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Abstract

A search is performed for a new resonance decaying into a lighter resonance and a
Z boson. Two channels are studied, targeting the decay of the lighter resonance into
either a pair of oppositely charged τ leptons or a bb pair. The Z boson is identified
via its decays to electrons or muons. The search exploits data collected by the CMS
experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated lumi-
nosity of 19.8 fb−1. No significant deviations are observed from the standard model
expectation and limits are set on production cross sections and parameters of two-
Higgs-doublet models.
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1 Introduction
The observation of a new particle with a mass of approximately 125 GeV was reported by the
ATLAS and CMS experiments at the CERN LHC in the WW, ZZ and γγ final states [1–3].
Evidence of the decay of the particle to pairs of fermions (ττ and bb̄) has also been reported
in Refs. [4, 5]. The measurements of branching fractions, production rates, spin and parity
are all consistent with the predictions for the standard model (SM) Higgs boson [6], wherein
a single doublet of Higgs fields is present. However, additional Higgs bosons are expected
in simple extensions of the SM scalar sector, such as models with two Higgs-boson doublets
(2HDMs) [7]. These models predict five physical Higgs particles that arise as a consequence
of the electroweak symmetry-breaking mechanism: two neutral CP-even scalars (h, H), one
neutral CP-odd pseudoscalar (A), and two charged scalars (H±).

An important motivation for 2HDMs is that such models provide a way to accommodate the
asymmetry between matter and antimatter observed in the universe [7, 8]. An extension of
the SM scalar sector with two Higgs boson doublets would also naturally arise in supersym-
metry [9, 10], which requires a scalar structure more complex than a single doublet. Axion
models [11] provide a strong interaction that does not violate CP symmetry and give rise to an
effective low-energy theory with two Higgs doublets. Finally, it has recently been noted [12]
that certain realisations of 2HDMs can accommodate the muon g–2 anomaly [13] without vio-
lating present theoretical and experimental constraints.

In the most general case, 14 parameters describe the scalar sector of a 2HDM [7]. Only six free
parameters remain once the experimental observations are included by imposing the so-called
Z2 symmetry to suppress flavour changing neutral currents, and by fixing both the values of
the mass of the recently discovered SM-like Higgs boson (125 GeV) [14] and the electroweak
vacuum expectation value (246 GeV). The compatibility of a SM-like Higgs boson with 2HDMs
is possible in the so-called alignment limit. The alignment limit is reached when cos(β− α)→
0, where tan β is the ratio of the vacuum expectation values and α is the mixing angle of the
two Higgs doublets. In such a regime, one of the CP-even scalars, h or H, is identified with
the SM-like Higgs boson. A recent theoretical study [8] has shown that, in this limit, a large
mass splitting (>100 GeV) between the A and H bosons would favour the electroweak phase
transition that would be at the origin of baryogenesis in the early universe, satisfying thereby
the currently observed matter-antimatter asymmetry. In this context, the most frequent decay
mode of the pseudoscalar A boson would be A → ZH. Since the analysis strategy presented
in this paper is independent of the assumed model and parity of the resonance, the results
can also be interpreted in the reversed topology H → ZA, where the expected 2HDM mass
hierarchy is inverted and the mass of A is expected to be light [15]. For both topologies, the
lighter scalar resonance (A or H) is not identified with the SM-like Higgs boson.

This paper describes the first CMS search for a new resonance decaying into a lighter resonance
and a Z boson. Two searches are performed, targeting the decay of the lighter resonance into
either a pair of oppositely charged τ leptons or a bb pair. In both cases, the Z boson is identified
via its decay into a pair of oppositely charged electrons or muons (light leptons), labelled in the
text by the symbol `. The choice of bb and ττ final states is motivated by the large branching
fractions predicted in most of the 2HDM phase space [16]. For the ``ττ channel, the following
ττ final states are considered: eµ, eτh, µτh, and τh τh, where τh indicates the decays τ →
hadrons + ντ. Given its sensitivity to a different region of the 2HDM parameter space, the
search presented in this paper is complementary to other related searches performed in the
same final state by the ATLAS and CMS collaborations [17, 18].
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2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Located in concentric layers within the solenoid volume
are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL),
and a brass and scintillator hadron calorimeter (HCAL), each composed of one barrel and two
endcap sections. These layers provide coverage up to a pseudorapidity |η| = 2.5. Extensive
forward calorimetry complements are provided by the endcap detectors for |η| < 5.2. Combin-
ing the energy measurement in the ECAL with the measurement in the tracker, the momentum
resolution for electrons with pT ≈ 45 GeV from Z→ ee decays ranges from 1.7% for nonshow-
ering electrons in the barrel region to 4.5% for showering electrons in the endcaps [19]. Muons
are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside the
solenoid. They cover the pseudorapidity range |η| < 2.4, with detection planes made using
three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching
muons to tracks measured in the silicon tracker results in a relative transverse momentum res-
olution for muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the
endcaps [20]. The first level of the CMS trigger system uses information from the calorimeters
and muon detectors to select the most interesting events. A high-level trigger processor farm
decreases the event rate from approximately 100 kHz to 600 Hz before data storage. A more
detailed description of the CMS detector, together with a definition of the coordinate system
and kinematic variables, can be found in Ref. [21].

