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Abstract

The inclusive cross section for top quark pair production is measured in proton-
proton collisions at

√
s = 7 and 8 TeV, corresponding to 5.0 and 19.7 fb−1, respectively,

with the CMS experiment at the LHC. The cross sections are measured in the electron-
muon channel using a binned likelihood fit to multi-differential final state distribu-
tions related to identified b quark jets and other jets in the event. The measured
cross section values are 173.6± 2.1 (stat)+ 4.5

− 4.0 (syst)± 3.8 (lumi) pb at
√

s = 7 TeV, and
244.9± 1.4 (stat)+ 6.3

− 5.5 (syst)± 6.4 (lumi) pb at
√

s = 8 TeV, in good agreement with QCD
calculations at next-to-next-to-leading-order accuracy. The ratio of the cross sections
measured at 7 and 8 TeV is determined, as well as cross sections in the fiducial regions
defined by the acceptance requirements on the two charged leptons in the final state.
The cross section results are used to determine the top quark pole mass via the de-
pendence of the theoretically predicted cross section on the mass, giving a best result
of 173.8+1.7

−1.8 GeV. The data at
√

s = 8 TeV are also used to set limits, for two neutralino
mass values, on the pair production of supersymmetric top squarks with masses close
to the top quark mass.
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1 Introduction
The study of top quark pair (tt̄) production in proton-proton (pp) collisions at the CERN LHC
provides an important test of the standard model (SM). The total production cross section,
σtt̄, can be accurately predicted by quantum chromodynamics (QCD) calculations at next-to-
next-to-leading order (NNLO). A measurement of σtt̄ can thus provide constraints on essential
ingredients in the calculation, such as the top quark mass, the proton parton distribution func-
tions (PDFs), and the strong coupling αs. Furthermore, deviations from these predictions can
be an indication of physics beyond the SM. For example, in supersymmetric (SUSY) models, tt̄
pairs may appear as decay products of heavier new particles, increasing the tt̄ yields.

Studies of the tt̄ production cross section, as well as dedicated searches for deviations from the
SM predictions, have been performed in recent years by the ATLAS and CMS collaborations
using a variety of production and decay channels [1–22]. So far, all results are consistent with
the SM.

This paper presents a new measurement of σtt̄ in pp collisions at centre-of-mass energies of
7 and 8 TeV. The measurement is performed in the eµ channel, where each W boson from
the top quark decays into a charged lepton and a neutrino. Compared to the previous CMS
analyses in the dilepton channel at 7 TeV [8] and 8 TeV [1], the new measurement is performed
using the complete CMS data samples recorded in the years 2011 and 2012, with integrated
luminosities of 5.0 and 19.7 fb−1 at

√
s = 7 and 8 TeV, respectively. The restriction to the eµ

channel provides a pure tt̄ event sample owing to the negligible contamination from Z/γ∗

processes with same-flavoured leptons in the final state. An improved cross section extraction
method is used, performing a template fit of the signal and background contributions to multi-
differential binned distributions related to the multiplicity of b quark jets (referred to as b jets
in the following) and the multiplicity and transverse momenta of other jets in the event. The
results obtained with this method (referred to as the “reference method” in the following) are
cross-checked with an analysis performed using an event counting method.

The cross section is first determined in a fiducial (“visible”) range, σvis
tt̄ , defined by require-

ments on the transverse momentum and pseudorapidity of the electron and muon. The results
are then extrapolated to obtain the cross section in the full phase space, σtt̄, with an additional
assessment of the extrapolation uncertainties. The ratio of the cross sections at the two centre-
of-mass energies is also presented. The measurements of σtt̄ at 7 and 8 TeV are used to deter-
mine, together with the NNLO prediction [23], the top quark pole mass. Following a previous
CMS analysis [24], the mass is determined via the dependence of the theoretically predicted
cross section on the top quark mass.

The data are also used to constrain the cross section of pair production of the lightest supersym-
metric partner of the top quark, the top squark, in the context of SUSY models with R-parity
conservation [25]. The study focuses on models predicting the decay of top squarks into a
top quark and a neutralino, t̃→ tχ̃0

1, and the three-body decay, t̃→ bWχ̃0
1, with the neutralino

assumed to be the lightest supersymmetric particle (LSP) [26]. The pair production and the
subsequent decays of the top squarks can lead to a final state that is very similar to the SM
tt̄ events. The search is performed with the 8 TeV data, looking for an excess of the observed
event yields of tt̄ events with respect to the SM predictions. Exclusion limits are set with 95%
confidence level (CL) for the SUSY signal strength as a function of the top squark mass for two
neutralino mass hypotheses.

This paper is structured as follows. Section 2 contains a brief description of the CMS detector,
followed by details of the event simulation and theoretical calculations for the tt̄ cross section
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are given in Section 3. The event selection and the definitions of the visible and total cross
sections are given in Sections 4 and 5, respectively. The methods used to measure the cross
section are explained in Section 6 and the systematic uncertainties are described in Section 7.
The measured tt̄ production cross sections are reported in Section 8, with the extraction of the
top quark mass presented in Section 9. The search for SUSY is described in Section 10 and a
summary is provided in Section 11.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Extensive
forward calorimetry complements the coverage provided by the barrel and endcap detectors.
Muons are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside
the solenoid. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [27].

The particle-flow (PF) [28, 29] event algorithm reconstructs and identifies each individual par-
ticle with an optimised combination of information from the various elements of the CMS de-
tector. The energy of photons is directly obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the electron momentum at the primary in-
teraction vertex as determined by the tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially compatible with originating from
the electron track. The energy of muons is obtained from the curvature of the corresponding
track. The energy of charged hadrons is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
zero-suppression effects and for the response function of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and
HCAL energy.

3 Event simulation and theoretical calculations
Experimental effects, related to the event reconstruction and choice of selection criteria, to-
gether with the detector resolution, are modelled using Monte Carlo (MC) event generators
interfaced with a detailed detector simulation. Unless specified, the same generators and par-
ton shower models are used for the samples at 7 and 8 TeV.

The tt̄ sample is simulated using the MADGRAPH event generator (v. 5.1.5.11) [30], which im-
plements the relevant matrix elements at tree level with up to three additional partons. The
MADSPIN [31] package is used to incorporate spin correlation effects. The value of the top
quark mass is fixed to 172.5 GeV and the proton structure is described by the CTEQ6L1 [32]
PDF set. The generated events are subsequently processed with PYTHIA (v. 6.426) [33] for
parton showering and hadronisation, and the MLM prescription [34] is used for matching
of matrix-element jets to parton showers. Decays of τ leptons are handled with TAUOLA (v.
2.75) [35]. An additional tt̄ signal sample, which is used to determine specific model uncertain-
ties of the measurement, is obtained with the next-to-leading-order (NLO) generator POWHEG

(v. 1.0 r1380) [36] and also interfaced with PYTHIA. In POWHEG, the value of the top quark
mass is also set to 172.5 GeV, and the CT10 [37] PDF set is used to describe the proton structure.
The PYTHIA Z2* tune, derived from the Z1 tune [38], is used to characterise the underlying
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event in the tt̄ samples at 7 and 8 TeV. The Z1 tune uses the CTEQ5L PDF set, whereas Z2*
adopts CTEQ6L. The propagation of the generated particles through the CMS detector and the
modelling of the detector response is performed using GEANT4 (v. 9.4) [39].

Only tt̄ pair decays into e±µ∓ + X in the final state are considered signal, including intermedi-
ate leptonic τ decays. The remaining tt̄ decay modes are considered background processes and
referred to as “tt̄ bkg.”.

The other SM background samples are simulated with MADGRAPH (without the MADSPIN

package), POWHEG, or PYTHIA, depending on the process. The main background contributions
originate from the production of W and Z/γ∗ bosons with additional jets (referred to as W+jets
and Drell–Yan, DY, in the following), single top quark tW channel, diboson (WW, WZ, and
ZZ, referred to as VV in the following), tt̄ production in association with a Z, W, or γ boson
(referred to as tt̄V in the following), and QCD multijet events. The W+jets, DY, and tt̄V sam-
ples are simulated with MADGRAPH with up to two additional partons in the final state. The
POWHEG [40, 41] generator is used for simulating single top quark production, while PYTHIA

is used to simulate diboson and QCD multijet events. Parton showering and hadronisation
are also simulated with PYTHIA in all the background samples. The PYTHIA Z2* tune is used
to characterise the underlying event in the background samples at

√
s = 8 TeV, while the Z2

tune [42] is used at
√

s = 7 TeV.

