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1 Introduction

A core problem in experimental high-energy particle physics (HEP) is the correct categorization
of the particle interactions recorded in our detectors as signal and background. Commonly, this
characterization has been done by reconstructing high-level components such as clusters, tracks,
showers, jets, and rings associated with particle interactions recorded by the detector and sum-
marizing the energies, directions, and shapes of these objects with a handful of quantities. These
quantities are then either directly selected or fed into machine learning algorithms such as K-
Nearest Neighbors [1], Boosted Decision Trees [2], or Multilayer Perceptrons [3, 4] to separate
signal from background. While these techniques have been very successful, they are prone to two
potential failings: mistakes in the reconstruction of high level features from the raw data can lead
to incorrect categorization of the physics event, and the features used to characterize the events are
limited to those which have already been imagined and implemented for the experiment.

This core problem shares many similarities with the problems confronted in computer vision.
As in HEP, the computer vision community has explored many approaches to extract specific fea-
tures from images to enable categorization. Recently, however, computer vision has made great
advances by moving away from using specifically constructed features to the extraction of features
using a machine learning algorithm known as a convolutional neural network (CNN) [5].

CNNs are well suited to a broad class of detectors used in HEP and particularly in high en-
ergy neutrino physics. Sampling calorimeters that use scintillator (e.g. NOvA [6], MINERvA [7]
and MINOS [8]), liquid argon time projection chambers (e.g. ICARUS [9], MicroBooNE [10],
DUNE [11–14]), and water Cherenkov detectors (e.g. IceCube [15, 16] and Super-Kamiokande [17])
record the amount of energy deposited in small regions throughout the volume of the detector.
When these measurements are combined, they result in what is essentially an image of the physics
interaction which is well suited to analysis using computer vision tools. Early studies with Daya
Bay data [18, 19] and simulated LHC jets [20–22] have demonstrated that CNNs can be powerful
tools in high energy physics.

In this paper, we describe CNNs and the techniques commonly used to build and train these
networks. We then outline the construction, training, and testing of a specific application of the
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CNN technique, “CVN” (Convolutional Visual Network), to events simulated in the NOvA exper-
iment [6] and present benchmarks of its performance.

2 Deep Learning and Convolutional Neural Networks

The multilayer perceptron (MLP) [3, 4], or traditional neutral network, is a machine learning algo-
rithm in wide use in HEP. The structure of an MLP consists of an input layer, one or more hidden
layers, and an output layer. The goal of an MLP is to approximate a function f : Rn → Rm, where
n is the dimensionality of the input ~x and m is the dimensionality of the output ~f . All layers in
traditional MLPs are fully connected, meaning that the output of each node is the weighted sum of
the outputs of all nodes in the previous layer plus a bias term, operated on by a non-linear func-
tion. Traditionally, the preferred non-linearity is a sigmoid function such as tanh or the logistic
function [4]. An MLP with a single hidden layer, under certain assumptions, can be shown to ap-
proximate any function to arbitrary precision given a sufficient number of hidden nodes [23, 24].
The weights and biases used in an MLP are typically determined using supervised learning. Dur-
ing supervised learning [25], the MLP is presented examples where both ~x and the corresponding
output, ~f , referred to as the ground truth, are known. The loss, a measure of the error between
the output of the MLP and the ground truth is computed, and its gradient as a function the weights
and biases is calculated using the back-propagation algorithm [26]. The loss is then minimized by
altering the weights and biases using the stochastic gradient descent [27] method. This procedure
is repeated until the errors are reduced to an acceptable level.

The MLP is a powerful technique, but it has a number of deficiencies [28]. First, it tends to
scale poorly to a large number of raw inputs. Historically, most of the work in developing an MLP
for a particular task was devoted to extracting features from the raw data that could be used as
optimal inputs [29]. In HEP, this is essentially the process of reconstruction; however, developing
optimal, robust reconstruction routines is difficult and time consuming. Second, although a single
hidden layer can approximate most functions to arbitrary precision, the number of nodes necessary
in that hidden layer may approach infinity. Networks with multiple hidden layers can often reach
the required accuracy with fewer nodes than the equivalent single layer network [4]. However,
multilayer networks can be difficult to train. This is partially due to the fact that sigmoid functions
are saturating, that is, as the input to the sigmoid approaches ±∞, the gradient approaches zero.
The updates to the weights and biases applied using the stochastic gradient descent method have
a term proportional to the gradient, so this situation can slow down or halt learning. In shallow
networks, this can be controlled through the careful preparation of inputs [27], but it is difficult
to keep the inputs to nodes in the non-saturated range over many layers. Third, the large number
of free parameters in a large network runs the risk of over-training in which the network learns to
reproduce the training sample too well and fails to generalize to inputs it has not seen [4].

