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Abstract

A search for new physics is performed using events that contain one or more jets, no
isolated leptons, and a large transverse momentum imbalance, as measured through
the MT2 variable, which is an extension of the transverse mass in events with two
invisible particles. The results are based on a sample of proton-proton collisions col-
lected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and
that corresponds to an integrated luminosity of 2.3 fb−1. The observed event yields
in the data are consistent with predictions for the standard model backgrounds. The
results are interpreted using simplified models of supersymmetry and are expressed
in terms of limits on the masses of potential new colored particles. Assuming that the
lightest neutralino is stable and has a mass less than about 500 GeV, gluino masses
up to 1550–1750 GeV are excluded at 95% confidence level, depending on the gluino
decay mechanism. For the scenario of direct production of squark-antisquark pairs,
top squarks with masses up to 800 GeV are excluded, assuming a 100% branching
fraction for the decay to a top quark and neutralino. Similarly, bottom squark masses
are excluded up to 880 GeV, and masses of light-flavor squarks are excluded up to
600–1260 GeV, depending on the degree of degeneracy of the squark masses.
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1 Introduction
Searches for new physics based on final states with jets and large transverse momentum imbal-
ance are sensitive to broad classes of new physics models, including supersymmetry (SUSY) [1–
8]. Such searches were previously conducted by both the CMS [9–13] and ATLAS [14, 15] col-
laborations, using data from 8 TeV proton-proton (pp) collisions. They placed lower limits on
the masses of pair-produced colored particles near the TeV scale for a broad range of production
and decay scenarios and provided some of the most stringent constraints on the production of
supersymmetric particles. These searches are particularly interesting at this time as they are
among the first to benefit from the increase in the CERN LHC center-of-mass energy from 8
to 13 TeV, as shown in two recent analyses of these final states by ATLAS and CMS [16, 17].
As a consequence of the increase in parton luminosity at 13 TeV, the cross section for the pair
production of particles with the color quantum numbers of a gluon increases by more than a
factor of 30 for a particle of mass 1.5 TeV. In this paper we present results of a search for new
physics in events with jets and significant transverse momentum imbalance, as characterized
by the “transverse mass” MT2, a kinematic variable that was first proposed for use in SUSY
searches in Refs. [18, 19] and used in several Run 1 searches [13, 20]. The search is performed
using a data sample corresponding to an integrated luminosity of 2.3 fb−1 of pp collisions col-
lected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. In this analysis
we select events with at least one jet and veto events with an identified, isolated lepton. Signal
regions are defined by the number of jets, the number of jets identified as a product of b quark
fragmentation (b-tagged jets), the scalar sum of jet transverse momenta (HT), and MT2. The
observed event yields in these regions are compared with the background expectation from
standard model (SM) processes and the predicted contributions from simplified supersymmet-
ric models of gluino and squark pair production [21–25].

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and
6 m in diameter, which provides an axial magnetic field of 3.8 T. Within the field volume are
several particle detection systems. Charged-particle trajectories are measured with silicon pixel
and strip trackers, covering 0 ≤ φ < 2π in azimuth and |η| < 2.5 in pseudorapidity, where
η ≡ − ln[tan(θ/2)] and θ is the polar angle of the trajectory of the particle with respect to the
counterclockwise beam direction. The transverse momentum, the component of the momen-
tum p in the plane orthogonal to the beam, is defined in terms of the polar angle as pT = p sin θ.
A lead-tungstate crystal electromagnetic calorimeter and a brass and scintillator hadron calor-
imeter surround the tracking volume, providing energy measurements of electrons, photons,
and hadronic jets in the range |η| < 3.0. Muons are identified and measured within |η| < 2.4
by gas-ionization detectors embedded in the steel flux-return yoke of the solenoid. Forward
calorimeters on each side of the interaction point encompass 3.0 < |η| < 5.0. The detector
is nearly hermetic, allowing momentum imbalance measurements in the plane transverse to
the beam direction. A two-tier trigger system selects pp collision events of interest for use in
physics analyses. A more detailed description of the CMS detector is available in Ref. [26].

3 Simulated event samples
Monte Carlo (MC) simulations are used in the estimate of some of the SM backgrounds (see
Section 6), as well as to calculate the selection efficiency for various new physics scenarios.
The main background and control samples (W+jets, Z+jets, tt+jets, γ+jets, and QCD multijet
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events), as well as signal samples of gluino and squark pair production, are generated with
the MADGRAPH 5 generator [27] interfaced with PYTHIA 8.2 [28] for fragmentation and par-
ton showering. Signal processes are generated at leading order with up to two extra partons
present in the event. Other background samples are generated with MADGRAPH aMC@NLO 2.2
[29] (s channel single top, ttW, ttZ, ttH) and with POWHEG v2 [30, 31] (t channel single top,
tW), both interfaced with PYTHIA 8.2 [28]. Next-to-leading order (NLO) and next-to-NLO
cross sections [29–34] are used to normalize the simulated background samples, while NLO
plus next-to-leading-logarithm (NLL) calculations [35] are used for the signal samples. The
NNPDF3.0LO and NNPDF3.0NLO [36] parton distribution functions (PDF) are used, respec-
tively, with MADGRAPH, and with POWHEG v2 and MADGRAPH aMC@NLO. Standard model
processes are simulated using a GEANT4 based model [37] of the CMS detector, while the sim-
ulation of new physics signals is performed using the CMS fast simulation package [38]. All
simulated events include the effects of pileup, i.e. multiple pp collisions within the same or
neighboring bunch crossings, and are processed with the same chain of reconstruction pro-
grams as used for collision data.

4 Event reconstruction
Event reconstruction is based on the particle-flow (PF) algorithm [39, 40], which combines in-
formation from the tracker, calorimeter, and muon systems to reconstruct and identify PF can-
didates, i.e. charged and neutral hadrons, photons, muons, and electrons. We select events with
at least one reconstructed vertex that is within 24 cm (2 cm) of the center of the detector in the
direction along (perpendicular to) the beam axis. In the presence of pileup, usually more than
one such vertex is reconstructed. We designate as the primary vertex (PV) the one for which
the summed p2

T of the associated charged PF candidates is the largest. Charged PF candidates
associated with the PV and neutral particle candidates are clustered into jets using the anti-kT
algorithm [41] with a distance parameter of 0.4. The jet energy is calibrated using a set of cor-
rections similar to those developed for the 8 TeV data [42]: an offset correction accounting for
neutral energy arising from pileup interactions in the area of the reconstructed jet; a relative
correction that makes the jet energy response, i.e. the ratio of the reconstructed to the original
jet energy, uniform in pT and η; an absolute correction that restores the average jet energy re-
sponse to unity; and a residual correction, applied to account for remaining differences between
data and simulation. Jets originating from b quarks are identified by the combined secondary
vertex algorithm [43]. We use a working point with a tagging efficiency of approximately 65%
for jets originating from b quarks with momenta typical of top quark pair events. For jets with
transverse momentum above approximately 200 GeV, the tagging efficiency decreases roughly
linearly, reaching an efficiency of about 45% at 600 GeV. The probability to misidentify jets aris-
ing from c quarks as b jets is about 12%, while the corresponding probability for light-flavor
quarks or gluons is about 1.5%. The transverse hadronic energy, HT, is defined as the scalar
sum of the magnitudes of the jet transverse momenta, while the missing transverse hadronic
momentum, Hmiss

T , is defined as the negative vector sum of the transverse momenta of the same
jets. Except for a few cases described later, the construction of higher-level variables and the
event categorization are based on jets with pT > 30 GeV, |η| < 2.5, and passing loose require-
ments on the jet composition designed to reject rare spurious signals arising from noise and
failures in the event reconstruction [44]. The transverse momentum imbalance (~pmiss

T ), whose
magnitude is referred to as Emiss

T , is defined as the negative of the vector sum of the transverse
momenta of all reconstructed charged and neutral PF candidates. Electron candidates are re-
constructed as clusters of energy deposits in the electromagnetic calorimeter, matched to tracks
in the silicon tracker [45]. We identify electrons having pT > 10 GeV by loose requirements
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on the shape of these energy deposits, on the ratio of energy in associated hadron and elec-
tromagnetic calorimeter cells (H/E), on the geometric matching between the energy deposits
and the associated track, and on the consistency between the energy reconstructed from cal-
orimeter deposits and the momentum measured in the tracker. In addition, we require that
the associated track be consistent with originating from the PV. The PF algorithm applies a
looser set of requirements to identify “PF electrons” with even smaller transverse momenta.
We use it to extend the range of identified electrons down to pT > 5 GeV. Muon candidates
are reconstructed by combining tracks found in the muon system with corresponding tracks in
the silicon detectors. Candidates are required to be classified as either Global Muons or Tracker
Muons, according to the definitions given in Ref. [46], when they have pT > 10 GeV. The as-
sociated silicon detector track is required to be consistent with originating from the PV. The
PF algorithm applies looser requirements to identify “PF muons” with even smaller transverse
momenta. We use it to extend the range of identified muons down to pT > 5 GeV. The isolation
of electrons and muons is defined as the scalar sum of the transverse momenta of all neutral
and charged PF candidates within a cone ∆R =

√
(∆η)2 + (∆φ)2 along the lepton direction.