The simulated samples are normalised according to their expected total cross sections for in-
tegrated luminosities of 5.0 (19.7) fb−1 for

√
s = 7 (8) TeV. The expected cross sections are

obtained from NNLO calculations for W+jets [43] and DY [44] processes, NLO+next-to-next-
to-leading-log (NNLL) calculations for top quark tW or t̄W channel [45], NLO calculations for
VV [46], tt̄+W [47], and tt̄+Z [48] processes, and leading-order (LO) calculations for QCD mul-
tijet events [33].

A number of additional pp simulated hadronic interactions (pileup) are added to each simu-
lated event to reproduce the multiple interactions in each bunch crossing in the data taking.
The pileup events are generated using PYTHIA. Scale factors (SFs) described in Section 4 are
applied when needed to improve the description of the data by the simulation.

Calculations of the σtt̄ at full NNLO accuracy in perturbative QCD, including the resummation
of NNLL soft-gluon terms [49], are used to normalise the tt̄ simulated samples and to extract
the top quark pole mass. Assuming a top quark mass of 172.5 GeV, the predicted cross sections
are:

σtt̄ = 177.3+ 4.7
− 6.0 (scale)± 9.0 (PDF+αs)pb, at

√
s = 7 TeV and

σtt̄ = 252.9+ 6.4
− 8.6 (scale)± 11.7 (PDF+αs)pb, at

√
s = 8 TeV.

The first uncertainty is an estimate of the effect of missing higher-order corrections and is de-
termined by independent variations of the factorisation and renormalisation scales, µF and µR,
by factors of two, up and down from their default values (the top quark mass). The second
uncertainty is associated with variations in αs and the PDF, following the PDF4LHC prescrip-
tion with the MSTW2008 68% CL NNLO, CT10 NNLO, and NNPDF2.3 5f FFN PDF sets (as
detailed in Refs. [50, 51] and references therein, as well as in Refs. [52–54]). These values were
calculated using the TOP++2.0 program [49]. The ratio of the cross sections at 7 and 8 TeV com-
puted with NNPDF2.3, RNNLO

tt̄ = σtt̄(8 TeV)/σtt̄(7 TeV), is 1.437 ± 0.001 (scale) ± 0.006 (PDF)
± 0.001 (αs) [55].
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4 Event selection
At trigger level, events are required to have one electron and one muon. For the 8 TeV data
set one of the two leptons is required to have pT > 17 GeV and the other pT > 8 GeV. For the
7 TeV data set both leptons are required to have pT > 10 GeV or to fulfil the same criterion as
for the 8 TeV data set. The eµ trigger efficiency is measured in data with a method based on
triggers that are uncorrelated with those used in the analysis [1, 56]. In particular, the triggers
require jets or missing transverse energy, which is defined as the magnitude of the projection,
on the plane perpendicular to the beam direction, of the vector sum of the momenta of all
reconstructed particles in an event. The trigger efficiency for events containing an eµ pair
passing all selection criteria is approximately 96% (93%) at 7 (8) TeV. Using the eµ trigger
efficiency measured in data, the corresponding efficiencies in the simulation are corrected by
η-dependent data-to-simulation SFs, which have an average value of 0.99 (0.97) at 7 (8) TeV.

An interaction vertex [57] is required within 24 cm of the detector centre along the beam line
direction, and within 2 cm of the beam line in the transverse plane. Among all such vertices,
the primary vertex of an event is identified as the one with the largest value of the scalar sum
of the p2

T of the associated tracks.

Leptons are required to have pT > 20 GeV and |η| < 2.4. The lepton-candidate tracks are
required to originate from the primary vertex.

Lepton candidates are required to be isolated from other PF candidates in the event. For each
electron [58] or muon [59] candidate, a cone with ∆R = 0.3 or 0.4, respectively, is constructed
around the track direction at the primary vertex. Here ∆R is defined as ∆R =

√
(∆η)2 + (∆φ)2,

where ∆η and ∆φ are the differences in pseudorapidity and azimuthal angle (in radians) be-
tween any PF candidate and the lepton track direction. The scalar sum of the pT of all PF
candidates contained within the cone is calculated, excluding the contribution from the lepton
candidate itself. All charged PF candidates not associated with the chosen primary vertex are
assumed to arise from pileup events, and are excluded from the calculation of the pT deposited
in the cone. The neutral component is also corrected for pileup effects. The relative isolation
discriminant, Irel, is defined as the ratio of this sum to the pT of the lepton candidate. An elec-
tron candidate is selected if Irel < 0.10; the corresponding requirement for muons is Irel < 0.12.

The efficiency of the lepton selection is measured using a “tag-and-probe” method in dilep-
ton events enriched with Z boson candidates [8, 60]. The measured values for the combined
identification and isolation efficiencies are typically 80% for electrons and 90% for muons. The
lepton identification efficiencies in simulation are corrected to the measured values in data by
pT and η dependent SFs, which have values in the range 0.97–0.99. From all events that contain
oppositely charged lepton pairs, events are selected if the lepton pair with the largest value of
the scalar sum of the pT corresponds to an eµ pair. Candidate events with eµ invariant masses
meµ < 20 GeV are removed to reduce the contamination from QCD multijet processes. This
selection is referred to as “eµ selection”.

Jets are reconstructed using the anti-kT clustering algorithm [61] with a distance parameter
R = 0.5. The algorithm uses the PF candidates as input objects. To minimise the impact of
pileup, charged particle candidates not associated with the primary vertex are excluded. The
jet energy is corrected for pileup in a manner similar to the correction of the total energy inside
the lepton isolation cone. Additional jet energy corrections are also applied as a function of
the jet pT and η [62]. Jets are selected if they have pT > 30 GeV and |η| < 2.4 and the angular
distance between them and the selected leptons satisfies ∆R(jet, lepton) > 0.5.

As the tt̄ events are expected to contain mainly jets from the hadronisation of b quarks, re-
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quiring the presence of b jets can reduce background from events without b quarks. Jets are
identified as b jets (b-tagged) using the combined secondary vertex algorithm [63]. The dis-
criminator threshold chosen for the reference method to extract the cross section corresponds
to an identification efficiency for b jets of about 50% and a misidentification (mistag) probability
of about 10% for c quark jets and 0.1% for light-flavour jets (u, d, s, and gluons). A looser dis-
criminator threshold is chosen for the event counting method such that the efficiency is about
70% for jets originating from b quarks and 20% for c quark jets, while the probability of mistag-
ging for jets originating from light flavours is around 1% [63]. For the reference method there
are no constraints on the number of jets and b-tagged jets in the event.

Figures 1 and 2 show for the 7 and 8 TeV data and simulations, respectively, the pT and η distri-
butions of the highest (leading) and second-highest (subleading) pT lepton from the selected eµ
pair, after the eµ selection is applied. The data are compared to the expected distributions for
the tt̄ signal and individual backgrounds, which are derived from MC simulated samples. The
contributions from QCD multijet, W+jets, and tt̄ background processes arise from events where
at least one jet is incorrectly reconstructed as a lepton or a lepton that does not originate from a
prompt W or Z boson decay fulfils the selection criteria. These contributions are referred to as
“non W/Z” background.

In general, the sum of the estimated contributions provides an adequate description of the data,
within uncertainties. However, as observed previously [56], the simulation is seen to have a
somewhat harder pT spectrum than measured. The impact on the measurement is accounted
for by including an additional modelling uncertainty.

Figure 3 shows the number of b-tagged jets in events passing the eµ selection at 7 and 8 TeV.
It should be noted that the size of the uncertainties in Figs. 1–3 does not reflect those in the
final measurements, which are constrained by the likelihood fit described in Section 6.1. Good
agreement is observed between data and the sum of the expected yields.