3 Data and simulated samples
The data used for this search were collected by the CMS experiment at

√
s = 8 TeV, and cor-

respond to a total integrated luminosity of 19.8 fb−1. The average number of interactions per
bunch crossing (pileup) in the data was 21 [22]. Events were selected using dielectron and
dimuon triggers [19, 20]. These triggers have pT thresholds of 17 and 8 GeV for the leading and
subleading lepton respectively, and require relatively loose reconstruction and identification
criteria.

The main SM background processes giving rise to prompt leptons are W/Z+jets, tt +jets, tW,
and diboson production (WW, ZZ, and WZ). The SM background contribution from ZZ is
generated at next-to-leading order (NLO) with POWHEG 1.0 [23] for the ``ττ channel and
using the leading-order (LO) MADGRAPH 5.1 Monte Carlo (MC) program [24], matched to
PYTHIA 6.4 [25] for the parton showering and hadronization, for the ``bb channel. Single top
quark events are generated at NLO using POWHEG 1.0. Simulated events for other samples are
obtained using the MADGRAPH 5.1 MC matched to PYTHIA 6.4. The PYTHIA parameters affect-
ing the description of the underlying event are set to those of the Z2∗ tune [26]. All generators
used for processes including τ leptons in the final state are interfaced with TAUOLA 2.4 [27]
for the simulation of the τ decays. The detector response is simulated using a detailed de-
scription of CMS, based on the GEANT4 toolkit [28]. The simulated samples account for con-
tributions from pileup collisions that reflect the distributions observed in data. The trigger and
reconstruction efficiency in the simulation is rescaled by as much as 2% in order to match that
measured in the data [22].

Two benchmark 2HDM processes are considered as signal: H → ZA and A → ZH, where the
lightest boson (pseudoscalar or scalar, according to the process) can decay to ττ or bb, and the
Z decays to ``. The MADGRAPH 5.1 generator, interfaced to PYTHIA 6.4 and TAUOLA 2.4, was
used to generate signal samples corresponding to different values of A and H masses (mA and
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mH, respectively). The same properties of the SM Higgs boson are assigned to the lightest scalar
boson, h, and its mass mh is fixed at 125 GeV. The identification of the observed Higgs boson,
together with all its measured properties, with the scalar h constrains the phenomenologically
reliable parameter space regions to not depart from the SM-like condition cos(β− α) ≈ 0. This
corresponds to the so-called alignment limit [29]. Considering the parameter space still allowed
by direct searches [10], the chosen values for cos(β− α) and tan β are 0.01 and 1.5, respectively,
and type-II Yukawa couplings are assumed for the benchmark processes.

The masses of the charged Higgs bosons (mH±) are kept equal to the highest mass involved
in the signal process (mH or mA) to preserve the degeneracy m2

H± ≈ m2
H/A [15], denoting with

mH/A the mass of the scalar H or the mass of the pseudoscalar A. The value of the m12 param-
eter, the soft Z2 symmetry breaking mass, was set to m2

12 = m2
H± tan β/(1 + tan2 β), according

to the minimal supersymmetric standard model (MSSM) parametrisation [9]. The value of the
complex couplings λ6 and λ7 in this parametrisation are set to zero, in order to avoid tree-level
CP violation. The production cross sections, used for the normalisation of the signal samples,
are computed using the SUSHI 1.4 program [30], which provides next-to-next-to-leading-order
(NNLO) predictions. The branching fraction for the heavy and light Higgs bosons are obtained
using the 2HDMC 1.6 program [31], following the guidelines in Refs. [32, 33].

The signal benchmark where the light boson decays into ττ is simulated for values of mH/A
and mA/H varying in the ranges 200–1000 and 15–900 GeV, respectively, with the constraint
mH/A > mA/H + mZ. For the ``bb analysis the lower bound for the invariant mass mA/H goes
down to 10 GeV. The region where mH is smaller than mh is not pertinent in this model.