The variable is corrected for the effects of pileup using an effective area correction [47], and the
size of the cone is dependent on the lepton pT according to:

∆R =


0.2, pT ≤ 50 GeV.
10 GeV

pT
, 50 < pT ≤ 200 GeV,

0.05, pT > 200 GeV.

(1)

The relative lepton isolation is the lepton isolation divided by the lepton pT. When select-
ing PF electrons and muons, as well as isolated PF charged hadrons, a track–only isolation
computed in a larger cone is used. Relative track isolation is calculated using all charged PF
candidates within a cone ∆R < 0.3 and longitudinal impact parameter |∆z| < 0.1 cm relative
to the PV. The efficiency for selecting prompt electrons increases from 65–70% at a pT of 10 GeV
to 80–90% at 50 GeV, and plateaus at 85–95% above 100 GeV, where the smaller values are from
signal samples with high jet multiplicity and the larger numbers are from tt+jets events. For
prompt muons, the efficiency increases from 75–90% at a pT of 10 GeV to 85–95% at 50 GeV, and
plateaus at 95–99% above 200 GeV. Photon candidates, used in the estimation of the Z → νν
background, are reconstructed from deposits in the electromagnetic calorimeter and are se-
lected using the shower shape variable (σηη), the ratio H/E, and a quantity characterizing the
photon isolation [48]. We require that the sum of pT values of the charged hadrons within an
isolation cone ∆R < 0.3 be less than 2.5 GeV.

5 Event selection
Before assigning events to different signal regions, the baseline selection described in this sec-
tion is implemented. Collision events are selected using triggers with different requirements
on HT, Emiss

T , and Hmiss
T . Table 1 summarizes the triggers and corresponding offline selections,

after which the triggers are found to be >98% efficient. As shown in the table, events with
HT < 1000 GeV are selected with triggers that impose an Emiss

T requirement. As a consequence,
for the low HT sample we employ a tighter requirement on the offline value of Emiss

T . The events
passing the selections of Table 1 are further divided according to the total number of jets (Nj)
and the number of jets identified as originating from b quarks (Nb). When determining Nb, we
lower the jet pT threshold from 30 to 20 GeV in order to increase sensitivity to potential signal
scenarios with soft decay products. For events with at least two reconstructed jets, we start
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Table 1: The three signal triggers and the corresponding offline selections.

Online trigger selection [GeV] Offline selection [GeV]
HT > 800 HT > 1000 & Emiss

T > 30
HT > 350 & Emiss

T > 100 HT > 450 & Emiss
T > 200

Hmiss
T > 90 & Emiss

T > 90 & noise removal criteria HT > 200 & Emiss
T > 200

with the pair having the largest dijet invariant mass and iteratively cluster all selected jets us-
ing a hemisphere algorithm that minimizes the Lund distance measure [49, 50] until two stable
pseudo-jets are obtained. The resulting pseudo-jets together with the ~pmiss

T are used to deter-
mine the stransverse mass MT2 [18, 19]. This kinematic mass variable, which can be considered
as a generalization of the transverse mass variable MT defined in Ref. [51], was introduced as a
means to measure the mass of pair-produced particles in situations where both decay to a final
state containing the same type of undetected particle. The variable MT2 is defined as:

MT2 = min
~p miss

T
X(1)+~p miss

T
X(2)=~p miss

T

[
max

(
M(1)

T , M(2)
T

)]
, (2)

where ~pmiss
T

X(i) (with i = 1,2) are the unknown transverse momenta of the two undetected
particles and M(i)

T the transverse masses obtained by pairing any of the two invisible parti-
cles with one of the two pseudojets. The minimization is performed over trial momenta of the
undetected particles fulfilling the ~pmiss

T constraint. Most of the background from QCD multi-
jet events (defined more precisely in Section 6) is characterized by very small values of MT2,
while a wide class of new physics models imply large values of stransverse mass. Figure 1
shows the MT2 distributions expected from simulation for the background processes and one
signal model, the gluino-mediated bottom squark production described in Section 7. Selec-
tions based on the MT2 variable are a powerful means to reduce the contribution from multijet
events to a subleading component of the total background. A complete discussion of the MT2
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Figure 1: Distribution of the MT2 variable in simulated background and signal event samples
after the baseline selection is applied. The line shows the expected MT2 distribution for a signal
model of gluino-mediated bottom squark production with the masses of gluino and lightest
neutralino equal to 1100 and 100 GeV, respectively.

properties as a discovery variable and details about the exact calculation of the variable are
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given in Refs. [13, 20]. The main selection to suppress the background from multijet produc-
tion is the requirement MT2 > 200 GeV in events with at least two reconstructed jets. Even after
this requirement, a residual background contribution with large MT2 values remains, arising
primarily from events in which the energy of a jet has been severely undermeasured. To fur-
ther suppress background events resulting from jet mismeasurement, we require ∆φmin > 0.3,
where ∆φmin is defined as minimum azimuthal angle between the ~pmiss

T vector and up to four
highest pT jets. For the purpose of the ∆φmin calculation only, we consider jets with |η| < 4.7.
The number and definition of jets entering the ∆φmin calculation are chosen to maximize signal
to background separation. In addition, we require that the magnitude of the vector difference
in the transverse momentum imbalance determined using either the selected jets (~Hmiss

T ) or all
PF candidates (~pmiss

T ) satisfy |~pmiss
T − ~Hmiss

T |/Emiss
T < 0.5. This requirement protects against

large imbalances arising from objects with pT < 30 GeV or |η| > 2.5. Finally, events with possi-
ble contributions from beam halo processes or anomalous noise in the calorimeters are rejected
using dedicated filters [52]. To reduce the background from SM processes with genuine Emiss

T
arising from the decay of a W boson, we reject events with an identified electron or muon with
pT > 10 GeV and |η| < 2.4. Only electrons (muons) with a relative isolation less than 0.1 (0.2)
are considered in the veto. Events are also vetoed if they contain an isolated charged PF candi-
date (electron, muon or charged hadron) to reject τ leptons decaying to leptons or hadrons. To
avoid loss of efficiency in potential signals with large jet multiplicities, events are only vetoed if
the transverse mass (MT) formed by the momentum of the isolated charged PF candidate and
~pmiss

T is less than 100 GeV, consistent with the leptonic decay of a W boson. For charged candi-
dates identified as a PF electron or muon, we veto the event if the candidate has pT > 5 GeV
and a relative track isolation of less than 0.2. For charged candidates identified as a PF hadron,
we veto the event if the candidate has pT > 10 GeV and a relative track isolation of less than
0.1.