5 Cross section definitions
The tt̄ production cross sections are first measured in a fiducial range, defined within the kine-
matic acceptance of the tt̄ decay particles that are reconstructable in the detector. This avoids
the need for extrapolating the cross sections into the unmeasured kinematic phase space of
these particles. In this analysis the fiducial range is defined by the pT and η requirements on
the electron and muon in the final state. The visible cross section, σvis

tt̄ , is defined for events
containing an oppositely charged eµ pair from the decay chain t → Wb → `νb (including
W → τν → `ννν) and with both leptons satisfying pT > 20 GeV and |η| < 2.4. This visible
cross section is then extrapolated to obtain the cross section for tt̄ production at parton level in
the full phase space using the formula

σtt̄ =
σvis

tt̄
Aeµ

. (1)

Here, Aeµ denotes the acceptance defined as the fraction of all tt̄ events fulfilling the above
selection criteria for the visible cross section. The acceptance is determined from the simulated
tt̄ signal sample, and includes the leptonic branching fraction of the W bosons of 10.86% [64].
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Figure 1: Distributions of pT (left) and η (right) of the leading (top) and subleading (bottom)
leptons, after the eµ selection, for the 7 TeV data. The last bin of the pT distributions includes
the overflow events. The hatched bands correspond to the total uncertainty in the sum of the
predicted yields. The ratios of data to the sum of the predicted yields are shown at the bottom
of each plot. Here, an additional solid gray band represents the contribution from the statistical
uncertainty in the MC simulation. The contributing systematic uncertainties are discussed in
Section 7.
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Figure 2: Distributions of pT (left) and η (right) of the leading (top) and subleading (bottom)
leptons, after the eµ selection, for the 8 TeV data. The last bin of the pT distributions includes
the overflow events. The hatched bands correspond to the total uncertainty in the sum of the
predicted yields. The ratios of data to the sum of the predicted yields are shown at the bottom
of each plot. Here, an additional solid grey band represents the contribution from the statistical
uncertainty in the MC simulation. The contributing systematic uncertainties are discussed in
Section 7.
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Figure 3: Number of b-tagged jets after the eµ selection for 7 TeV (left) and 8 TeV (right). The
hatched bands correspond to the total uncertainty in the sum of the predicted yields. The
ratios of data to the sum of the predicted yields are shown at the bottom of each plot. Here,
an additional solid grey band represents the contribution from the statistical uncertainty in the
MC simulation. The contributing systematic uncertainties are discussed in Section 7.
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6 Analysis methods for the measurement of the cross section
Two methods are used to measure the tt̄ production cross section. The reference method is a
binned likelihood fit to multi-differential final state distributions, performed in categories of
number of additional and b-tagged jets, as described in Section 6.1. In addition, an analysis is
performed using an event counting technique, as explained in Section 6.2.

6.1 Binned likelihood fit

An extended binned likelihood fit is applied to determine σvis
tt̄ . The expected signal and back-

ground distributions are modelled in the fit by template histograms constructed from the sim-
ulated samples. The free parameters in the fit are σvis

tt̄ , the background normalisation param-
eters ~ω = (ω1, ω2, ..., ωK) for the K sources of backgrounds, and the M nuisance parameters
~λ = (λ1, λ2, ..., λM), representing sources of systematic uncertainties other than the background
normalisation, such as the jet energy scale and the trigger efficiency. The likelihood function L,
based on Poisson statistics, is given by

L = ∏
i

(
exp [−µi]µ

ni
i /ni!

) K

∏
k=1

π(ωk)
M

∏
m=1

π(λm). (2)

Here, i denotes the bin index of the chosen final state distribution, and µi and ni are the expected
and observed event numbers in bin i. The terms π(ωk) and π(λm) denote prior probability
density functions for the background and the other nuisance parameters, representing the prior
knowledge of these parameters. The Poisson expectation values µi can be further decomposed
as

µi = si(σ
vis
tt̄ ,~λ) +

K

∑
k=1

bMC
k,i (~λ) (1 + γkωk). (3)

Here, si denotes the expected number of tt̄ signal events, which depends on σvis
tt̄ and the nui-

sance parameters ~λ. The quantity bMC
k,i represents the nominal template prediction of back-

ground events from source k in bin i, and γk its estimated relative global normalisation uncer-
tainty. In this analysis the background normalisation parameters ωk and the other nuisance
parameters λm are defined such that each prior can be represented by a unit normal distribu-
tion, unless mentioned otherwise.

A suitable differential distribution for the likelihood fit is the number of selected b-tagged jets in
the event. The probability to reconstruct and identify one of the two b jets from the decaying tt̄
pair is nearly independent of the probability to reconstruct and identify the other b jet. Because
of the large mass of the top quark, the kinematic properties of the two b jets are determined to
a large extent by the nearly independent decay topologies of the t and t̄, and strong kinematic
acceptance correlations arise only for extreme production topologies, such as for tt̄ pairs with a
large Lorentz boost.

Under the assumption of the independence of the probabilities to identify the b jets, it is possi-
ble to express the number of expected signal events with exactly one (s1), and exactly two (s2)
b-tagged jets using binomial probabilities [14]:

s1 = seµ 2εb(1− Cbεb), (4)

s2 = seµ ε2
bCb. (5)

Here, seµ is the total number of events after the eµ selection and can be written as seµ = Lσvis
tt̄ εeµ,

with L being the integrated luminosity and εeµ the efficiency for events to pass the eµ selection.
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The parameter εb comprises the total efficiency that a b jet is reconstructed within the kinematic
acceptance and b-tagged. The quantity Cb corrects for the small correlations between the tag-
ging of the two b jets and can be expressed as Cb = 4seµs2/(s1 + 2s2)2.

The remaining signal events with zero or more than two b-tagged jets are considered in a third
category:

s0 = seµ

[
1− 2εb(1− Cbεb)− Cbε2

b
]

. (6)

In Ref. [14], two equations similar to Eqs. (4, 5) are directly solved for the tt̄ production cross
section and εb. In the present analysis, Eqs. (4, 5) are used together with Eq. (6) in the template
fit. The quantities εeµ, εb, and Cb are directly determined from the tt̄ signal simulation, express-
ing εb as (s1 + 2s2)/2seµ, and parametrised as a function of the nuisance parameters ~λ. The
nominal values for the 8 TeV simulated tt̄ signal are εeµ = 0.51, εb = 0.36, and Cb = 0.99, and
the values for the 7 TeV sample are similar. The use of these equations facilitates an accurate
modelling of the expected signal rates as a function of the nuisance parameters, i.e. avoiding
mismodelling effects that could arise from approximating the dependences as linear functions.

In order to improve the sensitivity of the fit, the events are further categorised into four classes
of multiplicity of additional jets in the event (zero, one, two, and three or more additional jets).
This leads, together with the three classes of b-tagged jets, to 12 different categories in total.
Additional jets must be non-b-tagged jets. In case there is no additional jet, the corresponding
event yields are directly used in the likelihood fit, otherwise events are further categorised into
bins of the pT of the least energetic additional jet in the event.

The signal subcategory probabilities, background rates, and values of εeµ, εb, and Cb are ob-
tained from simulation and depend on the nuisance parameters~λ. Each relevant dependency
of a quantity on a parameter λm is modelled by a second-order polynomial, that is constructed
from evaluating the quantity at three values λm = 0, 1,−1, corresponding to the nominal value
of the parameter and to ±1 standard deviation (σ) variations. For a few sources of uncertainty,
only one exact variation is possible, e.g. when there are only two variants of signal generators
available that differ in a certain uncertainty source such as the matrix element calculation; in
such cases, a linear function is chosen to model the dependence of the quantity on the respec-
tive λm. For several nuisance parameters representing systematic modelling uncertainties in
the measurement, a box prior is chosen instead of the standard unit normal prior, with a value
of 0.5 between −1 and +1 and zero elsewhere. Such priors are chosen for the following uncer-
tainties (discussed in Section 7.2): renormalisation and factorisation scales, jet-parton matching
scale, top quark pT modelling, colour reconnection, underlying event, and matrix element gen-
erator.

The likelihood fit is finally performed using the function χ2 = −2 ln L, where L is the likelihood
function given in Eq. (2). The MINUIT [65] program is used to minimise this χ2 as function of
the free fit parameters σtt̄, ~ω, and ~λ. The fit uncertainty in σtt̄ is determined using MINOS,
the profile likelihood algorithm which is part of MINUIT. Figures 4 and 5 show the multi-
differential distributions used in the fit. A reasonably good agreement is found between data
and expectations before the fit.

Figures 6 and 7 compare the data with the simulation after the simultaneous fit at 7 and 8 TeV.
The uncertainty bands are calculated taking into account the full correlation matrix. The de-
scription of the data by the simulation has improved with the fit. The best fit values of the
nuisance parameters correspond to variations that are for most cases within 1σ of the prior
uncertainties, about 98% of the cases. The maximum observed variation is about 1.9σ, corre-
sponding to the uncertainty in the mistag SFs, see Section 7. Other uncertainties with variations
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Figure 4: Total event yield for zero additional non-b-tagged jets (left) and pT of the non-b-
tagged jet with the lowest pT in the event (right) for events with one, two, and at least three
additional non-b-tagged jets, and with zero or more than two (top row), one (middle row), and
two (bottom row) b-tagged jets at

√
s = 7 TeV. The last bin of the pT distributions includes

the overflow events. The hatched bands correspond to the sum of statistical and systematic
uncertainties in the event yield for the sum of signal and background predictions. The ratios
of data to the sum of the predicted yields are shown at the bottom of each plot. Here, an
additional solid grey band represents the contribution from the statistical uncertainty in the
MC simulation.