4 Event reconstruction and selection
Event reconstruction is based on the particle-flow algorithm [34, 35], which exploits informa-
tion from all the CMS subdetectors to identify and reconstruct individual particles in the event:
muons, electrons, photons, charged and neutral hadrons. Such particles are algorithmically
combined to form the jets, the τh candidates, the missing transverse momentum ~pmiss

T , defined
as the projection on the plane perpendicular to the beams of the negative vector sum of the
particles momenta and its magnitude, denoted as Emiss

T . To minimise the contributions from
pileup interactions, charged tracks are required to originate from the primary vertex (recon-
structed using the deterministic annealing algorithm [36]), which is the one characterised by
the largest p2

T sum of its associated tracks.

Electrons are identified by combining information from tracks and ECAL clusters, including
energy depositions from final-state radiation [19]. Muons are identified through a combined fit
to position measurements from both the inner tracker and the muon detectors [20]. The τh ob-
jects are identified and reconstructed using the “hadron-plus-strips” algorithm [37], which uses
charged hadrons and photons to reconstruct the main hadronic decay modes of the τ lepton:
one charged hadron, one charged hadron and photons, and three charged hadrons. Electrons
and muons can be misidentified as hadronic taus if produced in jets or if close-by activity from
pile-up or bremsstrahlung is present. These misidentifications are suppressed using dedicated
criteria based on the consistency between the measurements in the tracker, the calorimeters,
and the muon detector [37]. To reject nonprompt or misidentified leptons, requirements are
imposed on the isolation criteria, based on the sum of deposited energies. The absolute lepton
isolation Iabs is defined by the scalar sum of the pT of the charged particles from the primary
vertex, neutral hadrons, and photons in an isolation cone of size ∆R =

√
(∆η)2 + (∆φ)2 = 0.4

(∆R = 0.3 for electrons), centred around the lepton direction. To reduce the effect from pileup,
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the energy deposit released in the isolation cone by charged particles not associated with the
primary vertex is subtracted from the neutral particles pT scalar sum. For electrons and muons
the relative isolation, defined as Irel = Iabs/pT, is used.

Jets are clustered using the anti-kT algorithm [38], with a distance parameter of 0.5, as im-
plemented in the FASTJET software package [39]. Charged particles not associated with the
primary vertex are excluded by means of the charged-hadron subtraction technique [40]. The
remaining energy originating from pileup interactions, including the neutral components, is
subtracted based on the median energy density in the detector computed through the effective
jet area technique [41]. The identification of b quark initiated jets is achieved through the com-
bined secondary vertex (CSV) algorithm [42], which exploits observables related to the long
lifetime of B hadrons.

4.1 Selection for Z → ``

In selecting ``bb and ``ττ events, the leptons from Z boson decay are required to be well
within the CMS trigger and detector acceptance of pT > 20 GeV and |η| < 2.5 for electrons,
and pT > 20 GeV, |η| < 2.4 for muons. Muon momentum-scale [20] and electron energy cor-
rections [19] are applied to recover the global shift of the scale observed between data and
simulation. The requirement on the relative isolation for the leptons is set to Irel < 0.15 for
electrons and Irel < 0.2 for muons in selecting ``bb events. For the leptons from the Z boson,
in the case of ``ττ events, the required relative isolation is Irel < 0.3. The presence of two re-
constructed same-flavour, oppositely charged lepton candidates forming a pair with invariant
mass in the range of 76–106 GeV is required to suppress contamination of non-resonant Drell–
Yan+jets and tt processes. In events where multiple Z candidates are present, the lepton pair
with the invariant mass closest to the nominal Z boson mass [43] is chosen.

4.2 Event selection for ``bb

For the ``bb search, the jets are selected to be in the kinematic region pT > 30 GeV and |η| < 2.4.
At least two CSV b-tagged jets are required to be present in the event, to reduce the contribution
of Z+light-parton jets (originating from gluons or u, d, or s quarks) events. The threshold on
the b tagging discriminator corresponds to a b tagging efficiency greater than 65% and to a
misidentification probability for light-parton jets of 1% [42]. The two b-tagged jets with highest
values of the CSV discriminant are considered as candidate decay products of the new light
resonance.

The Emiss
T significance [44, 45] is used to suppress background events originating from tt pro-

cesses. This variable provides an event-by-event assessment of the likelihood that the observed
missing transverse energy is consistent with zero given the reconstructed content of the event
and known measurement resolutions. This variable is a stronger discriminant against tt back-
ground than Emiss

T alone and also provides smaller systematic uncertainties. The distribution
of the tt component motivates the requirement on the Emiss

T significance to be smaller than 10.