5.1 Signal regions

Signal regions are defined separately for events with either exactly one jet passing the counting
criteria above, or with two or more jets. Events with Nj ≥ 2 are categorized based on HT, Nj,
Nb as follows:

• 5 bins in HT: [200,450], [450, 575], [575, 1000], [1000, 1500], and >1500. These bins,
which are expressed in GeV, are also referred to as very low HT, low HT, medium
HT, high HT, and extreme HT regions,

• 11 bins in Nj and Nb: 2–3j & 0b, 2–3j & 1b, 2–3j & 2b, 4–6j & 0b, 4–6j & 1b, 4–6j & 2b,
≥7j & 0b, ≥7j & 1b, ≥7j & 2b, 2–6j & ≥3b, ≥7j & ≥3b.

Each bin defined by the HT, Nj, Nb requirements above is referred to as a “topological region”.
We further divide each topological region in bins of MT2, expressed in GeV, as follows:

• 3 bins at very-low HT: [200,300], [300,400], and >400,

• 4 bins at low HT: [200,300], [300,400], [400,500], and >500,

• 5 bins at medium HT: [200,300], [300,400], [400,600], [600,800], and >800,

• 5 bins at high HT: [200,400], [400,600], [600,800], [800, 1000], and >1000,

• 5 bins at extreme HT: [200,400], [400,600], [600,800], [800,1000], and >1000.

For events with Nj = 1, i.e. belonging to the “monojet” signal regions, the MT2 variable is not
defined. We instead opt for a simpler strategy with signal regions defined by the pT of the jet
and Nb:
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• Nb: 0b, ≥1b,

• 7 bins in jet pT, indicated in GeV, which are defined as follows: [200,250], [250,350],
[350,450], [450,575], [575,700], [700,1000], and >1000.

In order to have more than event expected in each signal region, the actual MT2 (or jet pT)
binning is coarser than indicated above for some of the topological regions. A complete list of
the signal bins is provided in Tables A.1, A.2, and A.3 in Appendix A. In total, we define 172
separate signal regions.

6 Backgrounds
There are three sources of SM background to potential new physics signals in a jets plus Emiss

T
final state:

• “Lost lepton background”: events with genuine invisible particles, i.e. neutrinos,
from leptonic W boson decays where the charged lepton is either out of acceptance,
not reconstructed, not identified, or not isolated. This background comes from both
W+jets and tt+jets events, with a small contribution from single top quark produc-
tion, and is one of the dominant backgrounds in nearly all search regions. It is es-
timated using a one-lepton control sample, obtained by inverting the lepton veto in
each topological region.

• “Z → νν background”: Z+jets events where the Z boson decays to neutrinos. This
almost irreducible background is most similar to potential signals. It is a major back-
ground in nearly all search regions, its importance decreasing for tighter require-
ments on Nb. This background is estimated using γ+jets and Z → `+`− control
samples.

• “Multijet background”: mostly instrumental background that enters a search region
because of either significant mismeasurement of the jet momentum or sources of
anomalous noise in the detector. There is also a small contribution from events with
genuine Emiss

T from neutrinos produced in semi-leptonic decays of charm and bot-
tom quarks. To suppress this background we apply the selections described in Sec-
tion 5, after which this type of background is sub-dominant in almost all search
regions. The background is estimated from a control sample obtained by inverting
the ∆φmin requirement in each topological region.

For all three categories, the event yields in the control regions are translated into background
estimates in the signal regions using “transfer factors”, either based on simulation or measured
in data, which are described in the next sections.

6.1 Estimation of the background from leptonic W boson decays

Single-lepton control regions are used to estimate the background arising from leptonic W bo-
son decays in W+jets and tt+jets processes. Control region events are selected using the same
triggers as for signal regions, and the baseline selections of Section 5 are applied with the ex-
ception of the lepton veto. Instead, we require exactly one lepton candidate passing either the
PF lepton selection (e or µ only) or the lepton selection used in lepton vetoes. In addition, we
require MT(`,~pmiss

T ) < 100 GeV to reduce potential contamination from signal. Selected events
are then grouped into the categories described in Section 5.1, binning the single-lepton control
regions in the HT, Nj, and Nb dimensions, but not in MT2, to preserve statistical precision. The
binning in Nj and Nb is the same as that of the signal regions, except for signal bins with Nj ≥ 7
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and Nb ≥ 1. For these signal regions, the background prediction is obtained using a control
region with the same HT selection as the signal and requiring Nj ≥ 7 and 1 ≤ Nb ≤ 2. This is
motivated by the scarcity of data in control regions with Nj ≥ 7 and Nb ≥ 2 as well as poten-
tial contamination from signal in bins with Nj ≥ 7 and Nb ≥ 3. For events with Nj = 1, one
control region is defined for each bin of jet pT. The background yield NSR

1` in each signal region
SR is obtained from the corresponding single-lepton yield NCR

1` in the control region CR by the
application of transfer factors R0`/1`

MC and kMC, and according to the following equation:

NSR
1`
(

HT, Nj, Nb, MT2
)
= NCR

1`
(

HT, Nj, Nb
)

R0`/1`
MC

(
HT, Nj, Nb

)
kMC (MT2) . (3)

The number of events for which we fail to reconstruct or identify an isolated lepton candidate
is obtained via the factor R0`/1`

MC

(
HT, Nj, Nb

)
, which accounts for lepton acceptance and selec-

tion efficiency and the expected contribution from the decay of W bosons to hadrons through
an intermediate τ lepton. The factor R0`/1`

MC is obtained from simulation and corrected for small
measured differences in lepton efficiency between data and simulation. The fraction of events
in each topological region expected to populate a particular MT2 bin, kMC (MT2), is used to
obtain the estimate in each search bin and is also obtained from simulation. Normalization to
data control regions reduces reliance on the MC modeling of most kinematic quantities, except
MT2. The uncertainty in kMC (MT2) is evaluated in simulation by variations of the important ex-
perimental and theoretical parameters. Reconstruction uncertainties, assessed by varying the
tagging efficiency for b quarks, and by evaluating the impact of variations in jet response on the
counting of jets and b-tagged jets, Emiss

T , and MT2, are typically found to be less than 10%, but
can reach as much as 40% in some bins. Renormalization and factorization scales, PDFs [53],
and the relative composition of W+jets and tt+jets are varied to assess the dominant theoretical
uncertainties, which are found to be as large as 30%. Based on these results, for kMC (MT2) we
assign a shape uncertainty that reaches 40% in the highest bins of MT2. The MC modeling of the
MT2 distribution is checked in data using control regions enriched in events originating from
either W+jets or tt+jets, as shown in the left and right plots of Fig. 2, respectively. An addi-
tional check is performed by comparing the standard estimate with that obtained by replacing
the factor kMC (MT2) in Eq. (3), with an extra dimension in the binning of the control region,
which becomes NCR

1`

(
HT, Nj, Nb, MT2

)
. The two estimates agree within the statistical precision

permitted by the size of the control regions. The single-lepton control regions typically have
1–2 times as many events expected as compared to the corresponding signal region. The sta-
tistical uncertainty in this event yield ranges from 1–100%, depending on the region, and is
propagated to the final uncertainty in the background estimate. The transfer factor R0`/1`

MC de-
pends on the MC modeling of the lepton veto and MT selection efficiencies. Leptonic Z boson
decays are used to evaluate the MC modeling of lepton selection efficiencies, and the result-
ing uncertainty propagated to the background estimate is found to be as large as 7%. The MT
selection efficiency is cross-checked using a similar dilepton sample and removing one of the
leptons to mimic events where the W boson decays to a lepton, and an uncertainty of 3% is
assigned by comparing data to simulation. The uncertainty in the MC modeling of the lepton
acceptance, assessed by varying the renormalization and factorization scales and PDF sets, is
found to be as large as 5%. Finally, the uncertainty in the b tagging efficiency and the jet energy
scale is typically less than 10%, although it can be as large as 40% in some bins. The effect of
signal contributions to the lost-lepton control samples can be non negligible in some parts of
signal parameter space, and is taken into account in the interpretations presented in Section 7.
Such a contribution would cause an overestimate of the lost-lepton background in the signal
regions. In order to account for this effect, which is typically small but can become as large as
20% in some compressed scenarios, the predicted signal yield in each signal region is corrected
by the amount by which the background would be overestimated.
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Figure 2: Comparison between simulation and data in the MT2 observable. The left and right
plots correspond to control samples enriched in W+jets and tt+jets, respectively. The sum of
two distributions from simulation is scaled to have the same integral as the corresponding
histograms from data. The uncertainties shown are statistical only.

