p3)2 −m2 + iε)
,

We have removed the overall constant which occurs in d-dimensional integrals, (d = 4− 2ǫ)

rΓ ≡ Γ(1 + ǫ) = 1− ǫγ + ǫ2
[γ2

2
+

π2

12

]
(A.5)

with the Euler-Mascheroni constant γ = 0.57721 . . .. The large mass expansion of some of these

integrals are

B0

(
(p1 + p2)

2,m,m
) s=1

=

(
µ2

m2

)ǫ
{
1

ǫ
+

1

6

1

rt
+

1 + ǫ

60

1

r2t
+

(1 + ǫ)(2 + ǫ)

840

1

r3t
+

6 + 11ǫ+ 6ǫ2

15120

1

r4t
(A.6)

+
24 + 50ǫ+ 35ǫ2

332640

1

r5t
+

120 + 274ǫ+ 225ǫ2

8648640

1

r6t
+

180 + 441ǫ+ 406ǫ2

64864800

1

r7t
+

1260 + 3267ǫ+ 3283ǫ2

2205403200

1

r8t

+
10080 + 27396ǫ+ 29531ǫ2

83805321600

1

r9t
+

10080 + 28516ǫ+ 32575ǫ2

391091500800

1

r10t
+O

(
1/r11t , ǫ3

)
}
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and

C0 (p1, p2,m,m,m)
s=1
= −

(
µ2

m2

)ǫ
{
1

2

1

rt
+

1+ ǫ

24

1

r2t
+

(1 + ǫ)(2 + ǫ)

360

1

r3t
+

6 + 11ǫ+ 6ǫ2

6720

1

r4t
(A.7)

+
24 + 50ǫ+ 35ǫ2

151200

1

r5t
+

120 + 274ǫ+ 225ǫ2

3991680

1

r6t
+

180 + 441ǫ+ 406ǫ2

30270240

1

r7t
+

1260 + 3267ǫ+ 3283ǫ2

1037836800

1

r8t

+
10080 + 27396ǫ+ 29531ǫ2

39697257600

1

r9t
+

10080 + 28516ǫ+ 32575ǫ2

186234048000

1

r10t
+O

(
1/r11t , ǫ3

)
}
.

for p21 = p22 = 0, (p1 + p2)
2 = s.

B Scale Dependence of the Finite Remainder

In this section we shortly summarise a convenient, and well-known, way to determine the dependence

on the renormalisation scale µ = µr of the one- and two-loop finite remainders used within this work,

i.e. processes with a loop-induced leading-order matrix element. This determination is possible by

exploiting the renormalisation group equation (RGE) properties of the individual building block, e.g.

α
(nf )
S (µ), as discussed below. Knowledge of this scale dependence, in return, offers a simple way to

compute finite remainder results at arbitrary scales, provided the results at a starting scale µ0 are

known. We mostly recycle our definitions from Sec. 2.1. In the following, however, we stick to a

slightly more general notation when applicable. To this end we drop the amplitude specifications A
and B from the finite remainder definition in Eq. (2.11) and denote our previous amplitudes A and

B simply by M. We also replace our, to the gg → ZZ process specialised, IR constant Ẑ
(nl)
gg from

Eq. (2.14) by a more general IR constant ẐIR following the notation in [30–32]. The finite remainder

for nf quark flavours is thus defined by

∣∣∣F(α
(nf )
S ,m, µ)

〉
=

1

ẐIR

∣∣∣Mr(α
(nf )
S ,m, µ)

〉
=

Z
(nf )
UV

ẐIR

(
N ǫZ

(nf )
αS α

(nf )
S (µ)

4π

)[ ∣∣∣M(1),0(m)
〉

+

(
N ǫZ

(nf )
αS α

(nf )
S (µ)

4π

)∣∣∣M(2),0(m)
〉]

+O
(
(α

(nf )
S )3

)
. (B.1)