6.1 Binned likelihood fit 11

Figure 5: Total event yield for zero additional non-b-tagged jets (left) and pT of the additional
non-b-tagged jet with the lowest pT in the event (right) for events with one, two, and at least
three additional non-b-tagged jets, and with zero or more than two (top row), one (middle row),
and two (bottom row) b-tagged jets at

√
s = 8 TeV. The last bin of the pT distributions includes

the overflow events. The hatched bands correspond to the sum of statistical and systematic
uncertainties in the event yield for the sum of signal and background predictions. The ratios
of data to the sum of the predicted yields are shown at the bottom of each plot. Here, an
additional solid grey band represents the contribution from the statistical uncertainty in the
MC simulation.
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between 1 and 1.5σ are two components of the jet energy scale corrections and the statistical
component of the b tagging SFs.

Figure 6: Fitted total event yield for zero additional non-b-tagged jets (left) and pT of the non-
b-tagged jet with the lowest pT in the event (right) for events with one, two, and at least three
additional non-b-tagged jets, and with zero or more than two (top row), one (middle row), and
two (bottom row) b-tagged jets at

√
s = 7 TeV. The last bin of the pT distributions includes

the overflow events. The hatched bands correspond to the sum of statistical and systematic
uncertainties in the event yield for the sum of signal and background predictions after the fit,
and include all correlations. The ratios of data to the sum of the predicted yields are shown at
the bottom of each plot. Here, an additional solid grey band represents the contribution from
the statistical uncertainty in the MC simulation.

The fiducial tt̄ production cross sections at
√

s = 7 and 8 TeV are determined simultaneously.
For each centre-of-mass energy, a likelihood is defined as in Eq. (2), respective χ2 functions are
constructed, and the sum of both χ2 functions is minimised. Correlations between systematic
uncertainties are fully taken into account (see Section 7.3).

6.2 Event counting method

The tt̄ production cross section is also measured by applying an event counting method similar
to the one used in a previous measurement [1]. This method provides a cross-check of the
reference method.
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Figure 7: Fitted total event yield for zero additional non-b-tagged jets (left) and pT of the non-
b-tagged jet with the lowest pT in the event (right) for events with one, two, and at least three
additional non-b-tagged jets, and with zero or more than two (top row), one (middle row), and
two (bottom row) b-tagged jets at

√
s = 8 TeV. The last bin of the pT distributions includes

the overflow events. The hatched bands correspond to the sum of statistical and systematic
uncertainties in the event yield for the sum of signal and background predictions after the fit,
and include all correlations. The ratios of data to the sum of the predicted yields are shown at
the bottom of each plot. Here, an additional solid grey band represents the contribution from
the statistical uncertainty in the MC simulation.
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In this analysis, events are counted after applying the eµ selection described in Section 4 with
additional requirements that help to further suppress the background contribution: the pres-
ence of at least two jets is required, of which at least one has to be b-tagged. Compared with
Ref. [1], tighter requirements on lepton isolation and identification, as well as on b tagging, are
applied to further reduce the background contribution.

Techniques based on control samples in data are used to estimate the background contribu-
tion arising from DY and from non-W/Z events. The contributions of the remaining back-
ground processes are estimated from simulation. The DY contribution is estimated using the
“Rout/in” method [1], in which events with e+e−and µ+µ−final states are used to obtain a data-
to-simulation normalisation factor. This is estimated from the number of events within the Z
boson mass window in data, and extrapolated to the number of events outside the Z mass
window with corrections based on control regions in data enriched in DY events. The contri-
bution to the background originating from non-W/Z boson events is estimated by subtract-
ing the same-sign prompt-lepton contributions from the same-sign event yields in data and
multiplying by the ratio of opposite-sign over same-sign events. This ratio, originating from
non-prompt lepton backgrounds, is taken from simulation.

Table 1 shows the total number of events observed in data and the numbers of expected signal
and background events fulfilling all selection criteria. For both data sets, a good agreement
between data and expected number of events is observed.

Table 1: Number of selected events for the event counting method for the 7 and 8 TeV data sets.
The results are given for the individual sources of background, tt̄ signal, and data. The two
uncertainties quoted correspond to the statistical and systematic components (cf. Section 7),
respectively.

Source
Number of eµ events

7 TeV 8 TeV
DY 22± 3± 3 173± 25± 26
Non W/Z 51± 5± 15 146± 10± 44
Single top quark (tW) 204± 3± 61 1034± 3± 314
VV 7± 1± 2 35± 2± 11
tt̄V 12± 1± 3 84± 1± 26
Total background 296± 6± 63 1472± 27± 319
tt̄ dilepton signal 5008± 15± 188 24440± 44± 956
Data 4970 25441

Figure 8 shows the b jet multiplicity in events passing the full event selection, except for the
b jet requirement, for data collected at 7 and 8 TeV. In both cases the total predicted yields
provide a good description of the measured distributions.

The cross section σtt̄ is determined from the number of data events after background subtrac-
tion, and dividing by the integrated luminosity of the data sample and by the product of de-
tector and kinematical acceptance, selection efficiency, as estimated from simulation for a top
quark mass of 172.5 GeV, and branching fraction of the selected tt̄ dilepton final state.
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Figure 8: Comparison of the b jet multiplicity distributions in the eµ channel for 7 (left) and
8 (right) TeV between the data and simulation for events fulfilling the eµ selection and the re-
quirement of having at least two jets. The hatched bands correspond to the sum of statistical
and systematic uncertainties in the event yield for the signal and background predictions. The
ratios of data to the predicted yields are shown at the bottom of each plot. Here, an additional
solid grey band represents the contribution from the statistical uncertainty in the MC simula-
tion.

7 Systematic uncertainties
The measurement of the top quark pair production cross section is affected by systematic un-
certainties that originate from detector effects and from theoretical assumptions. Each source of
systematic uncertainty is assessed individually by suitable variations of the MC simulations or
by varying parameter values within their estimated uncertainties in the analysis. Each source
is represented by a nuisance parameter, which is fitted together with σvis

tt̄ , as described in Sec-
tion 6. For the event counting method, the same sources of systematic uncertainty are evaluated
following the procedure in Ref. [1].

7.1 Experimental uncertainties

The uncertainty in the dilepton trigger (“Trigger”) and lepton identification efficiencies (“Lep-
ton ID/isolation”) are estimated by varying the data-to-simulation SFs within their uncertain-
ties, which are in the range of 1–2%.

The lepton energies (“Lepton energy scale”) are corrected separately for electrons [58] and for
muons [66]. Their scales are varied by 0.15% for electrons and 0.3% for muons.

The uncertainty due to the limited knowledge of the jet energy scale (“JES”) is determined by
variations of the jet energy in bins of pT and η [62]. For the reference method, these variations
are divided into 27 sources and the effect of each source is evaluated individually. For the event
counting method, the total variation is used to determine the uncertainty.

The uncertainty due to the limited accuracy of the jet energy resolution (“JER”) is determined
by changing the simulated JER by ±2.5%, ±4%, and ±5%, for jets with |η| < 1.7, 1.7 < |η| <
2.3, and |η| > 2.3, respectively [62].

For the normalisation of each background source, an uncertainty of ±30% is assumed. In the
case of the single top quark background (“tW/tW”), the variation covers the uncertainty in
the absolute rate, including uncertainties due to PDFs. The same global variation is applied
to the other dominant background contribution, DY. The predicted cross section has an uncer-
tainty of ≈5%, including PDF uncertainties. The variation used here additionally covers the
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observed differences in heavy-flavour composition between data and simulation in dedicated
CMS analyses and is also suggested by estimates based on data [4, 8].

The uncertainties due to the b tagging efficiency (“b tag”) and misidentification rate (“Mistag”)
are determined by varying the b tagging SFs of the b jets or the light-flavour jets, respectively,
by the uncertainties quoted in Ref. [63]. For the reference method, the b tagging uncertainties
are divided into 19 individual sources, some of them are correlated to other systematic uncer-
tainties, such as JER or pileup. The remaining sources are evaluated individually.

The effect of pileup events (“Pileup”) is evaluated by weighting the inelastic pp cross section in
simulation to the minimum bias cross section determined in data. The pileup model estimates
the mean number of additional pp interactions to be about 9 events for the data collected at
7 TeV and 21 for the data collected at 8 TeV. These estimates are based on the total inelastic
pp cross sections at

√
s = 7 (8) TeV, which are determined to be 73.5 (69.4) mb, following the

measurement described in Ref. [67]. The systematic uncertainty is determined by varying the
cross sections within their uncertainty, ±8% at 7 TeV and ±5% at 8 TeV.

The uncertainty in the luminosity (“Luminosity”) measurement is 2.2% [68] at 7 TeV and 2.6% [69]
at 8 TeV.

7.2 Theoretical uncertainties

The impact of theoretical assumptions in the modelling is determined by repeating the analysis
and replacing the standard MADGRAPH tt simulation by dedicated simulation samples with
varied parameters.