6.2 Estimation of the background from Z(νν)+jets

The Z → νν background is estimated using a γ+jets control sample selected using a single-
photon trigger. We select events where the photon has pT > 180 GeV, to mimic the implicit
requirement on the pT of the Z boson arising from the baseline selection MT2 > 200 GeV, and
|η| < 2.5. The full baseline selection requirements are made based on kinematic variables
re-calculated after removing the photon from the event, to replicate the Z → νν kinematics.
Adopting a similar strategy as that used for the estimation of the lost-lepton background, se-
lected events are then grouped into the categories described in Section 5.1, binning the photon
control regions in the HT, Nj, and Nb dimensions, but not in MT2, to preserve statistical preci-
sion. For events with Nj = 1, one control region is defined for each bin of jet pT. The back-
ground estimate NSR

Z→νν in each signal bin is obtained from the events yield NCR
γ in the control

region by the application of transfer factors according to Eq. (4):

NSR
Z→νν

(
HT, Nj, Nb, MT2

)
=

NCR
γ

(
HT, Nj, Nb

)
Pγ

(
HT, Nj, Nb

)
f RZ/γ

MC

(
HT, Nj, Nb

)
kMC (MT2) .

(4)

The prompt-photon purity, Pγ, which accounts for photons arising from meson decays, is mea-
sured in data by performing a template fit of the charged-hadron isolation distribution for each
HT, Nj, and Nb region. The shape of the template for prompt photons is obtained from data
by measuring the charged-hadron activity in cones well-separated from the photon and any
jet. The isolation template for background photons arising from meson decays, which hap-
pen normally within hadronic jets, is also obtained from data using photon candidates that fail
the σηη requirement. A prompt photon purity of 90–100%, as measured in data, is well repro-
duced by simulation as seen in the left plot of Fig. 3. A separate determination of the prompt
photon purity using a tight-to-loose ratio method [54] obtained from the charged-hadron iso-
lation sideband is found to yield consistent results. The Z → νν background in each bin of
HT, Nj, and Nb is obtained from the corresponding photon control region yield via the fac-
tor RZ/γ

MC , which accounts for the photon acceptance and selection efficiency and the ratio of
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Figure 3: The left plot shows the photon purity, Pγ, measured in data for the single-photon
control sample compared with the values extracted from simulation. The right plots show
the Z/γ ratio in simulation and data as a function of HT (upper plot), and the corresponding
double ratio (lower plot).

cross sections for the production of Z+jets and γ+jets events. The ratio RZ/γ
MC is obtained from

γ+jet events simulated with MADGRAPH with an implicit requirement ∆R > 0.4 between the
prompt photon and the nearest parton. As no such requirement can be made in data, a cor-
rection factor f = 0.92 is applied to account for the fraction of selected photons passing the
∆R requirement. This factor is determined from studies with samples of MADGRAPH+PYTHIA

and PYTHIA-only multijet events, the latter having no explicit requirement on the separation
between the photon and the nearest parton. The ratio RZ/γ

MC obtained from simulation is vali-
dated in data using Z → `+`− events. In this validation, the baseline selection is applied to
the Z → `+`− sample after removing the reconstructed leptons from the event, to replicate
the kinematics of Z → νν, and the top-quark background contamination is subtracted. The
upper right plot of Fig. 3 shows the RZ/γ ratios in simulation and in data, while the double
ratio, RZ→`+`−/γ

data /RZ→`+`−/γ
MC , is shown in the lower right plot. The values are shown in bins of

HT, after corrections to account for measured differences between data and simulation in lep-
ton and photon selection efficiencies and in b tagging. The double ratio shows no significant
trend as a function of HT, and a correction factor of 0.95 is applied to RZ/γ

MC to account for the
observed deviation from unity. Similarly, the double ratio as a function of Nj and Nb shows no
significant trends and is found to be consistent with unity after the same correction factor is
applied. As in the case of the estimate of the single-lepton background, normalization to data
control regions reduces reliance on the MC modeling to a single dimension, MT2. The fraction
of events in each topological region expected to populate a particular MT2 bin, kMC (MT2), is
used to obtain the estimate in each search bin. The uncertainty in this fraction in each MT2 bin is
evaluated in simulation by variations of the important experimental and theoretical quantities.
Theoretical uncertainties represent the largest contribution, and are assessed by variations of
the renormalization and factorization scales and PDF sets. Smaller contributions from recon-
struction uncertainties are determined by varying the b-tagging efficiency and the mistag rate,
and by evaluating the impact of variations in jet energy response on the counting of jets and
b-tagged jets, Emiss

T , and MT2. Experimental and theoretical uncertainties in kMC (MT2) total
as much as 30% at large values of MT2. Based on these results, we assign an uncertainty for
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kMC (MT2) that reaches 40% in the highest bins of MT2. The MC modeling of the MT2 variable is
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Figure 4: The shape of the MT2 distribution from Z → νν simulation compared to shapes
extracted from γ and W data control samples in the medium- (left plot) and high-HT regions
(right plot). The MT2 distributions in the data control samples are obtained after removing the
reconstructed γ or lepton from the event, to replicate the kinematics of Z→ νν. The ratio of the
shapes derived from data to the Z → νν simulation shape is shown in the lower plots, where
the shaded band represents the uncertainty in the MC modeling of the MT2 variable.

checked in data using highly populated control samples of γ+jets and W→ `ν events. Figure 4
shows good agreement between the MT2 distribution obtained from these samples with that
from Z → νν simulation in the medium- and high-HT regions. In this comparison, the γ+jets
sample is corrected based on Pγ, f , and RZ/γ

MC , while the W boson sample is corrected for top
quark background contamination and rescaled by a RZ/W

MC factor analogous to RZ/γ
MC . Similarly

to what is done for the lost-lepton background, an additional check is performed by compar-
ing the standard estimate with that obtained by replacing the factor kMC (MT2) in Eq. (4) with
an extra dimension in the binning of the control region, which becomes NCR

γ

(
HT, Nj, Nb, MT2

)
.

These two estimates agree within the statistical precision permitted by the size of the control
regions. The single-photon control regions typically have 2–3 times as many events as com-
pared to the corresponding signal regions. The statistical uncertainty in this yield ranges from
1–100%, depending on the region, and is propagated in the final estimate. The dominant un-
certainty in the MC modeling of RZ/γ

MC comes from the validation of the ratio using Z → `+`−

events. One-dimensional projections of the double ratio are constructed—separately in bins of
number of jets, number of b-tagged jets, and HT (Fig. 3, right)—and an uncertainty in RZ/γ

MC in
each bin of Nj, Nb, and HT is determined by adding in quadrature the uncertainty in the ratio
RZ→``/γ from the corresponding bins of the one-dimensional projections. As sufficient data are
not available to evaluate the double ratio for regions with Nb ≥ 3, and as no trends are visible
in the Nb distribution for Nb < 3, we assign twice the uncertainty obtained in the nearest bin,
i.e. Nb = 2. This uncertainty ranges from 10 to 100%, depending on the search region. An ad-
ditional 11% uncertainty in the transfer factor, based on the observed offset of the double ratio
from unity, is added in quadrature with the above. The uncertainty in the measurement of the
prompt photon purity includes a statistical contribution from yields in the isolation sideband
that is typically 5–10%, but can reach as much as 100% for search regions requiring extreme
values of HT or large Nj. An additional 5% uncertainty is derived from variations in purity
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caused by modifications of the signal and background templates, and from a “closure test” of
the method in simulation. We indicate with closure test a measurement of the ability of the
method to predict correctly the true number of background events when applied to simulated
samples. Finally, an uncertainty of 8% is assigned to cover differences in the correction fraction
f observed between MADGRAPH+PYTHIA and PYTHIA-only simulations.