The mass dependence does not play any important role in the subsequent discussion and, hence, all

results are valid for arbitrary masses m. Z
(nf )
UV denotes the process dependent UV renormalisation

constants and the mass renormalisation m0 = Zmm is again kept implicit. The strong coupling

constants αS is renormalised according to

α0
S = N ǫZ

(nf )
αS α

(nf )
S (µ) with N ǫ = µ2ǫ e

ǫ γE

(4π)ǫ
, (B.2)

where the explicit µ dependence from the loop measure in Eq. (2.4) was shifted to N ǫ. The renor-

malisation constant Z
(nf )
αS and the coefficient of the beta function β

(nf )
0 are given in Eq. (2.9). The

explicit scale and flavour dependence of αS = α
(nf )
S (µ) is neglected in the following for simplicity.

Equivalently to Eq. (B.1) we define the perturbative expansion of the finite remainder as

|F(αS ,m, µ)〉 = αS

4π

∣∣∣F (1)(m,µ)
〉
+
(αS

4π

)2 ∣∣∣F (2)(m,µ)
〉
+O

(
α3
S

)
. (B.3)
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Taking the derivative with respect to µ2 of Eq. (B.1) and Eq. (B.3) leads to

µ2 d

dµ2
|F(αS ,m, µ)〉 =

(
µ2 d

dµ2

(αS

4π

)) ∣∣∣F (1)(m,µ)
〉
+

αS

4π
µ2 d

dµ2

∣∣∣F (1)(m,µ)
〉

+ 2
(αS

4π

)(
µ2 d

dµ2

(αS

4π

)) ∣∣∣F (2)(m,µ)
〉
+
(αS

4π

)2
µ2 d

dµ2

∣∣∣F (2)(m,µ)
〉

(B.4)

= µ2 d

dµ2

{
Z

(nf )
UV

ẐIR

(
N ǫZ

(nf )
αS α

(nf )
S (µ)

4π

)[ ∣∣∣M(1),0(m)
〉

+

(
N ǫZ

(nf )
αS α

(nf )
S (µ)

4π

) ∣∣∣M(2),0(m)
〉]}

.

The derivatives of Z
(nf )
UV and Zm vanish because these renormalisation constants are defined in the

on-shell scheme. The explicit µ dependence within these expressions cancels against the αS scale

dependence. The derivative of ẐIR with respect to µ is given by its RGE [30–32] and therefore

µ2 d

dµ2

1

ẐIR

= − 1

Ẑ2
IR

1

2

d

d logµ
ẐIR

︸ ︷︷ ︸
−Γ̂·ẐIR

=
αS

4π

Γ̂(1)

2
· 1

ẐIR

+O
(
α2
S

)
. (B.5)

The anomalous dimension operator Γ̂ can be taken from [32] and references therein. For our gg → ZZ

processes Γ̂ simplifies to

Γ̂ =
αS

4π
Γ̂(1) +O

(
α2
S

)
=

αS

4π

(
−4CA log

(
µ2

−s− iǫ

)
− 2β

(nf )
0

)
+O

(
α2
S

)
(B.6)

=
αS

4π

(
K̂(1) + D̂(1) · log

(
µ2

µ2
0

))
+O

(
α2
S

)

with

K̂(1) = −4CA log

(
µ2
0

−s− iǫ

)
− 2β

(nf )
0 and D̂(1) = −4CA . (B.7)

The remaining derivatives up to O
(
α2
S

)

µ2 d

dµ2

(
g2s
4π

)
= αS

(
−ǫ− β

(nf )
0

αS

4π

)
, µ2 d

dµ2
N ǫ = ǫ N ǫ and µ2 d

dµ2
Z

(nf )
αS = Z

(nf )
αS β

(nf )
0

αS

4π
(B.8)

combine to

µ2 d

dµ2

(
Z

(nf )
UV

ẐIR

N ǫZαS
αS

4π

)
=

Z
(nf )
UV

ẐIR

N ǫZαS
αS

4π

[
αS

4π

Γ̂(1)