Deep learning [29], the use of architectures with many layers, has had considerable success
in tasks like image recognition [30, 31] and natural language processing [32] and has been made
possible by several advances that mitigate the deficiencies of traditional MLPs. Instead of relying
on engineered features as inputs, the development of structures like CNNs have made it possible
to robustly and automatically extract learned features. To allow for the efficient training of deep
structures, saturating non-linearities are frequently replaced by rectified linear units (ReLU) [33],
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defined as f (x) = max(0, x), which is non-saturating. Finally, over-training is mitigated in fully
connected layers using the regularization technique called dropout [34] in which, at every training
iteration, each weight is set to zero with a probability r while the remaining weights are scaled up
by a factor of 1/(1 − r) to roughly maintain the overall scale of the value passed through the non-
linearity. In this way, every iteration only uses a random subsample of the possible connections,
leading to a final network which is effectively an ensemble of smaller networks.

In this paper we will focus on CNNs, which have been highly successful in the field of com-
puter vision for classification and other tasks [30, 35]. The technique was inspired by studies of the
visual cortex of animals [36]. In these studies, it was found that the visual cortex contains simple
cells, which are sensitive to edge-like features within small regions of the retina, and complex cells,
which are receptive to collections of simple cells and are sensitive to position independent edge-like
features. These structures can be modeled by performing discrete convolutions to extract simple
features across the visual field. CNNs mimic this structure using a series of convolutional layers
that extract a set of features from the input image and pooling layers that perform dimensionality
reduction and add translational invariance.

The data passed from layer to layer in a CNN has a three dimensional structure - height, width,
and channel number. Height and width refer to the dimensions of the input image, and channel
number is defined in analogy with the RGB channels of color images. For an n × m convolutional
layer, the input data is transformed according to,

( f ∗ g)p,q,r =

n∑
i=1

m∑
j=1

c∑
k=1

fi, j,k,rgp+i,q+ j,k, (2.1)

where ( f ∗ g)p,q,r refers to the (p, q) pixel of the r channel of the transformed image, n and m are
the height and width of the convolutional kernel, c is the number of channels of the input image, f
is a filter, and g is an array corresponding to pixel intensities of the input image. The filter f is a
four dimensional tensor where i and j index the height and width of the filter, k indexes the input
channel, and r indexes the output channel, and it is trained to identify features within the image.
For a fixed k and r, the filter, f , can be thought of as an n ×m convolutional kernel. After applying
a separate convolutional kernel to each channel and performing a weighted sum across channel, the
resulting output image is known as a feature map. The range of the r dimension determines the
number of c stacks of n × m convolutional kernels that are trained. Each of these stacks of kernels
produces a feature map which are stored in the channel dimension of the layer output. Finally, each
output pixel is operated on by a non-linear function.

In this way, convolutional layers [29] produce many alternative representations of the input
image, each serving to extract some feature which is learned from the training sample. At early
stages, the feature maps often resemble the original image with certain elements emphasized, but
they become more abstract at later stages of the network.

Since each convolutional layer generates many feature maps which have comparable dimen-
sions to the original input image, the memory requirements and number of operations needed to
evaluate the network can grow dramatically. Pooling is a technique to down-sample the size of
feature maps; we have made use of two pooling techniques max pooling and average pooling [35].
In n × m max pooling, the image is down-sampled by replacing an n × m region of the image with
a single value corresponding to the maximum value in that region; in average pooling the average
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value is used. The pooled regions may be chosen to overlap [30, 31] to reduce information loss.
Since each pixel after pooling corresponds to n ×m before pooling, small translations in input fea-
tures result in identical output. This decreases the network’s sensitivity to the absolute location of
elements in the image.