6.3 Estimation of the multijet background

The multijet background consists predominantly of light-flavor and gluon multijet events.
Though this background is expected to be small after requiring MT2 > 200 GeV, we estimate
any residual contribution based on data control samples. For events with at least two jets, a
multijet-enriched control region is obtained in each HT bin by inverting the ∆φmin requirement
described in Section 5. For the high- and extreme-HT bins, control region events are selected
using the same trigger as for signal events. For lower-HT regions, the online Emiss

T require-
ment precludes the use of the signal trigger, and the control sample is instead selected using
prescaled HT triggers with lower thresholds. Prescaled triggers accept only a fixed fraction
of the events that satisfy their selection criteria. The extrapolation from low- to high-∆φmin is

 [GeV]T2M
60 70 100 200 300 400

0.01

0.1

1

10

φr
 < 1500 GeVT1000 < H

Data

Data after subtraction

Fit

 (13 TeV)-1 2.3 fbCMS

Figure 5: Distribution of the ratio rφ as a function of MT2 for the high-HT region. The
fit is performed on the background-subtracted data points (open markers) in the interval
70 < MT2 < 100 GeV delimited by the two vertical dashed lines. The solid points represent
the data before subtracting non-multijet backgrounds using simulation. Data point uncertain-
ties are statistical only. The line and the band around it show the fit to a power-law function
and the associated uncertainty.

based on the following ratio:

rφ(MT2) = N(∆φmin > 0.3)/N(∆φmin < 0.3). (5)

Studies in simulation show the ratio to be well described by a power law function, a (MT2)
b.

The parameters a, b are determined in each HT bin by fitting the ratio rφ(MT2) in a sideband in
data, i.e. 60 < MT2 < 100 GeV, after subtracting non-multijet contributions using simulation.
For the high- and extreme-HT regions, the fit is performed in a slightly narrower MT2 window,
with the lower edge increased to 70 GeV. An example in the high-HT region is shown in Fig. 5.
The inclusive multijet contribution in each HT region, NSR

inc (MT2), is estimated using the fitted
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rφ(MT2) and the number of events in the low-∆φmin control region, NCR
inc (HT):

NSR
inc(MT2) = NCR

inc (HT) rφ(MT2). (6)

From the inclusive multijet estimate in each HT region, the predicted background in bins of Nj
and Nb is obtained from the following equation

NSR
j,b (MT2) = NSR

inc(MT2) fj (HT) rb
(

Nj
)

, (7)

where fj is the fraction of multijet events falling in bin Nj, and rb is the fraction of all events
in bin Nj that fall in bin Nb. Simulation indicates that fj and rb attain similar values in low-
and high-∆φmin regions, and that the values are independent of MT2. We take advantage of
this to measure the values of fj and rb using events with MT2 between 100–200 GeV in the
low-∆φmin sideband, where fj is measured separately in each HT bin, while rb is measured
in bins of Nj, integrated over HT, as rb is found to be independent of the latter. Values of fj
and rb measured in data are shown in Fig. 6 compared to simulation. An estimate based on

jN
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Figure 6: Fraction fj of multijet events falling in bins of number of jets Nj (left) and fraction rb
of events falling in bins of number of b-tagged jets Nb (right). Values of fj and rb are measured
in data, after requiring ∆φmin < 0.3 and 100 < MT2 < 200 GeV. The bands represent both
statistical and systematic uncertainties of the estimate from simulation.

rφ(MT2) is not viable in the monojet search region so a different strategy must be employed.
Multijet events can pass the monojet event selections through rare fluctuations in dijet events,
as when the transverse momentum of one of the two jets is severely underestimated because
of detector response or because of particularly energetic neutrinos from b and c quark decays.
In these cases, the resulting reconstructed jet can be assigned a transverse momentum below
the jet-counting threshold (pT < 30 GeV). In order to estimate this background contribution,
we define a control region by selecting dijet events in which the leading jet has a transverse
momentum pT > 200 GeV (as in the monojet signal region), and the second jet has a transverse
momentum just above threshold, i.e. 30 < pT < 60 GeV. These events must further pass an
inverted ∆φmin requirement, in order to ensure statistical independence from the signal region.
After subtracting non-multijet contributions, the data yield in the control region is taken as
an estimate of the background in the monojet search regions. The rate of events with 30 <
pT < 60 GeV is expected to be larger than that of events with pT < 30 GeV, as the latter would
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require even larger detector response fluctuations. Closure tests on the simulation indicate a
small overestimate. Nevertheless, the multijet background is not expected to exceed 8% in any
monojet search region. Statistical uncertainties due to the event yields in the control regions,
where the rφ(MT2) fit is performed and the fj and rb values are measured, are propagated
to the final estimate. The invariance of fj with MT2 and rb with MT2 and HT is evaluated in
simulation, and residual differences are taken as additional systematic uncertainties, which are
shown in Fig. 6. An additional uncertainty is assigned to cover the sensitivity of the rφ value to
variations in the fit window. These variations result in an uncertainty that increases with MT2
and ranges from 15–200%. The total uncertainty in the estimate covers the differences observed
in closure tests based on simulation and in data control regions. The latter is performed in the
100 < MT2 < 200 GeV sideband. For the monojet regions, the statistical uncertainty from the
data yield in the dijet sideband is combined with a 50% systematic uncertainty in all bins.

6.4 Cross-check of multijet background estimation
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Figure 7: Comparison of the predictions of the multijet background in the topological regions
(MT2 > 200 GeV) from the R&S method and the ∆φmin ratio method. The uncertainties are
combined statistical and systematic. Within each of the four HT categories, the estimates from
the ∆φmin ratio method are correlated as they are derived from the same fit to the ∆φmin ratio
data.

As a cross-check of the ∆φmin ratio method described in Section 6.3, the multijet background
is also estimated using the “rebalance and smear” (R&S) method described in Ref. [55]. This
method rebalances multijet events in data by adjusting the jet pT values to minimize Emiss

T
and then smears them multiple times in order to build a large sample of multijet events with
nonzero Emiss

T . During both the rebalance and the smearing steps, the jet pT values are varied
according to a parameterization of the jet energy response. The performance of the method has
been tested on multijet simulation, as well as on data control regions defined by inverting the
∆φmin requirement or by selecting a sideband of MT2 (i.e. 100 < MT2 < 200 GeV). Based on
these studies, we assign total systematic uncertainties of 50% (low- and medium-HT regions)
and 40% (high- and extreme-HT regions) in the background estimate based on R&S for MT2 >
200 GeV. These uncertainties also include a small (<7%) uncertainty due to contamination
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from W+jets and Z+jets events of the multijet data sample used in the R&S procedure. In
Fig. 7, we compare the multijet predictions from the R&S method with those from the ∆φmin
ratio method, i.e. the estimation method used in our analysis for multijet signal regions. This
comparison is done separately for each topological region, integrating over MT2 bins. The level
of agreement between the two methods serves to further increase our confidence in the multijet
background estimation used for the final results of the analysis. The R&S method cannot be
applied to the very-low-HT region as not enough data are available in the relevant multijet
control sample because of the small fraction of events accepted by the prescaled triggers with
very low thresholds in HT.