4.3 Event selection for ``ττ

To increase the signal sensitivity in the high ττ mass region, the ``ττ event selection includes
the requirement of a transversely boosted Z boson (pT > 20 GeV), together with a large (>1.5 rad)
azimuthal angle between the Z boson flight direction and ~pmiss

T , particularly effective in sup-
pressing the Z+jets background. In addition to the two light leptons required to reconstruct
the Z boson, two additional oppositely charged and different-flavor leptons (e, µ, and τh) are
used to reconstruct the A or H boson candidate. The requirements on the pseudorapidity for
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light leptons are the same as for the Z decay leptons, with the pT threshold lowered to 10 GeV.
The τh candidates are required to have pT > 20 GeV and |η| < 2.3. The relative isolation for
electrons and muons, and the absolute isolation for τ leptons are required to be smaller than 0.3
and 2 GeV, respectively. Since the Z+jets background is characterised by a softer lepton trans-
verse momentum spectrum than the signal one, this background is reduced by selecting events
with high LT, where LT indicates the scalar sum of the visible pT of the decay products from a
ττ pair. Both the isolation requirements and the value of the LT threshold are determined as
a result of an optimisation procedure that maximises the expected significance of the searched
signal. The optimal requirement on the LT quantity is found by scanning the threshold between
20 and 200 GeV, at intervals of 20 GeV.

Jets are required to have pT > 30 GeV and |η| < 4.7. To reduce the large tt background, all
events with at least one jet with pT > 20 GeV and |η| < 2.4, reconstructed as a jet originating
from a b quark according to the output of the CSV discriminator used for tagging, are vetoed.

To calculate the ττ invariant mass, the secondary-vertex fit algorithm (SVFIT) [46] is used, a
likelihood-based method that combines the reconstructed ~pmiss

T and its resolution with the mo-
mentum of the visible τ decay products to obtain an estimator of the mass of the parent particle.

5 Modelling of the background
5.1 The ``bb channel

The relevant sources of background for the ``bb final state originate from Z+jets processes, tt
and tW production, diboson production, and vector boson production in association with a SM
Higgs boson. The contributions of Z+jets and tt backgrounds are measured by means of a data-
based method, the diboson and tW backgrounds are normalised to the CMS measurements.
For these backgrounds, the shapes are taken from MC, while the normalisations are extracted
from data. The vector boson production in association with a SM Higgs boson is normalised to
the theoretical prediction.

The comparison of data and predictions after the selection of events for the ``bb final state
shows the importance of an accurate theoretical calculation of the Z+jets production rate. In
particular, in the 400-700 GeV range of the m``bb distribution, the data is found to exceed the
LO prediction by up to two standard deviations, depending on the considered mass. This
excess is no longer significant when NLO QCD corrections, as implemented in aMC@NLO [47],
are included in the modelling of the Z+jets process. For this reason, the LO predictions are
corrected using a reweighting technique, in order to account for NLO QCD effects. To this end,
it becomes necessary to apply the reweighting according to the parton (or hadron) flavour of
the jets in the generated event. The ratio NLO/LO of the light- and heavy-flavour components
of the m``jj distribution is each fitted with a third-order polynomial and a separate reweighting
of the shape of the light and heavy flavour components of m``jj is applied, resulting in better
agreement with the data.

To determine the Z+jets and tt normalization, a data-based method is exploited. Data-derived
correction factors for simulation are obtained after an additional categorisation of the Z+jet
background events, based on the flavour (b jet or not) and multiplicity (exactly two jets or three
or more jets) of the reconstructed jets. These categories are sensitive to NLO effects related to
the modelling of extra jets [48]. Scale factors (SFs) are introduced for the tt background and the
light and heavy flavour components of Z+jets background. These are left free to float in a two-
dimensional fit of the distributions predicted by the simulation to the data. The distributions
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used as input are the product of the CSV discriminants of the two selected jets, and the invariant
mass of the lepton pair from the Z boson decay in the range 60 < m`` < 120 GeV. The first
observable is sensitive to the contribution from non-b jets, whereas the second one is sensitive
to the contribution of the tt production process. The fit is performed simultaneously in four
different categories: electrons, muons, exactly two jets, and more than two jets. The SF for the
tt is found to be very close to the unity, while for the Z+jets process the SFs depart from unity
by as much as 1.3 for the light flavour component.

The overall yields from diboson and tW processes are normalised to the CMS measurements [49–
52]. The associated production of a Z boson together with the Higgs-like scalar boson (Zh) is
also accounted for as background, and normalised to the expected theoretical cross section [53].

5.2 The ``ττ channel

Methods based on both data and simulation are used to estimate the residual background after
event selection. Normalisations and mass distributions in the ZZ, Zh, as well as for the mi-
nor fully leptonic WWZ, WZZ, ZZZ and ttZ backgrounds are estimated from simulation. The
Z+jets and WZ+jets contributions are measured by means of a data-based method.