The uncertainty in modelling of the hard-production process (“Q2 scale”) is assessed through a
simultaneous variation of renormalisation and factorisation scales in the MADGRAPH sample
by factors of 2 and 0.5 relative to their common nominal value, which is set to the µ2

F = µ2
R = Q2

scale of the hard process. In MADGRAPH, it is defined by Q2 = m2
t + Σp2

T, where the sum is
over all additional final state partons in the matrix element calculations.

The impact of the choice of the scale that separates the description of jet production through
matrix elements or parton shower (“ME/PS matching”) in MADGRAPH is studied by changing
its reference value of 20 GeV to 40 GeV and to 10 GeV.

The effect of the matrix-element generator choice on the measurement is evaluated by using
POWHEG [36, 40, 41] for the tt simulation instead of MADGRAPH (“MADGRAPH vs POWHEG”).

The flavour-dependent hadronisation uncertainty (“Hadronisation (JES)”) is part of the JES
uncertainty and comes from differences in the jet energy response for different jet flavours. It
is estimated by the differences between using simulations with the Lund fragmentation model
in PYTHIA and cluster fragmentation model in HERWIG ++ [70] and is evaluated for each jet
flavour independently. An additional uncertainty included in this source is the uncertainty
in the b quark fragmentation tune. This is evaluated by varying the Bowler–Lund b quark
fragmentation model in tune Z2* to describe the results by ALEPH [71] and DELPHI [72] for the
b quark fragmentation functions. Another uncertainty included in this source is the uncertainty
in the semileptonic branching fraction of B hadrons, varied between 10.05% and 11.27%, which
is the range of the measurements from B0/B+ decays and their uncertainties [64].

Differential cross section measurements [56] have shown that the pT of the top quark is softer
than predicted by the MADGRAPH simulation. To account for this effect, the difference be-
tween the result obtained with the nominal simulation and using the MADGRAPH prediction
reweighted to describe the measured top quark pT spectrum is taken as a systematic uncer-



7.3 Correlations between systematic uncertainties for the measurements at 7 and 8 TeV 17

tainty (“Top quark pT modelling”).

The uncertainties from ambiguities in modelling colour reconnection effects (“Colour reconnec-
tion”) are estimated by comparing simulations of an underlying event tune including colour
reconnection to a tune without it, the Perugia 2011 (P11) and P11 noCR tunes [73].

The uncertainty in the modelling of the underlying event (“Underlying event”) is estimated
by evaluating the relative variations of two different P11 PYTHIA tunes with respect to the
standard P11 tune: the mpiHi and the TeV tunes with higher and lower underlying event
activity, respectively.

The uncertainty from the choice of PDFs (“PDF”) is determined by reweighting the sample of
simulated tt̄ events according to the 52 CT10 error PDF sets [37], scaled to 68% CL.

7.3 Correlations between systematic uncertainties for the measurements at 7
and 8 TeV

A number of systematic uncertainties affect the measurements at
√

s = 7 and 8 TeV similarly,
while others are completely decoupled. In this analysis, systematic uncertainties are treated as
either uncorrelated, partially correlated, or fully correlated between the two measurements. For
fully correlated systematic uncertainties, common nuisance parameters are used in the simul-
taneous likelihood fit to the two data sets. For each partially correlated systematic uncertainty
source, three nuisance parameters are introduced, one for each data set for the uncorrelated
part and one common parameter for the correlated part. The degree of correlation is modelled
by the parameter ρ. The uncertainties of the correlated and the two uncorrelated parameters
are taken to be fractions ρ and

√
1− ρ2, respectively, of the uncertainty of the original nuisance

parameter. The ρ values assumed for this analysis are listed in Table 2.

For experimental sources, the same procedures are usually employed at the two centre-of-mass
energies for calibration and determination of uncertainties. Also, the same MC generators are
used for the modelling of background processes. Hence, these uncertainties are treated as
100% correlated, however for each source a (usually small) uncorrelated component arises from
statistical fluctuations in the data or simulated samples. The resulting correlation coefficients
are estimated to be 0.9 for several sources and 0.8 for the “Trigger” and “Mistag” sources.
For the “Pileup” source a relatively small correlation of 0.5 is assumed because of the largely
different beam conditions at the two energies.

From the uncertainties related to the JES, the flavour components (“JES: flavour”), owing to the
comparison between different hadronisation models, and components related to the extrapo-
lation from Z → `` kinematic acceptance to the full phase space using MC simulation (“JES:
absolute extrapolation”) are taken as fully correlated. The JES sources related to pileup (“JES:
pileup”) are treated as uncorrelated, because of different procedures used for the uncertainty
assessment at the two energies, as well as the remaining terms (“JES: other”). The JES compo-
nent of the b tagging uncertainties is fitted independently, assigning a correlation coefficient of
0.2 that reflects the amount of correlated JES uncertainty sources.

All modelling uncertainties are assumed to be fully correlated between the two centre-of-mass
energies, including the three remaining JES parts. The integrated luminosity uncertainties are
treated as fully uncorrelated [74]. It has been checked that variations of the assumed correla-
tions within reasonable ranges lead to negligible changes of the extracted cross sections.



18 7 Systematic uncertainties

Table 2: Assumed correlations ρ between systematic uncertainties for the 7 and 8 TeV data sets.
If ρ = 0, the uncertainties are treated as uncorrelated between the two sets.

Uncertainty source ρ

Trigger 0.8
Electron ID 0.9
Electron energy scale 0.9
Muon ID 0.9
Muon energy scale 0.9
JES: flavour 1
JES: pileup 0
JES: absolute extrapolation 1
JES: other 0
Jet energy resolution 0.9
Each background 0.9
b-tag (JES) 0.2
b-tag (stat) 0
b-tag (syst) 1
Mistag 0.8
Pileup 0.5
µR, µF scales 1
ME/PS matching 1
MADGRAPH vs POWHEG 1
b quark fragmentation tune 1
B hadron semileptonic branching fraction 1
Top quark pT modelling 1
Colour reconnection 1
Underlying event 1
PDF 1
Integrated luminosity 0

7.4 Final uncertainties

The total uncertainties in the fiducial cross sections, as obtained with the binned likelihood fit
(Section 6.1), are +3.6

−3.4 % at 7 TeV and +3.7
−3.4 % at 8 TeV. The impact of the sources of systematic

uncertainties in this total uncertainty are listed in Table 3. These are estimated by removing
groups of uncertainties one at a time and gauging the difference in quadrature on the total un-
certainty. Significant contributions to the total uncertainty spread over many different sources
of experimental and modelling uncertainties with “Lumi, ”, “Lepton ID/isolation”, “Trigger”,
and “DY” being the four largest sources. The observed shifts of the fitted background or other
nuisance parameters compared to their assumed uncertainty before the fit are in general small,
indicating a consistent fit.
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Table 3: Illustrative summary of the individual contributions to the total uncertainty in the
visible tt̄ cross section measurements.

Source
Uncertainty [%]
7 TeV 8 TeV

Trigger 1.3 1.2
Lepton ID/isolation 1.5 1.5
Lepton energy scale 0.2 0.1
Jet energy scale 0.8 0.9
Jet energy resolution 0.1 0.1
tW/tW 1.0 0.6
DY 1.4 1.3
tt̄ bkg. 0.1 0.1
tt̄V 0.1 0.1
Diboson 0.2 0.6
W+jets/QCD 0.1 0.2
b-tag 0.5 0.5
Mistag 0.2 0.1
Pileup 0.3 0.3
µR, µF scales 0.3 0.6
ME/PS matching 0.1 0.1
MADGRAPH vs POWHEG 0.4 0.5
Hadronisation (JES) 0.7 0.7
Top quark pT modelling 0.3 0.4
Colour reconnection 0.1 0.2
Underlying event 0.1 0.1
PDF 0.2 0.3
Integrated luminosity 2.2 2.6
Statistical 1.2 0.6
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8 Cross section measurement
The results of the tt̄ cross section measurements in pp collisions at 7 and 8 TeV are presented in
the fiducial range and in the full phase space.

8.1 Fiducial cross section

The fiducial cross sections are defined for tt̄ production with events containing an oppositely
charged eµ pair with both leptons having pT > 20 GeV and |η| < 2.4. The measured cross
sections, using the binned likelihood fit extraction method (Section 6) and assuming a top quark
mass of 172.5 GeV, are

σvis
tt̄ = 3.03± 0.04 (stat)+ 0.08

− 0.07 (syst)± 0.07 (lumi) pb, at
√

s = 7 TeV and

σvis
tt̄ = 4.23± 0.02 (stat)+ 0.11

− 0.09 (syst)± 0.11 (lumi) pb, at
√

s = 8 TeV.