The network we will describe in this paper is inspired by the GoogLeNet [31] architecture,
which excelled at the ImageNet image classification task [37]. The core of GoogLeNet’s power
comes from its use of the network-in-network (NIN) [38] approach to augment the learning ca-
pacity of convolutional layers while also reducing dimensionality. In NIN the main network is
composed of repeating sub-networks, where each sub-network resembles a complete conventional
CNN with convolution layers at a variety of scales to capture complex behavior. To avoid expo-
nentially increasing the number of feature maps, NINs use a convolutional layer applying 1 × 1
convolutional kernels. This performs a weighted sum over feature maps to down-sample into a
smaller number of maps. The sub-network in the GoogLeNet architecture, called the inception
module, is shown in Figure 1. Each branch of the inception module applies filters which extract
features of various scales. The GoogLeNet architecture also makes use of the technique local re-
sponse normalization (LRN) in which the response of a given cell in a kernel map is normalized
relative to the activity of adjacent kernel maps. This creates competition for large valued features
between outputs computed by different kernels which helps the network avoid local minima and to
converge to a more optimal set of weights.

3 Application to NOvA event classification

We have developed and trained our own CNN, “CVN”, for the identification of neutrino events
recorded by the NOvA experiment. NOvA aims to make precision measurements of neutrino
oscillation parameters via the disappearance of νµ and appearance of νe from neutrino oscillation.
NOvA consists of two functionally identical detectors in the NuMI (Neutrinos at the Main Injector)
beam [39] at Fermilab which produces a focused beam with an initial flavor composition largely
dominated by νµ and a small intrinsic νµ, νe, and νe components. Placing the detectors off-axis
at 14.6 mrad provides a narrow-band neutrino energy spectrum near 2 GeV. The Near Detector,
located at Fermilab, is placed 1 km from the neutrino source; the Far Detector is located 810 km
away near Ash River, Minnesota. The NOvA detectors are composed of extruded PVC cells filled
with liquid scintillator which segment the detector into cells with a cross section 3.9 cm wide ×
6.6 cm deep. The cells are 15.5 m long in the Far Detector. Scintillation light from charged particles
can be captured by a wavelength shifting fiber which runs through each cell. The end of the fiber is
exposed to a single pixel on an avalanche photo-diode array to record the intensity and arrival time
of photon signals. The spatial and absolute response of the detector to deposited light is calibrated
out using physical standard candles, such that a calibrated response can be derived which is a good
estimate of the true deposited energy. Parallel cells are arrayed into planes, which are configured in
alternating horizontal and vertical alignments to provide separate, interleaved X-Z, and Y-Z views.
The 14,000 ton Far Detector, which is used for the training and evaluation of CVN in this paper,
consists of 344,064 total channels arranged into 896 planes each 384 cells wide [6]. Information
from the two views can be merged to allow 3D event reconstruction. A schematic of the detector
design can be seen in Figure 2.
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Figure 1. Diagram of the inception module
Like any single layer, the inception module takes the set of feature maps produced by the previous
layer as input. It then distributes those feature maps to branches, each with filters at different scales.
NIN architecture is implemented with 1× 1 convolutions to down-sample into a smaller number of
maps, maintaining the dimensionality of the input maps. Separate branches perform 3×3 and 5×5
convolution, as well as 3 × 3 overlapping pooling. The filtered outputs from each branch are then
concatenated to produce an output to the next layer with the same number of feature maps, each
with the same dimensions, as were passed as input to the inception module.

Reconstruction of the neutrino energy and flavor state at the detector is essential to neutrino
oscillation measurements. The neutrino flavor state can be determined in charged-current (CC)
interactions which leave a charged lepton in the final state; an electron in the case of νe, a muon in
the case of νµ, or a tau in the case of ντ. Neutral-current (NC) interactions bear no signature of the
flavor of the interacting neutrino and are thus a background for the charged-current analyses, but
may be signal events in other searches.

To support these analyses, we constructed the CVN identifier to characterize candidate neu-
trino events into one of the following interaction types.

• νµ CC- A muon plus a hadronic component. One of the main topological features of these
events is the long, low dE/dx track corresponding to the track of a minimally ionizing muon.

• νe CC- An electron plus a hadronic component. The electron topology is typically a wide
shower, rather than a track, whose dimensions are related to the radiation length of the de-
tector material.