2

]
. (B.9)

Using the shorthand notation µ2 d
dµ2 |F〉 = d

d log µ2 |F〉 =
∣∣∣F ′

〉
Equation (B.4) becomes

µ2 d

dµ2
|F(αS ,m, µ)〉 = αS

4π

(
−ǫ− β

(nf )
0

αS

4π

) ∣∣∣F (1)(m,µ)
〉
+

αS

4π

∣∣∣F (1)′(m,µ)
〉

+ 2
(αS

4π

)2 (
−ǫ− β

(nf )
0

αS

4π

) ∣∣∣F (2)(m,µ)
〉
+
(αS

4π

)2 ∣∣∣F (2)′(m,µ)
〉

(B.10)

=
(αS

4π

)2 Γ̂(1)

2

∣∣∣F (1)(m,µ)
〉
+O

(
α3
S

)
.

– 35 –



Comparing each order in αS yields the system of differential equations

⇒
(αS

4π

)(∣∣∣F (1)′(m,µ)
〉
− ǫ
∣∣∣F (1)(m,µ)

〉)
= 0 (B.11)

⇒
(αS

4π

)2
(∣∣∣F (2)′(m,µ)

〉
− 2ǫ

∣∣∣F (2)(m,µ)
〉
−
(
β
(nf )
0 +

Γ̂(1)

2

) ∣∣∣F (1)(m,µ)
〉)

= 0 . (B.12)

Solving the homogeneous differential equations for the leading- and next-to-leading-order finite re-

mainder results in

∣∣∣F (1)(m,µ)
〉
=

(
µ2

µ2
0

)ǫ ∣∣∣F (1)(m,µ0)
〉

and
∣∣∣F (2)(m,µ)

〉

h
=

(
µ2

µ2
0

)2ǫ ∣∣∣F (2)(m,µ0)
〉
. (B.13)

The inhomogeneous equation for the NLO finite remainder can easily be solved by variation of con-

stants. We make an ansatz for the solution of the inhomogeneous equation and write the homogeneous

solution as

∣∣∣F (2)(m,µ)
〉
= C(µ) eF (logµ2) with F (logµ2) =

logµ2∫

logµ2

0

2ǫ d logµ2 . (B.14)

Reinsertion into Eq. (B.11) yields the differential equation for C(µ)

C
′

(µ) = e−F (logµ2) ·
(
β
(nf )
0 +

Γ̂(1)

2

)∣∣∣F (1)(m,µ)
〉

(B.13)
=

(
µ2

µ2
0

)−ǫ
(
β
(nf )
0 +

Γ̂(1)

2

)∣∣∣F (1)(m,µ0)
〉
.

(B.15)

Solving Eq. (B.15) by an elementary integration using the decomposition of Γ̂(1) into K̂(1) and D̂(1)

from Eq. (B.7) and combining the particular solution with the homogeneous solution from Eq. (B.13)

yields for the scale dependence of the one- and two-loop finite remainders

∣∣∣F (1)(m,µ)
〉

ǫ→0
=
∣∣∣F (1)(m,µ0)

〉
and (B.16)

∣∣∣F (2)(m,µ)
〉

ǫ→0
=
∣∣∣F (2)(m,µ0)

〉
+

[
log

(
µ2

µ2
0

)(
β
(nf )
0 +

K̂(1)

2

)
+

D̂(1)

4
log2

(
µ2

µ2
0

)] ∣∣∣F (1)(m,µ0)
〉

(B.17)

=
∣∣∣F (2)(m,µ0)

〉
− 2CA log

(
µ2

µ2
0

)[
log

(
µ2
0

−s− iǫ

)
+

1

2
log

(
µ2

µ2
0

)] ∣∣F1(m,µ0)
〉
.
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