The uncertainties are due to statistical fluctuations, combined experimental and theoretical sys-
tematic effects on the measurement, and the uncertainty in the measurement of the integrated
luminosity. A summary of the systematic uncertainties is presented in Table 3.

8.2 Full phase space cross section

The full phase space (total) cross sections for tt̄ production are calculated from the fiducial cross
section results by dividing σvis

tt̄ by the acceptance, as in Eq. (1). The quantity Aeµ is determined
from the tt̄ signal MC simulation. As it depends on the exact theoretical model used in the
event generation part of the simulation, it is parametrised as a function of the same nuisance
parameters that were used for the modelling uncertainties (Section 7) in the binned likelihood
fit extraction of the fiducial cross sections. The fitted values of these nuisance parameters are
used to obtain the best estimates of Aeµ, 1.745× 10−2 at 7 TeV and 1.728× 10−2 at 8 TeV, which
are used for the determination of the nominal values of σtt̄. In order to determine the uncer-
tainty in the phase space extrapolation modelled by Aeµ, each relevant nuisance parameter is
iteratively varied from the fitted value by the±1σ values before the fit, while all other nuisance
parameters are kept at their fitted values. The resulting variations of Aeµ are taken as an addi-
tional extrapolation uncertainty. The sources that are considered here are “µR and µF scales”,
“ME/PS matching”, “Top quark pT modelling”, and “PDF” (see Section 7), and the individ-
ual uncertainties in σtt̄ from these sources are added in quadrature. The resulting systematic
uncertainties are listed in Table 4.

Table 4: Individual contributions to the systematic uncertainty in the total tt̄ cross section mea-
surements. The total systematic uncertainties in the fiducial cross sections σvis

tt̄ are given in the
row “Total (visible)”, and those in the full phase space cross section σtt̄ in the row “Total”.

Source
Uncertainty [%]
7 TeV 8 TeV

Total (visible) +3.6
−3.4

+3.7
−3.4

Q2 scale (extrapol.) +0.1
−0.4

+0.2
−0.1

ME/PS matching (extrapol.) +0.1
−0.1

+0.3
−0.3

Top quark pT (extrapol.) +0.5
−0.3

+0.6
−0.3

PDF (extrapol.) +0.1
−0.1

+0.1
−0.1

Total +3.6
−3.5

+3.7
−3.5
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The measurements of σtt̄ at the two centre-of-mass energies are

σtt̄ = 173.6± 2.1 (stat)+ 4.5
− 4.0 (syst)± 3.8 (lumi) pb, at

√
s = 7 TeV and

σtt̄ = 244.9± 1.4 (stat)+ 6.3
− 5.5 (syst)± 6.4 (lumi) pb, at

√
s = 8 TeV.

After adding the uncertainties in quadrature, the resulting total uncertainties are 6.2 pb (3.6%)
at
√

s = 7 TeV and 9.1 pb (3.7%) at
√

s = 8 TeV.

The results obtained with the method based on event counting (see Section 6.2) are

σtt̄ = 165.9± 2.5 (stat)± 6.2 (syst)± 3.6 (lumi) pb, at
√

s = 7 TeV and
σtt̄ = 241.1± 1.6 (stat)± 10.0 (syst)± 6.3 (lumi) pb, at

√
s = 8 TeV.

As expected, the statistical and systematic uncertainties are slightly larger than those obtained
with the reference method. The results of the two methods are in agreement.

The cross section measurements agree with previous results [1, 4, 8, 14, 15, 21, 22]. They con-
stitute the most precise CMS measurements of σtt̄ to date and have a similar precision to the
most precise ATLAS result [14], obtained in the same decay channel. For both centre-of-mass
energies, the predicted cross sections at NNLO (see Section 3) are in good agreement with the
measurements.

The ratio of cross sections using the results obtained with the reference analysis amounts to

Rtt̄ = σtt̄(8 TeV)/σtt̄(7 TeV) = 1.41± 0.06.

Here, the correlated uncertainty obtained from the simultaneous likelihood fit (Section 6) of
the fiducial cross sections at the two centre-of-mass energies is fully taken into account as well
as the correlated uncertainty on the acceptances arising from model uncertainties, which are
assumed to be fully correlated between the two energies. The total relative uncertainty of the
ratio is 4.2%, indicating a partial cancellation of systematic uncertainties. The predicted ratio
at NNLO (see Section 3) is consistent with the measurement.

9 Determination of the top quark pole mass
The full phase space cross sections are used to determine the top quark pole mass (mt) via the
dependence of the theoretically predicted cross section on mt and comparing it to the measured
cross section. For this purpose, the cross section fit and the extrapolation to the full phase
space (see Sections 6 and 8.2) are repeated for three different hypotheses for the top quark mass
parameter in the MC simulation (mMC

t ): 169.5, 172.5, and 175.5 GeV. For each mass value a
sample of simulated tt̄ events, generated with the corresponding mMC

t value, is used in the
fit as a signal model. The dependence of the distributions used in the fit on detector effects
is evaluated individually for each mass value. Their dependence on modelling uncertainties
varies little over the studied mass range and is thus taken from the nominal mass value (mMC

t
= 172.5 GeV). The obtained cross section dependence on the mass can be parametrised as an
exponential function:

σtt̄(7 TeV, mMC
t ) = exp

[
−0.1718 (mMC

t /GeV− 178.5)
]
+ 170.9 pb, (7)

σtt̄(8 TeV, mMC
t ) = exp

[
−0.1603 (mMC

t /GeV− 185.4)
]
+ 237.0 pb. (8)
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To express the measured dependence as a function of mt instead of mMC
t , the difference be-

tween mt and mMC
t needs to be accounted for. This is estimated to be of the order of 1 GeV [75].

Therefore, an additional uncertainty ∆mt± in the obtained cross section dependence is intro-
duced. It is evaluated by shifting the measured dependence by ±1 GeV in mMC

t and recording
the difference in σtt̄. For the determination of mt, this contribution to the total uncertainty is
almost negligible. In consequence, the measurements of σtt̄ can be represented by Gaussian
likelihoods as a function of mt of the form

Lexp(mt, σtt̄) = exp

[ (
σtt̄(mt)− σtt̄

)2

−2(∆2 + ∆2
mt±)

]
, (9)

where ∆ represents the total uncertainty in each of the cross section measurements and σtt̄(mt)
the measured dependence of the cross section on mt.

The predicted dependence of σtt̄ on the top quark pole mass at NNLO+NNLL is determined
with TOP++, employing different PDF sets (NNPDF3.0 [76], CT14 [77], and MMHT2014 [78])
with αs = 0.118± 0.001. Additionally, uncorrelated uncertainties of 1.79% (7 TeV) and 1.72%
(8 TeV) are assigned to the predicted cross section values to account for the uncertainty in the
LHC beam energy [79]. The predicted σtt̄ is represented by an asymmetric Gaussian function
with width ∆p,±, comprising PDF, αs, and the beam energy uncertainty summed in quadrature.
This function is convolved with a box function to account for the uncertainty in the renormal-
isation and factorisation scales in the prediction [24]. The result of the convolution is given
as

Lpred(mt, σtt̄) =
1

C(mt)

(
erf

[
σ
(h)
tt̄ (mt)− σtt̄√

2∆p,+

]
− erf

[
σ
(l)
tt̄ (mt)− σtt̄√

2∆p,−

])
, (10)

where σ
(h)
tt̄ and σ

(l)
tt̄ denote the upper and lower predicted cross section values, respectively,

from variations of the renormalisation and factorisation scales. The normalisation factor C(mt)
assures that max(Lpred) = 1 for any fixed mt.

Figure 9 shows the likelihoods for the predicted tt̄ cross section employing NNPDF3.0 and the
measurement of σtt̄ at

√
s = 7 and 8 TeV as a function of mt. The product of the two likelihoods

is used to fit the mass value by maximizing the likelihood simultaneously with respect to mt
and σtt̄. The extracted top quark pole masses using different PDF sets are listed in Table 5. The
contributions from uncertainties in the CT14 PDF set are scaled to a 68% CL.