• ντ CC- A tau plus a hadronic component. The tau is extremely short lived and not visible
in the NOvA detector but decays immediately with varying final state probabilities that may
produce pions, electrons, muons, and neutrinos. The production threshold for these events is
3.4 GeV, at the upper end of the energy spectrum seen in the NOvA detectors.
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Figure 2. Schematic of the NOvA detector design
The two figures on the right show the views through the top and side of the three-dimensional figure
on the left. They show the ‘hits’ produced as charged particles pass through and deposit energy in
the scintillator-filled cells. Illustration courtesy of Fermilab.

• ν NC- The outgoing lepton in these interactions is a neutrino, which will travel onward
undetected. Thus, only the hadronic component of these events is visible, making their flavor
impossible to identify.

While it is useful to think about each category as a particular iconic topology, misidentifica-
tion can still occur. In particular NC interactions can be mistaken for CC interactions when they
produce pions which look like leptonic activity. A charged pion track can appear quite similar to
a muon track, with the exception of a spike in energy deposition at the end of the track. A neutral
pion will rapidly decay to produce a pair of photons which themselves produce electromagnetic
showers, which are difficult to distinguish from showers produced by an electron, unless you can
find the telltale gap between the interaction vertex and the shower. By constructing an identifi-
cation algorithm like CVN, which views the entire event topology, we hope to minimize these
misidentification failure modes but they remain a challenge.

CC interactions were further divided into quasi-elastic (QE), resonant (RES), and deep-inelastic-
scattering (DIS) categories which vary in the complexity of the hadronic portion of the event. QE
events are two-bodied with the nucleon recoiling intact from the scattering lepton. In RES events
the nucleon is knocked into a baryonic resonance and decays back down to the nucleon with asso-
ciated hadrons, and in higher energy DIS events the nucleon breaks up in the process of hadroniza-
tion. Figure 3 shows example, simulated, events from these categories as they might be recorded
by the NOvA detectors. While the network shows some promise in being able to categorize events
at this detailed level, for now we have focused only on neutrino event flavor identification by com-
bining the outputs of these detailed subdivisions into the four categories in the list above.
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(a) A νe CC QE electron plus one hadron signature where the upward-going shower-
like prong with multiple hit cells on each plane corresponds to an electron and the
downward-going track-like prong with approximately one hit per plane correspond to
a proton.
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(b) A νe CC RES electron plus hadron shower signature with a characteristic electron
shower and short prongs which could correspond to multiple hadrons.
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(c) A νµ CC QE muon plus one hadron signature with a long track-like prong with
lower charger-per-cell corresponding to a muon and a short prong with larger charge-
per-cell corresponding to a proton.

Figure 3. Simulated events in NOvA
Each panel is the side view of a section of the NOvA detector, as depicted in Figure 2. The charge
measured in each cell in units of ADC is indicated by color.
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The input to CVN was formed first by clustering energy deposits recorded in each scintillator
column together in space and time into slices. These slices efficiently separate deposits due to neu-
trino interactions from those due to cosmic ray interactions and remove nearly all energy deposits
due to noise. Grids 100 planes deep and 80 cells wide are chosen which contain the slice. Two
separate grids were made for the x − z and y − z detector views. These grids are windows of the
detector activity 14.52 m deep and 4.18 m wide. The upstream side of the window was chosen to
align with the first plane that contains a detector hit and the window is centered on the median hit
cell position. The size and placement of this window ensured that the majority of neutrino events,
including muon neutrino CC interactions, are fully contained. The intensity of each pixel in this
grid is proportional to the calibrated energy deposition in each scintillator column allowing these
projections to naturally be interpreted as grayscale images.

In order to optimize data storage and transfer in the training stage, the pixel intensities were
encoded using 8-bits which saturate for hits with energy above 278 MeV. This conversion offers a
factor of eight savings over a floating point representation without significantly compromising the
representational capacity, as shown in Figure 4. These savings were especially important in reading
data from disk into memory during training. This map of 8-bit resolution hits, roughly analogous to
an image, was the input to our neural network. Figure 5 shows examples of the input to the neural
network for three distinct neutrino interaction types.

Reconstructed Energy (MeV)
0 10 20 30 40 50

H
its

/M
eV

0

0.01

0.02

0.03

0.04 Arbitrary Precision

8-Bit Precision

Figure 4. A comparison of the energy spectrum of individual hits using arbitrarily fine binning and using
256 bins. This shows that it is acceptable to encode pixel intensities using 8-bits. In this encoding, the
maximum representable energy per pixel is 278 MeV.

