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The Laplace’s equations for the scalar and vector potentials describing electric or magnetic fields in
cylindrical coordinates with translational invariance along azimuthal coordinate are considered. The
series of special functions which, when expanded in power series in radial and vertical coordinates,
in lowest order replicate the harmonic homogeneous polynomials of two variables are found. These
functions are based on radial harmonics found by Edwin M. McMillan in his more-than-40-years
”forgotten” article, which will be discussed. In addition to McMillan’s harmonics, second family of
adjoint radial harmonics is introduced, in order to provide symmetric description between electric
and magnetic fields and to describe fields and potentials in terms of same special functions. Formulas
to relate any transverse fields specified by the coefficients in the power series expansion in radial or
vertical planes in cylindrical coordinates with the set of new functions are provided.

This result is no doubt important for potential theory while also critical for theoretical studies,
design and proper modeling of sector dipoles, combined function dipoles and any general sector
element for accelerator physics. All results are presented in connection with these problems.

I. INTRODUCTION

Description of sector combined function magnets, and
in general any magnet with translational symmetry along
azimuthal coordinate in cylindrical coordinates, is very
important issue, and, without any particular reference
one can say that every modern accelerator code includes
such elements. The main idea, which goes back to orig-
inal 1968 K. Brown’s paper [1], based on a solution of
Laplace’s equation for scalar potential in cylindrical co-
ordinates using the general power series ansatz. Simi-
lar approach but for Laplace’s equation for longitudinal
component of vector potential can be found for example
in [2]. As one can see the approach is the same in most
recent books, e.g. in great details in [3].

Two major bottlenecks should be noticed. In the first
place, if one looking for a solution in a form of a series,
these series should be truncated. In our case truncation
means that potentials do not satisfy the Laplace’s equa-
tion anymore, even if symplectic integrators are used for
numerical solution (of course potentials can “satisfy” the
Laplace’s equation up to desired order by keeping more
and more terms in expansion). But more importantly,
the recurrence equation is undetermined. That means in
every new order of recurrence one have to assign an ar-
bitrary constant, which will affect all other higher order
terms. The uncertainty leads to the fact that there is no
one particular choice of basis functions; it make it almost
impossible to compare different accelerator codes, since
different assumptions might be used for representations
of basis functions.

The indeterminacy has simple geometrical illustration.
Looking for a field with pure normal dipole component on
equilibrium orbit in lowest order, one can come up with
almost arbitrary shape of magnet’s north pole if south
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pole is symmetric with respect to midplane. In the case
of dipole, series can be truncated by keeping only dipole
component. For higher order multipoles in cylindrical co-
ordinates truncation without violation of Laplace’s equa-
tion is not possible.

Working on implementation of these magnets for Syn-
ergia, I found particular assumptions which let me to
summate series for pure electric and magnetic skew and
normal multipoles. Further look for symmetry in descrip-
tion allowed to generate full family of solutions where no
truncation is required since all series can be summated.
While discussing my results with Sergei Nagaitsev, he
brought my attention, as we found later to more-than-
40-years forgotten, article by McMillan [4] of 1975.

Brining together his and my results I would like to
present a new description for multipole expansion in
cylindrical coordinates. Any transverse field can be ex-
panded in terms of these functions and related to power
series field expansion in horizontal or vertical planes. The
new approach do not contradict with previous results but
embrace it. An ambiguity in choice of coefficients and
problem of truncation are resolved. Thus it can be em-
ployed for theoretical studies, design and simulation of
sector magnets.

A. Article structure

Section II describes general equations of motion for a
particle in curvilinear coordinates associated with Frenet-
Serret frame. The case of transverse electromagnetic
fields described in section III.