Production of Z+jets and WZ+jets constitutes the main source of background when at least one
lepton is misidentified. Misidentified light leptons arise from semileptonic decays of heavy-
flavour quarks, decays in flight of hadrons, and photon conversions, while jets originating from
quarks or gluons can be misidentified as τh. Backgrounds with at least one misidentified lepton
are estimated from control samples in data starting from the estimation of the lepton misidenti-
fication probabilities. The lepton misidentification probability is defined as the probability that
a genuine jet, satisfying loose lepton identification criteria (which refer to the so-called “loose”
lepton), also passes the identification criteria required for a lepton candidate in the signal re-
gion (so-called “tight” lepton). This probability is measured for each lepton flavour using a
data sample where a Z candidate is selected, and an additional single lepton (electron, muon,
or τh) passes the loose identification requirements. Counting the fraction of such loose leptons
that also pass the tight lepton identification criteria in the pT bins of the reconstructed jet clos-
est, in ∆R, to the loose lepton, yields the misidentification probability f as a function of pT.
The contribution from genuine leptons arising from the WZ and ZZ production are subtracted.
Once the misidentification probabilities are computed, three control regions (CR) are defined
with a Z candidate and two opposite-sign leptons, as follows: the CR00 wherein both leptons
pass loose identification criteria but not the tight ones; CR10 region, wherein one lepton passes
tight identification requirements, the other only loose criteria, and the loose lepton is the τh
with lower pT in the τhτh channel, the light lepton in the `τh channels, and the electron in the
eµ channel; the CR01 region, which is similar to CR10 but the loose lepton is the τh with higher
pT in the τhτh channel, the τh in the `τh channels, and the muon in the eµ channel. The esti-
mated NmisID of the background with at least one misidentified lepton from a pair of closest-jet
pT bins is given by:

NmisID = N10
f1

1− f1
+ N01

f2

1− f2
− N00

f1 f2

(1− f1)(1− f2)
, (1)

where N00, N01, and N10 denote the number of events from the CR00, CR01, and CR10 control
regions, respectively, with closest jets in the considered pT bins, and f1 and f2 indicate the
misidentification probabilities associated with the two different flavor (except for the τhτh final
state) loose leptons in the pT bins. The expression in Eq. (1) takes into account both the back-
ground with two misidentified leptons (mostly from Z+jets) and that from only one misidenti-
fied lepton (primarily from WZ+jets).



7

The contamination from genuine leptons in the control regions from the SM Zh, WWZ, WZZ,
ZZZ, ttZ, and ZZ processes is estimated from simulation, and subtracted from N00, N01, and
N10. The total background in the signal region is obtained by summing the contributions from
all pairs of pT bins.

6 Systematic uncertainties
The systematic uncertainties are reported in the following paragraphs and summarised in
Tab. 1.

The uncertainty on the integrated luminosity recorded by CMS is estimated to be 2.6% [54].

The systematic uncertainties associated with the lepton efficiency SFs, used to correct the sim-
ulation and derived from studies at the Z peak using the tag-and-probe (T&P) method [19, 20],
are approximately 1% for muons and 2% for electrons, and affect both signal and background
processes in the same way. Also, the uncertainties on the double muon and double electron
trigger efficiencies are evaluated to be 1% from similar studies at the Z peak [22].

The uncertainty on the jet energy scale is derived from the method of Ref. [55] and the parame-
ters describing the shape of the energy distribution are varied by one standard deviation (SD).
The effect is estimated separately on the background and on the signal, resulting in a 3–5% vari-
ation, depending on the pT and η of the jets. The uncertainty on signal and background yields
induced by the imperfect knowledge of the jet energy resolution is estimated to be 3% [55].

The uncertainties affecting b tagging efficiencies are pT-dependent, and vary from 3% to 12%
(for pT > 30 GeV) [42]. The impact of these uncertainties on the normalisation of signal is 5%
for background and 4–6% for signal in the ``bb analysis, and about 1% in the ``ττ analysis.
The uncertainty in the mistagging rate is found to have a negligible impact.

The systematic uncertainty on the signal is evaluated by varying the set of parton distribution
functions (PDFs) according to the PDF4LHC prescriptions [56–58] and the factorisation and
renormalisation scales by varying their values by a factor one half and two. An effect of 5–6%
is estimated for the entire mass range for both ``ττ and ``bb final states.

Finally, an 11% uncertainty is assigned to the ZZ normalisation from the cross section measured
by CMS [49].