7 Results and interpretation
Figure 8 shows a summary of the observed event yields in data, together with the predicted
total SM background. Each bin in the upper plot corresponds to a single (HT, Nj, Nb) search
region integrated over MT2. The lower plot further breaks down the background estimates and
observed data yields into all MT2 bins for the medium HT region. The data are statistically com-
patible with the expected background contributions, providing no evidence for new physics.
The background estimates and corresponding uncertainties shown in these plots rely exclu-
sively on the inputs from control samples and simulation as described in Section 6 and are in-
dicated in the rest of the text as “pre-fit background” results. We also estimate the backgrounds
in the signal regions performing a maximum-likelihood fit to the data in the signal regions
themselves. These fits are carried out under either the background-only or background+signal
hypotheses. The estimates from the fits, which still depend on the modeling of the backgrounds
from the pre-fit procedure, are indicated as “post-fit” results and are utilized to constrain mod-
els of new physics as described below. Similar comparisons between data and background
predictions, for both pre- and post-fit estimates, are shown for all the remaining HT regions
in Appendix A. The results of the search are used to constrain specific models of new physics
such as those identified by the diagrams in Fig. 9. For each scenario of gluino (squark) pair pro-
duction, our simplified models assume that all supersymmetric particles other than the gluino
(squark) and the lightest neutralino are too heavy to be produced directly, and that the gluino
(squark) decays promptly. For the gluino pair production, the models assume that each gluino
decays with a 100% branching fraction into the lightest supersymmetric particle (LSP) and ei-
ther b quark pairs (g̃ → bbχ̃0

1), top quark pairs (g̃ → ttχ̃0
1), or light-flavor quarks (g̃ → qqχ̃0

1),
proceeding respectively through an off-shell bottom, top, or light-flavor squark. For a given
signal scenario, limits are derived by combining all search regions using a modified frequentist
approach, employing the CLs criterion and an asymptotic formulation [56–59]. Typical values
of the uncertainties considered in the signal yield are listed in Table 2. The largest uncertainties
come from the limited size of the MC samples and the uncertainty in the b tagging efficiency.
The uncertainty in the modeling of initial-state radiation (ISR) can also be significant for model
points with small mass splittings, where some boost from ISR is necessary to observe the decay
products of the initially produced sparticles. The uncertainty is determined by comparing the
simulated and measured pT spectra of the system recoiling against the ISR jets in tt events, us-
ing the technique described in Ref. [60]. The two spectra are observed to agree below 400 GeV,
and the statistical precision of the comparison is used to define an uncertainty of 15% (30%) for
400 < pT < 600 GeV (pT > 600 GeV). The uncertainty in the acceptance due to the renormal-
ization and factorization scales is found to be relatively small, and a constant value of 5% is
used in the analysis. The uncertainty due to the jet energy scale is found to be compatible with
statistical fluctuations for bins populated by few MC events, so a constant value of 5% is taken,
motivated by more populated search bins. Uncertainties in the integrated luminosity, ISR, b
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Figure 8: (Above) Comparison of estimated background (pre-fit) and observed data events in
each topological region. The results shown for Nj = 1 correspond to the monojet search regions
binned in jet pT. Hatched bands represent the full uncertainty in the background estimate.
(Below) Comparison for individual MT2 signal bins in the medium HT region. On the x-axis,
the MT2 bin of each signal region is shown (in GeV), except where the notations j, b indicate Nj,
Nb labeling. Bins with no entry for data have an observed count of 0 events.

tagging, and lepton efficiencies are treated as correlated across search bins. No additional un-
certainty due to variations of the PDF set is taken since the main effect on signal acceptance
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Figure 9: (Above) Diagrams for the three considered scenarios of gluino-mediated bottom
squark, top squark, and light flavor squark production. The depicted three-body decays are
assumed to proceed through off-shell squarks. (Below) The results of this search are also used
to constrain simplified models of bottom squark, top squark, and light flavor squark pair pro-
duction.

is through modeling of the recoil pT spectrum and the ISR uncertainty already accounts for
this. Figure 10 shows exclusion limits at 95% confidence level (CL) for gluino-mediated bottom
squark, top squark, and light-flavor squark production. Exclusion limits for the pair produc-
tion of bottom, top and light-flavor squarks are shown in Fig. 11. In the upper right plot of this
figure, the white diagonal band corresponds to the region |mt̃ − mt − mLSP| < 25 GeV, where
the selection efficiency of top squark events is a strong function of mt̃ −mLSP. As a result, the
precise determination of the cross section upper limit is uncertain because of the finite granu-
larity of the available MC samples in this region of the (mt̃, mLSP) plane. All mass limits shown
are obtained using signal cross sections calculated at NLO+NLL order in αs [61–65]. Table 3
summarizes the limits of the supersymmetric particles excluded in the simplified model sce-
narios considered. To facilitate reinterpretation of our results in the context of other models,

Table 2: Ranges of typical values of the signal systematic uncertainties as evaluated for the
g̃ → bbχ̃0

1 signal model. Uncertainties evaluated on other signal models are consistent with
these ranges of values. A large uncertainty from the limited size of the simulated sample only
occurs for a small number of model points for which a small subset of search regions have very
low efficiency.

Source Typical values [%]
Integrated luminosity 5
Limited size of MC samples 1–100
Renormalization and factorization scales 5
ISR 0–30
b tagging efficiency, heavy flavor 0–40
b tagging efficiency, light flavor 0–20
Lepton efficiency 0–20
Jet energy scale 5

we have also provided predictions and results in “aggregated regions,” made from summing
up our individual signal bins in topologically similar regions. These results are presented in
Appendix B.
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Table 3: Summary of 95% CL observed exclusion limits for different SUSY simplified model
scenarios. The limit on the mass of the produced sparticle is quoted for a massless LSP, while
for the lightest neutralino the best limit on its mass is quoted.

Simplified Limit on produced sparticle Best limit on
model mass [GeV] for mχ̃0

1
= 0 GeV LSP mass [GeV]

Direct squark production

Bottom squark 880 380
Top squark 800 300
Single light squark 600 300
8 degenerate light squarks 1260 580

Gluino mediated production

g̃→ bbχ̃0
1 1750 1125

g̃→ ttχ̃0
1 1550 825

g̃→ qqχ̃0
1 1725 850

8 Summary
A search for new physics using events containing hadronic jets with transverse momentum
imbalance as measured by the MT2 variable has been presented. Results are based on a data
sample of proton-proton collisions at

√
s = 13 TeV collected with the CMS detector and cor-

responding to an integrated luminosity of 2.3 fb−1 . No significant deviations from the stan-
dard model expectations are observed. In the limit of a massless LSP, gluino masses of up
to 1750 GeV are excluded, extending the reach of Run 1 searches by more than 300 GeV. For
lighter gluinos, LSP masses up to 1125 GeV in the most favorable models are excluded, also
increasing previous limits by more than 300 GeV. Among the three gluino decays considered,
the strongest limits on gluino pair production are generally achieved for the g̃→ bbχ̃0

1 channel.
Improved sensitivity is obtained in this scenario as selections requiring at least two b-tagged
jets in the final state retain a significant fraction of gluino-mediated bottom squark events,
while strongly suppressing the background from W+jets, Z+jets, and multijet processes. Also,
unlike for models with g̃ → ttχ̃0

1 decays, which include leptonic decays, gluino-mediated bot-
tom squark events do not suffer from an efficiency loss due to the lepton veto. For direct pair
production of first- and second-generation squarks, each assumed to decay exclusively to a
quark of the same flavor and the lightest neutralino, squark masses of about 1260 GeV and LSP
masses up to 580 GeV are excluded. If only a single squark is assumed to be light, the limit on
the squark and LSP masses is relaxed to 600 and 300 GeV, respectively. For the pair prouction
of third-generation squarks, each assumed to decay with 100% branching fraction to a quark
of the same flavor and the lightest neutralino, a bottom (top) squark mass up to 880 (800) GeV
is excluded. For gluino-induced and direct squark production models, the observed exclusion
limits on the masses of the sparticles are from 200 to about 300 GeV higher than those obtained
by a similar analysis performed on 8 TeV data [13]. In relative terms, the largest difference is
in the limit on the mass of the top squark, which moves from about 500 GeV to 800 GeV for
a massless LSP. This is mostly due to a fluctuation in the 8 TeV data that is not present in the
13 TeV data.
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Figure 10: Exclusion limits at 95% CL on the cross sections for gluino-mediated bottom squark
production (above left), gluino-mediated top squark production (above right), and gluino-
mediated light-flavor squark production (below). The area to the left of and below the thick
black curve represents the observed exclusion region, while the dashed red lines indicate the
expected limits and their ±1 σexperiment standard deviation uncertainties. For the squark-pair
production plot, the ±2 standard deviation uncertainties are also shown. The thin black lines
show the effect of the theoretical uncertainties σtheory on the signal cross section.
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Figure 11: Exclusion limit at 95% CL on the cross sections for bottom squark pair production
(above left), top squark pair production (above right), and light-flavor squark pair production
(below). The area to the left of and below the thick black curve represents the observed ex-
clusion region, while the dashed red lines indicate the expected limits and their ±1 σexperiment
standard deviation uncertainties. The thin black lines show the effect of the theoretical un-
certainties σtheory on the signal cross section. The white diagonal band in the upper right plot
corresponds to the region |mt̃ − mt − mLSP| < 25 GeV. Here the efficiency of the selection is
a strong function of mt̃ − mLSP, and as a result the precise determination of the cross section
upper limit is uncertain because of the finite granularity of the available MC samples in this
region of the (mt̃, mLSP) plane.
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[49] T. Sjöstrand, “The Lund Monte Carlo for e+e− jet physics”, Comput. Phys. Commun. 28
(1983) 229, doi:10.1016/0010-4655(83)90041-3.