Subsections III A,III B provide most general equations
of motion for pure electric and magnetic fields. Two
further subsections III D,III E describes the expansion of
fields in multipoles for cases with zero and constant cur-
vatures. The section III F relates new family of functions
to recurrence equations.
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II. GENERAL EQUATIONS OF MOTION

A. Global coordinates in Lab frame

The Lagrangian of a relativistic particle of massm with
an electric charge e in most general static electromagnetic
field is given by

L[R, Ṙ; t] = − mc2

γ(V)
− eΦ(R) + e (V ·A(R)) ,

where R = (Q1, Q2, Q3) is a position vector in the config-
uration space of generalized coordinates spanned on three
dimensional right-handed Cartesian coordinate system
{Ê1, Ê2, Ê3} associated with Lab frame at the facility

of a particle accelerator, V ≡ Ṙ is a vector of matching

generalized velocities where ˙(. . .) ≡ d
dt is the time deriva-

tive operator. Φ(R) and A(R) are the electric scalar and
magnetic vector potentials respectively, and,

γ(V) =
1√

1− β(V)2

is the relativistic Lorentz factor where β is the ratio of V
to the speed of light in vacuum, c.

Substituting the Lagrangian into the Euler-Lagrange
equations (Lagrange’s equations of the second kind)

d

dt

∂ L
∂Ṙ
− ∂ L
∂R

= 0

with shorthand notation

∂

∂a
=

(
∂

∂a1
,
∂

∂a2
,
∂

∂a3

)
representing a vector of partial derivatives with respect
to the indicated variables, gives the equation of motion
which is the relativistic form of the Lorentz force

F = e [E + (V ×B)]

or explicitly

d

dt
(γ m Q̇i) = e (Ei + εijkQ̇jBk)

where the electric and magnetic fields related to scalar
electric and vector magnetic potentials through the gra-
dient and curl vector operators respectively

E = (E1, E2, E3) ≡ −∇Φ,

B = (B1, B2, B3) ≡ ∇×A.

A more abstract formulation can be given in terms
of Hamiltonian which describes phase space of canoni-
cal variables {P,Q}, where P is the particle’s canonical
(total) momentum defined as

P ≡ ∂ L
∂Ṙ

= Π + eA

and Π = γ mV being the particle’s kinetic momentum.
The Hamiltonian might be constructed using the Legen-
dre transformation of L

H[P,Q; t] = V P− L =

3∑
i=1

Q̇iPi − L

= c

√
m2c2 + (P− eA)

2
+ eΦ.

The time evolution of the system is given by Hamilton’s
equations

d P

dt
= −∂H

∂Q
and

d Q

dt
=
∂H
∂P

or equivalently

Q̇ = c
P− eA√

m2c2 + (P− eA)2
,

Ṗ = e (∇A) · Q̇− e∇Φ.

The model of accelerator assumes the specification of a
reference orbit designed for a particle with certain equi-
librium energy and assignment of beam line elements
placed along it. In the case of a circular accelerator the
closed orbit of a machine with alignment errors in general
will not coincide with reference orbit. For most acceler-
ator needs (except e.g. helical orbits for muon cooling)
the designed orbit is piecewise flat function, which means
that it consists of a series of curves with zero torsion;
moreover, usually, these curves are straight lines and cir-
cular arcs. In order to better exploit the geometry of
beam motion and symmetry of electromagnetic fields we
will introduce the local Frenet-Serret frame attached to
equilibrium orbit and new global coordinates associated
with it (see FIG. 1).
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FIG. 1. Schematic plot of an equilibrium orbit for an acceler-
ator consisting of five drift spaces and five 72◦ bending mag-
nets. Lab frame and local Frenet-Serret frames are shown in
black and blue colors respectively. The test particle winding
the equilibrium orbit shown in red.
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B. Global coordinates associated with
Frenet-Serret frame

The equilibrium particle is a particle with design energy
perfectly following the reference orbit. Let R0(t) be the
position vector of it as a function of time. Then one
can describe the equilibrium orbit in terms of its natural
parametrization by arc length as

s(t) =

∫ t

0

|Ṙ0(t)|d t.