For the ``bb final state, the uncertainty on the SFs used for normalisation of Z+jets and tt
backgrounds is derived from the statistical uncertainty resulting from the fit used to derive
these SFs and it is estimated to be <8%. An additional systematic uncertainty associated with
the m``bb spectrum correction, described in Sec. 5, ranges from 5% for m``bb below 700 GeV to
30% for masses at the TeV scale. An uncertainty of 8% is assigned to the normalisation of the
WW process, corresponding to the uncertainties in the cross section measured by CMS [50].
A similar uncertainty is assigned also to the WZ process, which shares the same sources of
uncertainties in the cross section measurement. For the minor tW background, the uncertainty
is estimated as 23%, also based on the measured cross section [52]. The uncertainty in the Zh
process is based on the theoretical cross section and found to be 7% [53]. In order to interpolate
smoothly the signal efficiency across the parameter space, additional mass points for the ``bb
final state are processed using a parametric simulation [59], tuned for delivering a realistic
approximation of the CMS response in the reconstruction of physics objects used in this search.
For this reason, an additional source of uncertainty is introduced for the SF applied to these
samples to reproduce the efficiency measured with the full simulation. This is measured for
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Table 1: Summary of systematic uncertainties for both ``ττ and ``bb final states.

Source Uncertainty [%]
H→ ZA→ ``bb H→ ZA→ ``ττ

Luminosity 2.6 2.6
Lepton identification/isolation/scale 1–2 1–2
Lepton trigger efficiency 1 1
Jet energy scale 3–5 3–5
Jet energy resolution 3 3
b-tagging and mistag efficiency 4–6 1
Signal modelling (PDF, scale) 5–6 5–6
Background norm. (ZZ) 11 11
Background norm. (Z+jets and tt) <8 —
Background norm. (tW, WW, WZ and Zh) 8–23 —
Z+jet background modelling 5–30 —
Signal efficiency extrapolation 3–50 —
Tau identification/isolation — 6
Tau energy scale — 3
Reducible background estimate — 40

the different signal points in the mH-mA plane and it is close to 3% in most of the phase space,
but rises to 50% at the boundaries of the sensitivity region.

In the ``ττ final state, the uncertainty of 6% [37] in the τh identification efficiency, which has
been determined using a T&P method, has been taken into account. The τh energy scale uncer-
tainty is within 3% [37] and only affects the shapes of the ττ mass distributions. The systematic
uncertainties estimated for e, µ, τh and jet energy scales are propagated to ~pmiss

T and to the mass
distributions. The propagation to ~pmiss

T involves a sum of the energies of each object first and
a consequent subtraction of such contributions once the nominal energy scales (or resolutions)
are varied up and down by one SD (for e, µ, τh, and jets). One of the main systematic uncertain-
ties is related to the nonprompt background estimation. This uncertainty has been evaluated
using simulation by comparing the direct estimate of the backgrounds with that obtained us-
ing the procedure adopted in the analysis, but applied to simulated events. The discrepancy
between the two estimates never exceeds 40%. This value is thus considered as the uncertainty
on the estimates of the reducible background yield for all channels and all LT thresholds.

7 Results
The analysis searches for new resonance decays by comparing data to simulation in the two-
dimensional plane defined by the four-body (m``bb or m``ττ) and two-body (mbb or mττ) invari-
ant masses. The numerical values for the upper limits or the significance of a local excess are
obtained using the asymptotic method described in Ref. [60]. The CLS method [61, 62] is used
to determine the 95% confidence level (CL) upper limits on the excluded signal cross section.
For both final states, the limits in the lower-right triangle of the mass plane, which corresponds
to the process A → ZH, are obtained by mirroring the results obtained in the upper-left trian-
gle, since the signal efficiencies for H→ ZA and A→ ZH are equal for the same masses of the
heavy and light Higgs bosons in the two processes.
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7.1 The ``bb channel

For the ``bb final state, results are obtained using a counting approach, which can be reinter-
preted in other theoretical models with the same final state. Results are reported in bins of
mbb and m``bb masses, in the range from 10 GeV to 1 TeV for mbb, and from 140 GeV to 1 TeV
for m``bb. To define the proper granularity of the binning, a study is performed using signal
benchmark points and evaluating the width of the mbb and m``bb peaks in the considered mass
range. The average reconstructed width, defined as one SD, for mbb and m``bb is found to be
approximately 15% of the considered mass. The bin widths have been chosen to be ±1.5 SD
around each considered mass point.

The efficiency, defined as the fraction of generated signal events reconstructed after the final
selection, is calculated with the full CMS simulation and reconstruction software at 13 rep-
resentative signal points in the mH-mA mass plane. The signal efficiencies for the rest of the
plane are obtained by interpolating the ratio between the full simulation and the parametric
simulation (typically 0.9), calculated in each of the 13 signal mass points, and scaling the ef-
ficiencies calculated using the parametric simulation by this interpolated ratio. The resulting
signal efficiency ranges from 8% at (mA, mH) = (100, 300) GeV to 13% at (300, 600) GeV.