Table 5: Top quark pole mass at NNLO+NNLL extracted by comparing the measured tt̄ pro-
duction cross section at 7 and 8 TeV with predictions employing different PDF sets.

mt [ GeV ]

7 TeV 8 TeV

NNPDF3.0 173.5+1.9
−2.0 174.2+2.0

−2.2

MMHT2014 173.9+2.0
−2.1 174.4+2.1

−2.3

CT14 174.1+2.2
−2.4 174.6+2.3

−2.5

Finally, a weighted average is calculated, taking into account all systematic uncertainty cor-
relations between the measured cross sections at 7 and 8 TeV, and assuming 100% correlated
uncertainties for the theoretical predictions at the two energies. The resulting top quark pole
masses are listed in Table 6 and are in good agreement with each other and previous measure-
ments [14, 24].
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Table 6: Combined top quark pole mass at NNLO+NNLL extracted by comparing the mea-
sured tt̄ production cross section with predictions employing different PDF sets.

mt [ GeV ]

NNPDF3.0 173.8+1.7
−1.8

MMHT2014 174.1+1.8
−2.0

CT14 174.3+2.1
−2.2

Figure 9: Likelihood for the predicted dependence of the tt̄ production cross section on the top
quark pole mass for 7 and 8 TeV determined with TOP++, employing the NNPDF3.0 PDF set.
The measured dependences on the mass are given by the dashed lines, their 1σ-uncertainties
are represented by the dotted lines. The extracted mass at each value of

√
s is indicated by a

black point, with its 1σ-uncertainty constructed from the continuous contour, corresponding to
−2∆ log(LpredLexp) = 1.

10 Limits on top squark pair production
The SUSY models are predicated on the existence of partners for SM particles. A light top
squark could contribute to the cancellation of the quadratic divergences in the Higgs mass
loop corrections [26]. SUSY scenarios with a neutralino as LSP and a nearly degenerate-mass
top squark provide one theoretically possible way to account for the observed relic abundance
of dark matter [80, 81]. There are therefore strong motivations to search for a top squark with a
mass close to, or even below, the TeV scale.

In the following, a SUSY model with R-parity conservation is considered, where top squarks
are pair-produced via the strong interaction. The top squark decays into a top quark and the
LSP, considered here as the lightest neutralino χ̃0

1. A simplified model is used, where the pa-
rameters are the top squark and neutralino masses [82, 83]. The branching fraction of top
squark into a top quark and a neutralino is assumed to be 100%, and the top quark polarisation
is assumed to be fully right-handed. A diagram of the process is shown in Fig. 10.

Top squark pair production with the top squarks decaying into a top quark and a neutralino
could produce final states very similar those one from tt̄ production but with additional miss-
ing transverse energy. If the difference between the masses of the top squark and the neutralino
is close to the top quark mass, the events would have similar topologies to the SM tt̄ events.
In such situations, direct top squark searches have low sensitivity because of the overwhelm-
ing tt̄ background. However, from a very precise tt̄ cross section measurement, top squark
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P1
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χ̃01
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Figure 10: Diagram displaying the top squark pair production at the LHC in the decay mode
where each top squark decays to a top quark and a neutralino χ̃0

1.

pair events can be searched for by looking for a small excess in the measured cross section
compared to the SM expectation. The study presented here is complementary to the direct
searches performed by CMS [84–86] and ATLAS [87–89], as it is more sensitive in a mass re-
gion, m(t̃) ≈ m(χ̃0

1) + mt, that is not accessible to conventional SUSY searches.

The 8 TeV data, analysed with the counting method (Section 6.2), are used to derive upper lim-
its on the production cross section for the top squark pair production for different top squark
masses. The number of observed events in data is compared to the sum of SM tt̄ and back-
ground events and the expected yields from top squark pair production.

Top squark pair events generated with MADGRAPH with up to two associated partons are
used for this study. The detector response is described using a fast simulation [90]. In order to
account for differences with the full simulation of the CMS detector used for all other samples,
further corrections are applied, especially for b tagging scaling factors. The signal samples
are normalized according to the cross sections calculated at NLO+next-to-leading-logarithmic
accuracy [91–95].

The 95% exclusion limits are calculated from Bayesian and modified CLs techniques imple-
mented in the THETA framework [96]. The yields of events given in Table 1 (where tt̄ MC
events are normalised to the predicted NNLO cross section [23, 49]) are used, accounting for all
the systematic uncertainties described in Section 7. The uncertainty of 3.5% in the theoretical tt̄
cross section is included to account for effects from renormalisation and factorisation scale and
PDF uncertainties in the calculation [23]. Furthermore, a 10% uncertainty on the signal yields
is added to account the differences in lepton and trigger efficiencies between the fast and the
full simulations.

The observed and expected limits on the mass of the top squark for neutralino masses of 1
and 12.5 GeV are shown in Fig. 11. Top squarks with masses below 189 GeV are excluded at
95% CL for the neutralino mass of 1 GeV, and in the range 185–189 GeV for the neutralino mass
of 12.5 GeV. The different behaviour in the region m(t̃) < mt with respect to Refs. [97, 98] is
expected because of the tighter selection on the jet multiplicity and differences in the signal
modelling.

The effect of the top quark polarisation on the final result is studied by calculating the exclusion
limits assuming that the top quarks are 100% left-handed polarised. No significant differences
are observed compared to the case of right-handed polarised top quarks.
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Figure 11: Expected and observed limits at 95% CL on the signal strength as a function of the
top squark mass for neutralino masses of 1 GeV (left) and 12.5 GeV (right). The bands show the
68% and 95% CL ranges of the expected limit. The solid thin lines quantify the impact of the
theoretical uncertainty in the cross section of the SUSY signal on the observed limit.

11 Summary
A measurement of the inclusive tt̄ production cross section in proton-proton collisions at the
LHC is presented using the full 2011–2012 data samples of 5.0 fb−1 at

√
s = 7 TeV and 19.7 fb−1

at
√

s = 8 TeV. The analysis is performed in the eµ channel using an improved cross section
extraction method. The cross sections are determined with a binned likelihood fit to the pT
distribution of the non-b-tagged jet with the lowest pT among the selected jets in the event,
using categories of number of b-tagged and additional non-b-tagged jets. Assuming a top
quark mass of 172.5 GeV, the results are

σtt̄ = 173.6± 2.1 (stat)+ 4.5
− 4.0 (syst)± 3.8 (lumi) pb, at

√
s = 7 TeV and

σtt̄ = 244.9± 1.4 (stat)+ 6.3
− 5.5 (syst)± 6.4 (lumi) pb, at

√
s = 8 TeV,

in good agreement with recent NNLO QCD calculations. The ratio of the cross sections at the
two different values of

√
s is determined to be 1.41 ± 0.06. Moreover, the cross sections are

measured in fiducial ranges defined by the transverse momentum and pseudorapidity require-
ments on the two charged leptons in the final state. The measurements constitute the most
precise CMS results of σtt̄ so far, and are competitive with recent ATLAS results [14].

The inclusive cross sections at 7 and 8 TeV are used to determine the top quark pole mass via the
dependence of the theoretically predicted cross section on the mass, employing three different
PDF sets. The values of the mass are consistent between the three sets. The most precise result,
173.8+1.7

−1.8 GeV, is obtained using the NNPDF3.0 PDF set.

The 8 TeV data are also used to constrain the cross section of pair production of supersymmetric
top squarks with masses close to the top quark mass. No excess of event yields with respect to
the SM prediction is found, and exclusion limits are presented as a function of the top squark
mass for two different neutralino masses.
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[33] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05
(2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[34] M. L. Mangano, M. Moretti, F. Piccinini, and M. Treccani, “Matching matrix elements and
shower evolution for top-quark production in hadronic collisions”, JHEP 01 (2007) 013,
doi:10.1088/1126-6708/2007/01/013, arXiv:hep-ex/0611129.

[35] N. Davidson et al., “Universal interface of TAUOLA technical and physics
documentation”, Comput. Phys. Commun. 183 (2010) 821,
doi:10.1016/j.cpc.2011.12.009, arXiv:1002.0543.

[36] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043,
doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[37] H.-L. Lai et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010)
074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://www.arXiv.org/abs/1303.6254
http://dx.doi.org/10.1016/j.physletb.2013.12.009
http://www.arXiv.org/abs/1307.1907
http://dx.doi.org/10.1016/0370-2693(78)90858-4
http://dx.doi.org/10.1016/0370-1573(84)90008-5
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://cdsweb.cern.ch/record/1194487
http://cdsweb.cern.ch/record/1194487
http://cdsweb.cern.ch/record/1247373
http://cdsweb.cern.ch/record/1247373
http://dx.doi.org/10.1007/JHEP07(2014)079
http://www.arXiv.org/abs/1405.0301
http://dx.doi.org/10.1007/JHEP03(2013)015
http://www.arXiv.org/abs/1212.3460
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://www.arXiv.org/abs/hep-ph/0201195
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://www.arXiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1088/1126-6708/2007/01/013
http://www.arXiv.org/abs/hep-ex/0611129
http://dx.doi.org/10.1016/j.cpc.2011.12.009
http://www.arXiv.org/abs/1002.0543
http://dx.doi.org/10.1007/JHEP06(2010)043
http://www.arXiv.org/abs/1002.2581
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://www.arXiv.org/abs/1007.2241


30 References

[38] R. Field, “Early LHC underlying event data – findings and surprises”, in Hadron collider
physics. Proceedings, 22nd Conference, HCP 2010, Toronto, Canada, August 23-27, 2010. 2010.
arXiv:1010.3558.