Now on can introduce the local right-handed orthonormal

Frenet-Serret basis {n̂, b̂, t̂} (or TNB frame), where basis
vectors are defined as follows:

• tangent unit vector

t̂ =
d R0(s)

ds
,

• outward-pointing normal unit vector

n̂ = − 1

κ(s)

d t̂

ds
,

• and binormal unit vector

b̂ = t̂× n̂,

where κ =
∣∣d t̂/ds

∣∣ defines the local curvature of the equi-
librium orbit. Then, using the Frenet-Serret formulas de-
scribing the derivatives of unit vectors in terms of each
other

d

 t̂
n̂

b̂

 =

0 −κ 0
κ 0 τ
0 −τ 0

 t̂
n̂

b̂

ds

where τ(s) is the torsion of an equilibrium orbit which
measures the failure of a curve to be planar, one can ex-
press the position vector of a test particle as a transverse
displacement from equilibrium orbit, see FIG. 2,

R(s) = R0(s) + r(s) = R0(s) + q1n̂ + q2b̂.

and its’ infinitesimally small displacement

dR = n̂ dq1 + b̂ dq2 + (1 + κ q1)t̂ dq3 + τ(q1b̂− q2n̂)dq3,

where (q1, q2, q3) are local curvilinear coordinates

spanned on (n̂, b̂, t̂). One can see that in the case of
flat orbit, i.e. τ = 0, the local Frenet-Serret frame can
be associated with global orthogonal coordinate system
with a line element in a form

dl =

3∑
i=1

hiêidqi,

where scale factors are h1 = h2 = 1 and h ≡ h3 = 1+κ q1.
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FIG. 2. Illustration of a test particle’s position vector ex-
pressed as a transverse, i.e. for fixed q3, displacement from
equilibrium orbit.

The use of global coordinates with metric provided
by local Frenet-Serret frame allows to rewrite the La-
grangian as

L[r, ṙ; t] = −mc2
√

1− v2

c2
− eΦ + ev ·A,

where v = (q̇1, q̇2, h q̇3) is the particle’s velocity expressed
in new coordinates. Thus the new equations of motion
are

d

dt
(γ mv) = e (E + εijk êi vj Bk) + γ m q̇23 K

where the vector in the RHS of equation defined as

K = (κh, 0, κ′ q1),

and the operator (. . .)′ ≡ d
dq3

is the derivative with re-

spect to longitudinal coordinate. Derivatives of poten-
tials expressed via electromagnetic fields using expres-
sions for differential operators in curvilinear orthogonal
coordinates form Table I. Calculating components of the
new canonical momenta

pi
hi
≡ 1

hi

∂ L
∂q̇i

= γ mvi + eAi(r)

allows to write down the new Hamiltonian

H[p,q; t] = c

√√√√m2c2 +

3∑
i=1

(
pi − e hiAi

hi

)2

+ eΦ

and equations of motion

q̇i × hi =
c2

H− eΦ

pi − e hiAi
hi

,

ṗi / hi =
c2

H− eΦ

[
e εijk

pj
hj
Bk +

Ki

h2

(
p3 − e hA3

h

)2
]

+eEi.
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TABLE I. Differential operators in general orthogonal coordinates (q1, q2, q3) where H = h1h2h3, and its expressions in orthog-
onal coordinates associated with Serret-Frenet frame.

Gradient ∇φ
3∑
k=1

1

hk

∂ φ

∂qk
êk

∂ φ

∂q1
ê1 +

∂ φ

∂q2
ê2 +

1

h

∂ φ

∂q3
ê3

Divergence ∇ · F
3∑
k=1

1

H

∂

∂qk

(
H

hk
Fk

)
1

h

[
∂(hF1)

∂q1
+
∂(hF2)

∂q2
+
∂ F3

∂q3

]

Curl ∇× F

3∑
k=1

hk êk
H

εijk
∂

∂qi
(hjFj)

1

h

[
∂(hF3)

∂q2
− ∂ F2

∂q3

]
ê1 +

1

h

[
∂ F1

∂q3
− ∂(hF3)

∂q1

]
ê2 +

[
∂ F2

∂q1
− ∂ F1

∂q2

]
ê3

Scalar Laplacian 4φ = ∇ · (∇φ)