CVN Architecture

Our implementation of CVN was developed using the Caffe [40] framework. Caffe is an open
framework for deep learning applications which is highly modular and makes accelerated training
on graphics processing units straightforward. Common layer types are pre-implemented in Caffe
and can be arranged into new architectures by specifying the desired layers and their connections
in a configuration file. Caffe is packaged with a configuration file implementing the GoogLeNet
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(b) νe CC interaction.
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Figure 5. Example CNN image input
Input given to the CNN for an example νµ CC interaction (top), νe CC interaction (middle), and ν
NC interaction (bottom). Hits in the X view of the NOvA detector are shown on the left, and hits
in the Y view are shown on the right.
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architecture, and we used this as a starting point for designing our own network which is shown in
Figure 6.

The CVN architecture differs from the GoogLeNet architecture in a few important ways. First,
unlike most natural image problems, we have two distinct views of the same image rather than a
single image described in multiple color channels. In order to best extract the information of each
view, the channels corresponding to the X and Y-views were split, and each resulting image was
sent down a parallel architecture based on GoogLeNet. Since our images are simpler than natural
images, it was found that the nine inception modules used in the GoogLeNet network did not
improve our results; therefore, we truncated the parallel GoogLeNet networks after three inception
modules. At that point, the features from each view were concatenated together and passed through
one final inception module to extract combined features. The output of the final inception module
was down-sampled using an average pooling layer. During an evaluation (forward) pass, classifier
outputs were calculated using the softmax function or normalized exponential function [41] such
that the sum of the classifier outputs was always equal to one.

Figures 7 and 8 show convolutional filters and feature maps first at the begining and then after
the first inception module of the fully trained CVN network for several example events. These
figures demonstrate both the extraction of simple features of events early in the network, and more
sophisticated features deeper in the network.

Training

A sample of 4.7 million simulated NOvA Far Detector neutrino events was used as the input to
our training, with 80% of the sample used for training and 20% used for testing. FLUKA and
FLUGG [42, 43] were used to simulate the flux in the NuMI beamline [44]. Before oscillations,
the NuMI beam is composed mostly of νµ with 2.1% intrinsic νe contamination. To model νe and
ντ appearing through oscillation, we perform simulations where the νµ flux has been converted
to another flavor. The training sample was composed of one third simulation with the expected,
unoscillated flux, one third where the νµ flux was converted to νe, and one third where the νµ
flux was converted to ντ. Neutrino-nucleus interactions were simulated using the GENIE [45]
package and GEANT4 [46, 47] was used to propagate products of the neutrino interactions through
a detailed model of the NOvA detectors. Custom NOvA simulation software converted energy
depositions into simulated electronic signals which correspond to the detector output [48]. The
only requirements placed on the training events were that they were required to have 15 distinct
hits. Distinct categories were created for each GENIE CC interaction mode; (νµ−CC, νe−CC, ντ−
CC) × (QE,RES ,DIS ,Other) and one category was used for all GENIE NC interactions to give
the distribution of events by label shown in Figure 9.

We made use of a Mini-Batch [27] training strategy which simultaneously evaluated 32 train-
ing examples in each iteration. During training the final softmax output was used to calculate a
multinomial logistic loss [49] by comparing that output to the true target value. We found that we
converged to the most optimal versions of CVN by adopting a training strategy whereby the step
size of the stochastic gradient descent dropped at fixed intervals. These intervals were chosen to
be at points where the network loss improvement rate had plateaued. This strategy, in combination
with the vectorized implementation of mini-batch gradient descent within the Caffe framework,
allowed for rapid and accurate optimization of our network.
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Figure 6. Diagram of the CNN architecture used for event classification.
Starting with the input at the bottom, the network has separate branches for the X-view and Y-view.
Each branch undergoes successive convolution, pooling, and local response normalization (LRN).
Inception modules are used in downstream layers. The two views are merged and passed through
a final inception module, and pooled. The output of the network comes from softmax units.
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Figure 7. 7 × 7 convolutional filter and example output
This figure shows the Y view of an example νµ CC interaction (top left), all 64 convolutional filters
from the early Y view 7 × 7 convolutional layer of our trained network (top right), and the output
of applying those trained filters to the example event (bottom).
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Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example νµ CC DIS interaction (top), νµ CC QE interaction (middle), and ν NC interaction
(bottom).
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To ensure that a trained model could reasonably generalize beyond the training sample, we
employed multiple regularization techniques. We included penalty terms in the back-propagation
calculation which are proportional to the square of the weights, thus constraining them to remain
small during training. Keeping the weights small prevented the model from responding too strongly
to any one input feature. In addition, we applied the dropout technique with r = 0.4 in the pooling
step immediately before the final fully connected layer.