http://dx.doi.org/10.1016/j.cpc.2014.06.021
http://www.arXiv.org/abs/1112.5675
http://dx.doi.org/10.1140/epjc/s10052-014-3174-y
http://www.arXiv.org/abs/1407.5066
http://dx.doi.org/10.1007/JHEP04(2015)040
http://www.arXiv.org/abs/1410.8849
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/1742-6596/331/3/032049
http://cdsweb.cern.ch/record/1194487
http://cdsweb.cern.ch/record/1194487
http://cdsweb.cern.ch/record/1247373
http://cdsweb.cern.ch/record/1247373
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://www.arXiv.org/abs/0802.1189
http://dx.doi.org/10.1088/1748-0221/6/11/P11002
http://www.arXiv.org/abs/1107.4277
https://cds.cern.ch/record/2115454
http://cdsweb.cern.ch/record/1279362
http://dx.doi.org/10.1088/1748-0221/10/06/P06005
http://www.arXiv.org/abs/1502.02701
http://dx.doi.org/10.1088/1748-0221/7/10/P10002
http://www.arXiv.org/abs/1206.4071
http://cds.cern.ch/record/1751454
http://dx.doi.org/10.1088/1748-0221/10/08/P08010
http://www.arXiv.org/abs/1502.02702
http://dx.doi.org/10.1016/0010-4655(83)90041-3


24 References
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Figure A.1: (Above) Comparison of the estimated background (pre-fit) and observed data
events in each signal bin in the monojet region. On the x-axis, the jet pT binning is shown
(in GeV). Hatched bands represent the full uncertainty in the background estimate. (Below)
Same for the very-low-HT region. On the x-axis, the MT2 binning is shown (in GeV). Bins with
no entry for data have an observed count of 0 events.
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Figure A.2: (Above) Comparison of the estimated background (pre-fit) and observed data
events in each signal bin in the low-HT region. Hatched bands represent the full uncertainty
in the background estimate. (Below) Same for the medium-HT region. On the x-axis, the MT2
binning is shown (in GeV). Bins with no entry for data have an observed count of 0 events.
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Figure A.3: (Above) Comparison of the estimated background (pre-fit) and observed data
events in each signal bin in the high-HT region. Hatched bands represent the full uncertainty
in the background estimate. (Below) Same for the extreme-HT region. On the x-axis, the MT2
binning is shown (in GeV). Bins with no entry for data have an observed count of 0 events.
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Figure A.4: Comparison of post-fit background prediction and observed data events in each
topological region. Hatched bands represent the post-fit uncertainty in the background predic-
tion. For the monojet region, on the x-axis, the HT binning is shown in GeV.
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Figure A.5: Post-fit background prediction, expected signal yields, and observed data events
in each topological region. Hatched bands represent the post-fit uncertainty in the background
prediction. For the monojet region, on the x-axis, the jet pT binning is shown (in GeV). The
red histogram shows the expected contribution from a compressed-spectrum signal model of
gluino-mediated bottom squark production with the mass of the gluino and the LSP equal to
700 and 600 GeV, respectively.
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Figure A.6: Post-fit background prediction, expected signal yields, and observed data events
in each signal bin in the extreme-HT region. Hatched bands represent the post-fit uncertainty
in the background prediction. On the x-axis, the MT2 binning is shown (in GeV). The red his-
togram shows the expected contribution from an open-spectra signal model of gluino-mediated
bottom squark production with the mass of the gluino and the LSP equal to 1500 and 100 GeV,
respectively.
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Table A.1: Binning in MT2 for each topological region of the multijet search regions with very
low, low, and medium HT. Within each topological or Nb categorization, we merge MT2 bins
that are expected to contain fewer than one background event.

HT range [GeV] Jet multiplicities Bin boundaries [GeV]

200–450

2–3j, 0b 200–300, 300–400, >400
2–3j, 1b 200–300, 300–400, >400
2–3j, 2b 200–300, 300–400, >400
4–6j, 0b 200–300, 300–400, >400
4–6j, 1b 200–300, 300–400, >400
4–6j, 2b 200–300, 300–400, >400
≥s7j, 0b >200
≥7j, 1b >200
≥7j, 2b >200
2–6j, ≥3b 200–300, >300
≥7j, ≥3b >200

450–575

2-3j, 0b 200–300, 300–400, 400–500, >500
2–3j, 1b 200–300, 300–400, 400–500, >500
2–3j, 2b 200–300, 300–400, 400–500, >500
4–6j, 0b 200–300, 300–400, 400–500, >500
4–6j, 1b 200–300, 300–400, 400–500, >500
4–6j, 2b 200–300, 300–400, 400–500, >500
≥7j, 0b >200
≥7j, 1b 200–300, >300
≥7j, 2b >200
2–6j, ≥3b 200–300, >300
≥7j, ≥3b >200

575–1000

2-3j, 0b 200–300, 300–400, 400–600, 600–800, >800
2–3j, 1b 200–300, 300–400, 400–600, 600–800, >800
2–3j, 2b 200–300, 300–400, 400–600, >600
4–6j, 0b 200–300, 300–400, 400–600, 600–800, >800
4–6j, 1b 200–300, 300–400, 400–600, >600
4–6j, 2b 200–300, 300–400, 400–600, >600
≥7j, 0b 200–300, 300–400, >400
≥7j, 1b 200–300, 300–400, >400
≥7j, 2b 200–300, 300–400, >400
2–6j, ≥3b 200–300, 300–400, >400
≥7j, ≥3b 200–300, 300–400, >400
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Table A.2: Binning in MT2 for each topological region of the multijet search regions with high
and extreme HT. Within each topological or Nb categorization, we merge MT2 bins that are
expected to contain fewer than one background event.

HT range [GeV] Jet multiplicities Bin boundaries [GeV]

1000–1500

2–3j, 0b 200–400, 400–600, 600–800, 800–1000, >1000
2–3j, 1b 200–400, 400–600, 600–800, >800
2–3j, 2b 200–400, >400
4–6j, 0b 200–400, 400–600, 600–800, 800–1000, >1000
4–6j, 1b 200–400, 400–600, 600–800, >800
4–6j, 2b 200–400, 400–600, >600
≥7j, 0b 200–400, 400–600, >600
≥7j, 1b 200–400, 400–600, >600
≥7j, 2b 200–400, >400
2–6j, ≥3b 200–400, >400
≥7j, ≥3b 200–400, >400

>1500

2-3j, 0b 200–400, 400–600, 600–800, 800–1000, >1000
2–3j, 1b 200–400, 400–600, >600
2–3j, 2b >200
4–6j, 0b 200–400, 400–600, 600–800, 800–1000, >1000
4–6j, 1b 200–400, 400–600, >600
4–6j, 2b 200–400, 400–600, >600
≥7j, 0b 200–400, >400
≥7j, 1b 200–400, >400
≥7j, 2b 200–400, >400
2–6j, ≥3b >200
≥7j, ≥3b >200

Table A.3: Binning in jet pT for the monojet regions. Within each Nb categorization, we merge
jet pT bins that are expected to contain fewer than one background event.