3∑
k=1

1

H

∂

∂qk

(
H

h2
k

∂ φ

∂qk

)
1

h

[
∂

∂q1

(
h
∂ φ

∂q1

)
+

∂

∂q2

(
h
∂ φ

∂q2

)
+

∂

∂q3

(
1

h

∂ φ

∂q3

)]

Vector Laplacian CF = ∇(∇ · F)−∇× (∇× F)

3∑
k=1

{
1

hk

∂

∂qk

[
1

H

∂

∂qi

(
H

hi
Fi

)]
− hk
H
εijk

∂

∂qi

[
h2
j êj

H
εlmj

∂

∂ql
(hmFm)

]}
êk

III. TRANSVERSE ELECTROMAGNETIC
FIELDS

Now we will restrict ourself with the case of transverse
electromagnetic fields; in orthogonal curvilinear coordi-
nate system associated with Serret-Frenet frame these are
the fields with translation symmetry along longitudinal
coordinate q3. Thus, the scalar and vector potentials are
function of transverse coordinates only and vector poten-
tial has only one nonvanishing component which is A3.
Both potentials satisfies Laplace equation

4Φ =
1

h

[
∂

∂q1

(
h
∂ Φ

∂q1

)
+

∂

∂q2

(
h
∂ Φ

∂q2

)]
= 0,

CA =
∂

∂q1

[
1

h

∂ (hA3)

∂q1

]
+

∂

∂q2

[
1

h

∂ (hA3)

∂q2

]
= 0.

The corresponding fields are given by Maxwell equations

E = −∇Φ and B = ∇×A

with differential operators defined for orthogonal curvi-
linear coordinate system (Table I), and one gets

E1 = −∂ Φ

∂q1
, B1 =

1

h

∂(hA3)

∂q2
,

E2 = −∂ Φ

∂q2
, B2 = − 1

h

∂(hA3)

∂q1
.

A. t-representation

In the case of pure electric or magnetic fields further
simplifications can be applied. For numerical integration
purposes it is very convenient to have a Hamiltonian in
a form of a sum of “kinetic” and “potential” energies
where potentials will be separated from momentum vari-
ables. In this case, one can easily construct symplectic
integrator consisting of “drifts” and “kicks” associated
with kinetic and potential terms respectively (e.g. [5]).

For pure electric field when curvature is independent
of longitudinal coordinate not only Hamiltonian but also
p3 is an invariant of motion, and, problem is essentially
two dimensional. Measuring the time in units of c t and
normalizing the transverse momentums over the longitu-
dinal component, p̃1,2 = p1,2/p3, one has

H[p̃,q; c t] =
1

h

√
p23 + h2m2c2

p23
+ h2(p̃21 + p̃22) +

e

p3 c
Φ.

We will call this model Hamiltonian the t-representation;
with no assumptions made, but the field symmetry, we
derived general equations of motion which can be used
for the basis for the construction of symplectic integrator.
In a paraxial approximation, p̃1,2 � 1,and for p1,2 � mc
the form is significantly simpler, and a limit of straight
coordinates when h = 1 is obvious

H[p̃,q; c t] ≈ h
(
p̃21
2

+
p̃22
2

)
+

1

h
+

e

p3 c
Φ.
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B. s-representation

For pure magnetic field the Hamiltonian is very hard to
exploit since it has only a square root and so no terms to
split. Introducing an extended Hamiltonian with a new
fictitious time parameter, τ , where the old independent
variable and old Hamiltonian with a negative sign will be
treated as an additional pair of canonically conjugated
coordinates, (−H, t), one have:

0 ≡ O[p1, p2, p3,−H; q1, q2, q3, t; τ ]

= c

√
m2c2 + p21 + p22 +

(
p3 − e hA3

h

)2

−H.

Integration of additional equations of motion gives

H = inv and t = τ + C0,

where we can set a constant of integration C0 = 0.
If curvature is invariant of longitudinal coordinate the

longitudinal component of momentum conserved, as well
as in the case of electric field, and we will use −p3 as
a new Hamiltonian, reducing number of degrees of free-
dom back up to three by using q3 as a new independent
variable:

−p3 ≡ K[p1, p2,−H; q1, q2, t; q3]

= −h

√(
H
c

)2

−m2c2 − p21 − p22 − e hA3.