Figure 1 shows the observed upper limits on the product of the cross section (σ) and branching
fraction (B) for the ``bb final state in the mH-mA plane. The achieved sensitivity provides an
exclusion limit at 95% CL of approximately 10 fb for a large fraction of the two-dimensional
mass plane. In particular, the observed limit ranges from just above 1 fb for mH close to 1 TeV
to 100 fb for mH < 300 GeV. The validity of these results is applicable to models allowing the
existence of both A and H bosons with a natural width smaller than 15% of their masses.
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Figure 1: Observed 95% CL upper limits on σH/A→ZA/H→``bb as a function of mA and mH.

Two moderate excesses are observed for the ``bb channel in the regions around (mbb, m``bb) =
(95, 285) GeV and (575, 660) GeV. According to the procedure described at Ref. [63], they have
local significances of 2.6 and 2.85 SD respectively, which become globally 1.6 and 1.9 SD, once
accounting for the look-elsewhere effect [64]. The low-mass excess is more compatible with the
signal hypothesis, both in terms of yield and width. The reconstructed invariant mass distri-
butions for the bb and ``bb systems, in the regions around this excess, are reported in Fig. 2
and compared with the expectations from background processes. A 2HDM type-II benchmark
signal at mH = 270 GeV and mA = 104 GeV, normalised to the NNLO SUSHI prediction, is also
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superimposed.
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Figure 2: (left) The mbb spectrum for events selected in the 222 < m``bb < 350 GeV region for
data and simulation and the relative ratio. (right) The m``bb spectrum for events selected inside
the region 72 < mbb < 114 GeV region for data and simulation and the relative ratio. The signal
corresponding to mH = 270 GeV and mA = 104 GeV, normalized to the NNLO SUSHI cross
section, is superimposed for tan β = 1.5 and cos(β− α) = 0.01 in the 2HDM type-II scenario.
The overall systematic uncertainties in the simulation are reported as a hatched band.

7.2 The ``ττ channel

In the context of the ``ττ analysis, a search based on the mττ distribution is performed. For
every considered pair of H and A mass values, the search is performed in eight ττ SVFIT binned
mass distributions, each corresponding to one of the eight considered final states. Variable bin
widths are adopted in order to account for the mass resolution. A simultaneous likelihood fit to
the observed distributions is performed with the expected distributions from the background-
only and signal plus background hypotheses. The normalisation of the signal distribution is a
free parameter in the fit. No significant deviations are observed in data from the SM expecta-
tion. The SVFIT mass distributions of the ττ pair in the eight different final states are shown
in Fig. 3. The chosen signal corresponds to mH = 350 GeV and mA = 90 GeV, which is the
one closest to the centre of the bin in which the highest excess is observed in the ``bb chan-
nel. The shown shapes correspond to LT > 40 GeV for eµ, LT > 60 GeV for eτh and µτh, and
LT > 80 GeV for τhτh.

Figure 4 shows the limit on σB for the ``ττ final state in the mH-mA plane. Signal cross sections
of about 5–10 fb are excluded in most of the mH-mA plane (500 < mH/A < 1000 GeV and
90 < mA/H < 400 GeV).

7.3 Combination in the context of 2HDM

Observed and expected upper limits on the signal cross section modifier µ = σ95%/σth are
also derived and reported in Fig. 5, where σth is the theory cross section of the 2HDM signal
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Figure 3: SVFIT mass distributions for different final states of the H → ZA → ``ττ process,
where the Z boson decays to ee (right column) and µµ (left column). The expected signal
corresponding to mH = 350 GeV and mA = 90 GeV, whose cross section times branching
fraction is normalised to the NNLO SUSHI prediction, is superimposed for tan β = 1.5 and
cos(β− α) = 0.01 in the 2HDM type-II scenario. Only statistical uncertainties are reported as a
hatched band.
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Figure 4: Observed 95% CL upper limits on σH/A→ZA/H→``ττ as a function of mA and mH.

benchmark used in this analysis. The results are obtained from the combination of the ``bb
and ``ττ final states. This search is not able to exclude the high-mass regions where mA >
300 GeV and mH > 300 GeV, due to the drop in the signal cross section, where the A/H → tt
channel opens up for mA/H > 2mt, where mt is the top quark mass [16]. Furthermore, in
the region where highly-boosted topologies start contributing (mH ≈ 10 mA), the sensitivity is
lower relative to the rest of the plane, primarily caused by the inefficiency in reconstructing
signal decay products in such a regime. Still, a significant portion of the benchmark masses
is excluded for a 2HDM type-II scenario with tan β = 1.5 and cos(β − α) = 0.01, delimited
by the solid contour in Fig. 5. The observed 95% CL exclusion region is localised in the range
mH = 200–700 GeV and mA = 20–270 GeV for the decay H → ZA, and similarly in the range
mA = 200–700 GeV and mH = 120–270 GeV for the A → ZH decay. The region where |mH −
mA| < mZ is kinematically inaccessible.