Jet multiplicities Bin boundaries [GeV]
1j, 0b 200–250, 250–350, 350–450 , 450–575, 575–700, 700–1000, >1000
1j, ≥1b 200–250, 250–350, 350–450 , 450–575, >575
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B Aggregated regions
To allow simpler reinterpretations, we also provide our results in “aggregated regions,” made
from summing up the event yields and the pre-fit background predictions for individual signal
bins in topologically similar regions. The uncertainty in the prediction in each aggregated
region is calculated taking into account the same correlation model used in the full analysis.
The definitions of these regions are given in Table B.1 and Table B.2 gives the predicted and
observed number of events in each region together with the 95% CL upper limit on the number
of signal events.

If these aggregated regions are used to derive cross section limits on the signals considered in
this paper, they typically yield results that are less stringent by a factor of about two compared
to the full binned analysis. This is shown in more detail for few signal models in Table B.3. The
expected upper limit on the signal cross section as obtained from the full analysis is compared
to the one obtained from the aggregated region that has the best sensitivity to the signal model
considered. A 15% uncertainty in the signal selection efficiency is assumed for calculating these
limits. The same table also provides the expected signal yields in the given aggregated regions.
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Table B.1: Definitions of aggregated regions. Each aggregated region is obtained by selecting
all events that pass the logical OR of the listed selections.

Region Nj Nb HT [GeV] MT2 [GeV]

1j loose

=1 — >450 —
2–3 ≤2 450–575 >400
2–3 ≤2 575–1000 >300
2–3 ≤2 >1000 >200

1j medium
=1 — >575 —
2–3 ≤2 575–1000 >600
2–3 ≤2 >1000 >200

1j tight

=1 =0 >1000 —
=1 ≥1 >575 —
2–3 =0 575–1000 >800
2–3 1–2 575–1000 >600
2–3 0–1 1000–1500 >800
2–3 =2 1000–1500 >400
2–3 0–1 >1500 >400
2–3 =2 >1500 >200

2j tight

2–3 — >1000 >600
2–3 — >1500 >400
4–6 — >1000 >800
4–6 — >1500 >600

4j medium ≥4 — >575 >400

4j tight
≥4 — >1000 >600
≥7 — >1500 >400

7j tight ≥7 — >575 >400

7j very tight
≥7 0–1 >1000 >600
≥7 ≥2 >1000 >400
≥7 — >1500 >400

2b medium ≥2 ≥2 >575 >200

2b tight ≥2 ≥2 >575 >400

2b very tight ≥2 ≥2 >1000 >400

3b medium ≥2 ≥3 >200 >200

3b tight ≥2 ≥3 >575 >200

3b very tight ≥2 ≥3 >1000 >200
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Table B.2: Predictions and observations for the aggregated regions defined in Table B.1, together
with the observed 95% CL limit on the number of signal events contributing to each region
(Nobs

95 ). An uncertainty of either 15 or 30% in the signal efficiency is assumed for calculating the
limits.

Region Prediction Observation Nobs
95 , 15% unc. Nobs

95 , 30% unc.
1j loose 833± 95 902 246 273
1j medium 175± 22 185 60 66
1j tight 15.9+3.2

−2.9 12 7.9 8.4
2j tight 15.7+4.0

−3.9 12 8.9 9.5
4j medium 159± 25 165 60 66
4j tight 16.2+5.0

−4.9 11 8.7 9.3
7j tight 15.3+4.6

−4.5 14 11 12
7j very tight 5.3+3.3

−3.2 3 5.7 6.1
2b medium 119± 14 98 21 23
2b tight 13.5+3.3

−3.1 10 7.7 8.2
2b very tight 4.5+2.3

−2.1 4 6.3 6.8
3b medium 40.9+9.9

−8.8 24 11 11
3b tight 11.0+3.2

−2.5 9 7.7 8.2
3b very tight 3.5+1.9

−1.4 2 4.3 4.5
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Table B.3: Expected upper limits on the cross section of several signal models, as determined
from the full binned analysis, are compared to the upper limits obtained using only the aggre-
gated region that has the best sensitivity to each considered signal model. A 15% uncertainty in
the signal selection efficiency is assumed for calculating these limits. The signal yields expected
for an integrated luminosity of 2.3 fb−1 are also shown.

Signal Expected limit [fb] Best aggregated Signal yield (best Expected limit [fb] (best

(full analysis) region aggregated region) aggregated region)

pp→ g̃g̃, g̃→ bbχ̃0
1 4.80 2b very tight 3.19 9.83

(mg̃ = 1700 GeV, mχ̃0
1
= 0 GeV)

pp→ g̃g̃, g̃→ bbχ̃0
1 393 2b tight 4.79 667

(mg̃ = 1000 GeV, mχ̃0
1
= 950 GeV)

pp→ g̃g̃, g̃→ qqχ̃0
1 8.67 4j tight 5.31 17.2

(mg̃ = 1600 GeV, mχ̃0
1
= 0 GeV)

pp→ g̃g̃, g̃→ qqχ̃0
1 357 7j tight 7.33 536

(mg̃ = 1000 GeV, mχ̃0
1
= 850 GeV)

pp→ g̃g̃, g̃→ ttχ̃0
1 12.9 7j very tight 4.48 20.7

(mg̃ = 1500 GeV, mχ̃0
1
= 0 GeV)

pp→ g̃g̃, g̃→ ttχ̃0
1 555 3b tight 5.55 1100

(mg̃ = 900 GeV, mχ̃0
1
= 600 GeV)

pp→ t̃̃t, t̃→ tχ̃0
1 41.8 2b tight 5.79 73.7

(mt̃ = 750 GeV, mχ̃0
1
= 0 GeV)

pp→ t̃̃t, t̃→ tχ̃0
1 151 2b medium 17.5 321

(mt̃ = 600 GeV, mχ̃0
1
= 250 GeV)

pp→ t̃̃t, t̃→ tχ̃0
1 18600 2b medium 9.37 73900

(mt̃ = 250 GeV, mχ̃0
1
= 150 GeV)

pp→ b̃ ¯̃b, b̃→ bχ̃0
1 26.9 2b tight 5.83 48.1

(mb̃ = 800 GeV, mχ̃0
1
= 0 GeV)

pp→ b̃ ¯̃b, b̃→ bχ̃0
1 451 2b medium 21.3 777

(mb̃ = 500 GeV, mχ̃0
1
= 350 GeV)

pp→ q̃q̃, q̃→ qχ̃0
1, q̃L + q̃R(ũ, d̃, s̃, c̃)

14.0 2j tight 7.85 18.3
(mq̃ = 1200 GeV, mχ̃0

1
= 0 GeV)

pp→ q̃q̃, q̃→ qχ̃0
1, q̃L + q̃R(ũ, d̃, s̃, c̃)

148 4j medium 300 267
(mq̃ = 600 GeV, mχ̃0

1
= 0 GeV)

pp→ q̃q̃, q̃→ qχ̃0
1, q̃L + q̃R(ũ, d̃, s̃, c̃)

493 4j medium 34.0 902
(mq̃ = 700 GeV, mχ̃0

1
= 500 GeV)
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C Summary plots
The figures in this appendix summarize in fewer bins the results shown in Figs 8, A.1, and
A.2. The observed data are compared to estimated backgrounds as a function of MT2 in more
inclusive regions. The aggregated regions presented in these figures are different from those in
Appendix B, being instead formed by summing pre-fit values for all signal regions contained
in the inclusive HT,Nj,Nb selection displayed in the upper left corner of each plot.
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Figure C.1: Comparison of estimated background and observed data events in inclusive topo-
logical regions, as labeled in the legends, as a function of MT2, for events with 200 < HT <
1000 GeV. The background prediction is formed by summing pre-fit values for all signal re-
gions included in each plot. Hatched bands represent the full uncertainty in the background
estimate.
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Figure C.2: Comparison of estimated background and observed data events in inclusive topo-
logical regions, as labeled in the legends, as a function of MT2, for events with HT > 1000 GeV.
The background prediction is formed by summing pre-fit values for all signal regions included
in each plot. Hatched bands represent the full uncertainty in the background estimate.
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M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath,
K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas,
P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado,
S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon71, V. Krutelyov, R. Mueller,
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14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Moscow, Russia
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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