Perhaps the most robust defense against over training is more training data. We augmented
our sample using two techniques to add variation to the dataset. First, pixel intensities were var-
ied by adding Gaussian noise with a standard deviation of 1%. Adding noise had the benefit of
training the network to rely less heavily on the intensity in each pixel and to adapt to the fluctua-
tions encountered in real data. Second, events were randomly selected to be reflected in the cell
dimension, which is roughly transverse to the beam direction. Symmetry in the cell dimension is
not perfect; the beam axis is directed 3◦ above detector horizon and attenuation in the optical fiber
causes thresholding to become more significant for hits further from the readout electronics. How-
ever, these effects are small and their presence in fact aids in enhancing variation of the training
sample and the robustness of the training against the precise details of the simulation.

The training of the network presented here was carried out on a pair of NVIDIA Tesla K40s [50]
over a full week of GPU hours. Figure 10 shows loss calculated for our training and test samples as
a function of number of training iterations; the extremely similar loss on both samples throughout
training is a strong indication that the network has not overtrained.

4 Results

The same NOvA simulation and software that allowed us to build our training and test samples
also allowed us to readily assess the performance of our identification algorithm. To measure per-
formance we used a statistically independent sample of neutrino interactions from that used in the
training and testing of CVN. The sample was weighted by the simulated NOvA flux and by neu-
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Figure 10. Loss calculated on the training dataset (blue), loss calculated on the test dataset (green), and
accuracy calculated on the test dataset (red) as a function of the number of training iterations the network
has seen. The training loss shown here is a rolling window average of 40,000 iterations, such that each point
represents the average over 128,000 training examples. Each test iteration is the average loss over 256,000
test examples.

trino oscillation probabilities from [51] using the NOvA baseline [6] and matter density calculated
from the CRUST 2.0 model of the Earth’s crust [52] in order to create a representative mixture of
different beam events in the detector. The νe selection test uses the preselection described in [53],
and the νµ selection uses the preselection described in [54]. These preselections are designed to
reject cosmic backgrounds while retaining well-contained neutrino events inside the signal energy
window with high efficiency. We quote our selection efficiencies relative to true contained signal,
again matching the approach described in [53] for νe and [54] for νµ tests respectively.

Since the output of the final softmax layer in CVN is normalized to one, it can be loosely
interpreted as a probability of the input event falling in each of the thirteen training categories. For
the results presented in this paper a νe CC classifier was derived from the sum of the four νe CC
component probabilities. Similarly, the four νµ CC components were summed to yield a νµ CC
classification. Figure 11 shows the distribution of the CVN νe CC classification parameter for true
νe CC events from νµ → νe oscillation and the various NuMI beam backgrounds broken down
by type. Figure 12 shows the cumulative efficiency, purity, and their product when selecting all
events above a particular CVN νe CC classification parameter value. Excellent separation between
signal and background is achieved such that the only significant background remaining is that of
electron neutrinos present in the beam before oscillation; CVN does not attempt to differentiate
between νe CC events from νµ → νe oscillation and those from νe which are produced promptly
in the neutrino beam; these differ only in their energy distributions. Figures 11 and 12 also show
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the performance of the CVN νµ CC classification parameter. As with νe, excellent separation is
achieved.

A common way to assess the performance of a signal selection is to compute a Figure of Merit
(FOM) given the number of selected signal events S and background events B. The FOM = S/

√
B

optimizes for a pure sample useful for establishing the presence of the signal S in the presence
of the background, while FOM = S/

√
S + B optimizes for an efficient sample useful for making

parameter measurements with the signal S . Table 1 shows the efficiency, purity, and event count at
the maximal point for both optimizations when using CVN to select νe CC events, and for νµ CC
events. Using CVN we were able to set selection criteria well optimized for either FOM when
searching for both surviving νµ and appearing νe events.