The limits on µ can be also visualised as a function of the 2HDM parameters tan β and cos(β−
α) for a given pair of mA and mH, from the combination of ``bb and ``ττ final states. Results
are given in Fig. 6, where the exclusion limits on the parameters are shown for mH = 378 GeV
and mA = 188 GeV, a mass pair chosen to be within the exclusion region of Fig. 5. The area
contained within the solid line shows the parameter space excluded for the chosen mass pair,
where tan β lies between 0.5 and 2.3 and cos(β− α) between −0.7 and 0.3.

8 Summary
The paper describes the first CMS search for a new resonance decaying into a lighter resonance
and a Z boson. Two searches have been performed, targeting the decay of the lighter resonance
into either a pair of oppositely charged τ leptons or a bb pair. The Z boson is identified via
its decays to electrons or muons. The search is based on data corresponding to an integrated
luminosity of 19.8 fb−1 in proton–proton collisions at

√
s = 8 TeV. Deviations from the SM

expectations are observed with a global significance of less than 2 SD and upper limits on the
product of cross section and branching fraction are set. The search excludes σB as low as
5 fb and 1 fb for the ``bb and ``ττ final states, respectively, depending on the light and heavy
resonance mass values.
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Figure 5: Observed limits on the signal strength µ = σ95%/σth for the 2HDM benchmark, after
combining results from ``bb and ``ττ final states. The cross sections are normalised to the
NNLO SUSHI prediction, for a 2HDM type-II scenario with tan β = 1.5 and cos(β− α) = 0.01.
The dashed contour shows the region expected to be excluded. The solid contour shows the
region excluded by the data.

Limits are also set on the mass parameters of the type-II 2HDM model that predicts the pro-
cesses H → ZA and A → ZH, where H and A are CP-even and CP-odd scalar bosons, re-
spectively. Combining the ``bb and ``ττ final states, the specific model corresponding to the
parameter choice cos(β − α) = 0.01 and tan β = 1.5 is excluded for mH in the range 200–
700 GeV and mA in the range 20–270 GeV with mH > mA, or alternatively for mA in the range
200–700 GeV and mH in the range 120–270 GeV with mA > mH.

Limits on the signal cross section modifier are also derived as a function of tan β and cos(β− α)
parameters. As a result, for specific mH-mA mass values, a fairly large region in the parameter
space tan β vs. cos(β− α) is excluded. This covers a region unexplored so far, that cannot be
probed by studying production and decay modes of the SM-like Higgs boson. In particular, for
mH = 378 GeV and mA = 188 GeV, a range where tan β lies between 0.5 and 2.3 and cos(β− α)
between −0.7 and 0.3 is excluded, after the combination of the ``bb and ``ττ final states.
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress,
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G. Cappelloa, M. Chiorbolia ,b, S. Costaa ,b, A. Di Mattiaa, F. Giordanoa,b, R. Potenzaa ,b,
A. Tricomia,b, C. Tuvea ,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
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M. Mooney, J. Olsen, C. Palmer, P. Piroué, H. Saka, D. Stickland, C. Tully, A. Zuranski

University of Puerto Rico, Mayaguez, USA
S. Malik

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, A.W. Jung,
K. Jung, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun,
A. Svyatkovskiy, F. Wang, W. Xie, L. Xu

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin,
M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-
Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, P. Tan, M. Verzetti



34 A The CMS Collaboration

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Ferencek, Y. Gershtein,
R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath,
K. Nash, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone,
S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali68, A. Castaneda Hernandez68, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado,
S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon69, V. Krutelyov, R. Mueller, I. Osipenkov,
Y. Pakhotin, R. Patel, A. Perloff, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer2

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori,
K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao,
A. Melo, H. Ni, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu,
T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, J. Wood, F. Xia

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe,
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43: Also at National Technical University of Athens, Athens, Greece
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
47: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
48: Also at Adiyaman University, Adiyaman, Turkey
49: Also at Mersin University, Mersin, Turkey
50: Also at Cag University, Mersin, Turkey
51: Also at Piri Reis University, Istanbul, Turkey
52: Also at Gaziosmanpasa University, Tokat, Turkey
53: Also at Ozyegin University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Hacettepe University, Ankara, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
61: Also at School of Physics and Astronomy, University of Southampton, Southampton,



36 A The CMS Collaboration

United Kingdom
62: Also at Instituto de Astrofı́sica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
Belgrade, Serbia
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