[39] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506
(2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[40] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with
shower in POWHEG: s- and t-channel contributions”, JHEP 09 (2009) 111,
doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076. [Erratum:
doi:10.1007/JHEP02(2010)011].

[41] E. Re, “Single-top Wt-channel production matched with parton showers using the
POWHEG method”, Eur. Phys. J. C 71 (2011) 1547,
doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

[42] R. Field, “Min-bias and the underlying event at the LHC”, Acta Physica Polonica B 42
(2011) 2631, doi:10.5506/APhysPolB.42.2631.

[43] K. Melnikov and F. Petriello, “The W boson production cross section at the LHC through
O(α2

S)”, Phys. Rev. Lett. 96 (2006) 231803, doi:10.1103/PhysRevLett.96.231803,
arXiv:hep-ph/0603182.

[44] K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders
through O(α2

S)”, Phys. Rev. D 74 (2006) 114017,
doi:10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.

[45] N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated
production with W− or H−”, Phys. Rev. D 82 (2010) 054018,
doi:10.1103/PhysRevD.82.054018, arXiv:hep-ph/1005.4451.

[46] J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”,
JHEP 07 (2011) 018, doi:10.1007/JHEP07(2011)018, arXiv:1105.0020.

[47] J. M. Campbell and R. K. Ellis, “tt̄ W± production and decay at NLO”, JHEP 07 (2012)
052, doi:10.1007/JHEP07(2012)052, arXiv:1204.5678.

[48] M. Garzelli et al., “tt̄ W± and tt̄ Z hadroproduction at NLO accuracy in QCD with parton
shower and hadronization effects”, JHEP 11 (2012) 056,
doi:10.1007/JHEP11(2012)056, arXiv:1208.2665.

[49] M. Czakon and A. Mitov, “Top++: a program for the calculation of the top-pair
cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930,
doi:10.1016/j.cpc.2014.06.021, arXiv:1112.5675.

[50] M. Botje et al., “The PDF4LHC Working Group interim recommendations”, (2011).
arXiv:1101.0538.

[51] S. Alekhin et al., “The PDF4LHC Working Group interim report”, (2011).
arXiv:1101.0536.

[52] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Uncertainties on αS in global PDF
analyses and implications for predicted hadronic cross sections”, Eur. Phys. J. C 64 (2009)
653, doi:10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.

http://inspirehep.net/record/873443/files/arXiv:1010.3558.pdf
http://www.arXiv.org/abs/1010.3558
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1126-6708/2009/09/111
http://www.arXiv.org/abs/0907.4076
http://dx.doi.org/10.1007/JHEP02(2010)011
http://dx.doi.org/10.1140/epjc/s10052-011-1547-z
http://www.arXiv.org/abs/1009.2450
http://dx.doi.org/10.5506/APhysPolB.42.2631
http://dx.doi.org/10.1103/PhysRevLett.96.231803
http://www.arXiv.org/abs/hep-ph/0603182
http://dx.doi.org/10.1103/PhysRevD.74.114017
http://www.arXiv.org/abs/hep-ph/0609070
http://dx.doi.org/10.1103/PhysRevD.82.054018
http://www.arXiv.org/abs/hep-ph/1005.4451
http://dx.doi.org/10.1007/JHEP07(2011)018
http://www.arXiv.org/abs/1105.0020
http://dx.doi.org/10.1007/JHEP07(2012)052
http://www.arXiv.org/abs/1204.5678
http://dx.doi.org/10.1007/JHEP11(2012)056
http://www.arXiv.org/abs/1208.2665
http://dx.doi.org/10.1016/j.cpc.2014.06.021
http://www.arXiv.org/abs/1112.5675
http://www.arXiv.org/abs/1101.0538
http://www.arXiv.org/abs/1101.0536
http://dx.doi.org/10.1140/epjc/s10052-009-1164-2
http://www.arXiv.org/abs/0905.3531


References 31

[53] J. Gao et al., “CT10 next-to-next-to-leading order global analysis of QCD”, Phys. Rev. D
89 (2014) 033009, doi:10.1103/PhysRevD.89.033009, arXiv:1302.6246.

[54] NNPDF Collaboration, “Parton distributions with LHC data”, Nucl. Phys. B 867 (2013)
244, doi:10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303.

[55] M. Czakon, M. L. Mangano, A. Mitov, and J. Rojo, “Constraints on the gluon PDF from
top quark pair production at hadron colliders”, JHEP 07 (2013) 167,
doi:10.1007/JHEP07(2013)167, arXiv:1303.7215.

[56] CMS Collaboration, “Measurement of the differential cross section for top quark pair
production in pp collisions at

√
s = 8 TeV”, Eur. Phys. J. C 75 (2015) 542,

doi:10.1140/epjc/s10052-015-3709-x, arXiv:1505.04480.

[57] CMS Collaboration, “CMS tracking performance results from early LHC operation”, Eur.
Phys. J. C 70 (2010) 1165, doi:10.1140/epjc/s10052-010-1491-3,
arXiv:1007.1988.

[58] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS
detector in proton-proton collisions at

√
s = 8 TeV”, JINST 10 (2015) P06005,

doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[59] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at√
s = 7 TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002,

arXiv:1206.4071.

[60] CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions
at
√

s = 7 TeV”, JHEP 01 (2011) 080, doi:10.1007/JHEP01(2011)080,
arXiv:1012.2466.

[61] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, JHEP 04
(2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[62] CMS Collaboration, “Determination of jet energy calibration and transverse momentum
resolution in CMS”, JINST 6 (2011) P11002,
doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[63] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8
(2013) 04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[64] Particle Data Group, K. A. Olive et al., “Review of Particle Physics”, Chin. Phys. C 38
(2014) 090001, doi:10.1088/1674-1137/38/9/090001.

[65] F. James and M. Roos, “Minuit: a system for function minimization and analysis of the
parameter errors and correlations”, Comput. Phys. Commun. 10 (1975) 343,
doi:10.1016/0010-4655(75)90039-9.

[66] A. Bodek et al., “Extracting muon momentum scale corrections for hadron collider
experiments”, Eur. Phys. J. C 72 (2012) 2194,
doi:10.1140/epjc/s10052-012-2194-8, arXiv:1208.3710.

[67] TOTEM Collaboration, “First measurement of the total proton-proton cross section at the
LHC energy of

√
s = 7 TeV”, Europhys. Lett. 96 (2011) 21002,

doi:10.1209/0295-5075/96/21002, arXiv:1110.1395.

http://dx.doi.org/10.1103/PhysRevD.89.033009
http://www.arXiv.org/abs/1302.6246
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003
http://www.arXiv.org/abs/1207.1303
http://dx.doi.org/10.1007/JHEP07(2013)167
http://www.arXiv.org/abs/1303.7215
http://dx.doi.org/10.1140/epjc/s10052-015-3709-x
http://www.arXiv.org/abs/1505.04480
http://dx.doi.org/10.1140/epjc/s10052-010-1491-3
http://www.arXiv.org/abs/1007.1988
http://dx.doi.org/10.1088/1748-0221/10/06/P06005
http://www.arXiv.org/abs/1502.02701
http://dx.doi.org/10.1088/1748-0221/7/10/P10002
http://www.arXiv.org/abs/1206.4071
http://dx.doi.org/10.1007/JHEP01(2011)080
http://www.arXiv.org/abs/1012.2466
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://www.arXiv.org/abs/0802.1189
http://dx.doi.org/10.1088/1748-0221/6/11/P11002
http://www.arXiv.org/abs/1107.4277
http://dx.doi.org/10.1088/1748-0221/8/04/P04013
http://www.arXiv.org/abs/1211.4462
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1140/epjc/s10052-012-2194-8
http://www.arXiv.org/abs/1208.3710
http://dx.doi.org/10.1209/0295-5075/96/21002
http://www.arXiv.org/abs/1110.1395


32 References

[68] CMS Collaboration, “Absolute calibration of the luminosity measurement at CMS:
Winter 2012 update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, 2012.

[69] CMS Collaboration, “CMS luminosity based on pixel cluster counting — Summer 2013
update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013.
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M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, A. König,
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V. Calvellia ,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea ,b, E. Robuttia, S. Tosia ,b



40 A The CMS Collaboration

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
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Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia



49

9: Also at Helwan University, Cairo, Egypt
10: Now at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at Suez University, Suez, Egypt
13: Now at British University in Egypt, Cairo, Egypt
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