CVN Selection Value νe sig Tot bkg NC νµ CC Beam νe Signal Efficiency Purity
Contained Events − 88.4 509.0 344.8 132.1 32.1 − 14.8%

s/
√

b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/
√

s + b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

(a)

CVN Selection Value νµ sig Tot bkg NC Appeared νe Beam νe Signal Efficiency Purity
Contained Events − 355.5 1269.8 1099.7 135.7 34.4 − 21.9%

s/
√

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
√

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

(b)

Table 1. Tables showing relative selected event numbers for the various components of the NuMI beam,
efficiency, and purity for two different optimizations for the selection of appearing electron neutrino CC
interactions (a) and surviving muon neutrino CC interactions (b). Efficiency is shown here relative to the
true contained signal. The numbers are scaled to an exposure of 18× 1020 protons on target, full 14-kton Far
Detector.

Perhaps the most important way to assess the performance of the CVN classification param-
eters is to compare their performance to the sophisticated identification algorithms already used
in recent NOvA publications. For νµ CC interactions the CVN measurement-optimized efficiency
of 58% is comparable to the efficiency of 57% quoted in Ref.[54]. This is a modest improvement
but shows that CVN algorithm does not underperform when used to identify a class of events we
expect to be particularly clear. For νe CC interactions the CVN signal-detection-optimized effi-
ciency of 49% is a significant gain over the efficiency of 35% quoted in in Ref.[53]. In both the
νµ CC and νe CC cases the CVN purity very closely matches the purity of the samples reported
in Refs.[53, 54]. The νe CC efficiency improvement is significant not just because the νe CC signal
is particularly hard to separate from its backgrounds, but additionally because the measurements
of νe-appearance and the associated parameters (θ13, neutrino mass hierarchy, etc.) are statistics
limited and hence significantly improved by increasing the signal efficiency.

Tests of the CVN selectors response to systematic uncertainties suggest no increased sensi-
tivity to them compared to the the selectors used in Refs.[53, 54]. In particular we studied the
variation in signal and background selection for our νµ CC and νe CC optimized cuts for a subset
of the dominant uncertainties in Refs.[53, 54], specifically calibration and scintillator saturation
uncertainties. For νµ CC interactions the CVN measurement-optimized selection signal sample
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Figure 11. νe CC and νµ CC classifier output
Distribution in νe CC Classifier output (top) and νµ CC Classifier output (bottom) for appearing
electron neutrino CC interactions (violet), surviving CC muon neutrino (green), NC interactions
(blue), and NuMI beam electron neutrino CC interactions (magenta). The y-axis is truncated in the
top figure such that the background is not fully visible in order to better show the signal distribution.
Distributions are scaled to a NuMI exposure of 18×1020 protons on target, full 14-kton Far Detector.
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was sensitive at the 1.9% level, and the extremely small background was sensitive at the 20% level.
For νe CC interactions the CVN signal-detection-optimized selection signal sample was sensitive
at the 1.6% level, and the extremely small background was sensitive at the 1.0% level. In both the
νµ CC and νe CC cases these shifts are small and comparable to those seen in the selectors used in
Refs.[53, 54].

5 Conclusion and future work

With minimal event reconstruction, we were able to build and train a single algorithm which
achieved excellent separation of signal and background for both of the NOvA electron-neutrino
appearance and muon-neutrino disappearance oscillation channels. This algorithm, CVN, is a pow-
erful approach to the problem of event classification and represents a novel proof of concept – that
CNNs can work extremely well with non-natural images like the readout of a sampling calorimeter.
We expect this approach to be transferable to a wide range of detector technologies and analyses.

CVN also opens up other possibilities for event classification and reconstruction which we
have just started to explore. For example, the same training and architecture reported here can be
expanded to include identification of ν NC and ντ CC interactions which are used by NOvA in
sterile neutrino and exotic physics searches. We also tested the application of CVN to the problem
of identification of particles within neutrino events by presenting the algorithm with images of in-
dividual, isolated particle clusters [55] along with the images of the overall neutrino event. Initial
results have already shown improvements in the efficiency and purity in particle identification over
other likelihood methods employed by NOvA and may aid in future cross-section analyses. We
are also exploring improvements to cluster-finding and particle identification using semantic seg-
mentation [56] which, starting from the same minimal reconstruction used by CVN, may make it
possible to identify the particles which contributed to each “pixel” in the detector readout.
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