The use of generating function

G2(t,−Π) = −t
√

Π2c2 + (mc2)2

will allow to use the full kinetic momentum −Π of a par-
ticle instead of −H as one of canonical momentums:

K[p1, p2,−Π; q1, q2, l; q3] = −h
√

Π2 − p21 − p22 − e hA3,

where corresponding canonical coordinate is a particle’s
traversed path l = −∂ G2/∂Π = βc t.

Since the Hamiltonian do not explicitly depends on l,
full momentum Π is conserved and we can exclude as-
sociated degree of freedom using the further renormal-
ization of the Hamiltonian K → K ≡ K/Π, which can
be achieved by re-normalizing transverse components of
canonical momentums p1,2 → p̃1,2 = p1,2/Π:

−p3
Π
≡ K[p̃1, p̃2; q1, q2; q3]

= −h
√

1− p̃21 − p̃22 −
e

Π
hA3.

We will call this model Hamiltonian s-representation
since the longitudinal coordinate (sometimes referred
to the natural parameter along equilibrium orbit, s) is
used as a time-parameter. This representation is conve-
nient to use for the numerical integrator construction for
transverse magnetic fields. The paraxial approximation,
p̃1,2 � 1, gives

K[p̃,q; q3] ≈ h
(
p̃21
2

+
p̃22
2

)
− h− e

Π
hA3.

C. R- and S-elements

So far we provided dynamical equations of motion
without specifying how to represent electromagnetic
fields. In next two subsections we will discuss the mul-
tipole field expansion for two most important types of
elements: R-element for κ = 0 and S-element defined for
κ = const = 1/R0.

R- stays for rectangular and this element is the one
whit (q1, q2, q3) simply being the right handed Cartesian
coordinate system which we will denote as (x, y, z). All
fields in such an element are invariant along z axis and
usually serves the function of regular quadrupoles, sex-
tupoles, octupoles or combined function correctors. In
addition one can design pure R-dipoles, while combined
function bending magnets are exotic and very compli-
cated since equilibrium orbit will not anymore coincides
with axis of symmetry.

S-element is the element defined whit natural sector
coordinate system. Defining the set of normalized coor-
dinates (x = q1/R0, y = q2/R0, z = q3/R0), one can see
that it simply can be related to normalized right handed
cylindrical coordinates (ρ = 1 + x, y, θ = z/R0), see
FIG. 3, and thus all fields are invariant along azimuthal
coordinate θ. S-elements are suitable for the design of
combined function bending magnets, since in contrast to
R-elements, equilibrium orbit follows along θ.
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FIG. 3. Illustration of R- and S- elements. Elements are
shown in brown. Global curvilinear coordinates with associ-
ated grid lines are shown in black. Black dashed line repre-
sent an equilibrium orbit. An example of Frenet-Serret frame
attached to an equilibrium orbit drawn in blue colors. For
S-element, an additional right-handed normalized cylindrical
system is added and shown in cyan.
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TABLE II. Harmonic homogeneous polynomials in two variables.

n An Bn
0 1 0

1 x y

2 x2 − y2 2x y

3 x3 − 3x y2 3x2y − y3

4 x4 − 6x2y2 + y4 4x3y − 4x y3

5 x5 − 10x3y2 + 5x y4 5x4y − 10x2y3 + y5

6 x6 − 15x4y2 + 15x2y4 − y6 6x5y − 20x3y3 + 6x y5

7 x7 − 21x5y2 + 35x3y4 − 7x y6 7x6y − 35x4y3 + 21x2y5 − y7

8 x8 − 28x6y2 + 70x5y4 − 84x3y6 + 9x y8 8x7y − 56x5y3 + 56x3y5 − 8x y7

9 x9 − 36x7y2 + 126x5y4 − 84x3y6 + 9x y8 9x8y − 84x6y3 + 126x4y5 − 36x2y7 + y9

D. Multipoles in Cartesian coordinates

In Cartesian coordinates Laplace equations for electro-
and magnetostatic fields are in the same form which sig-
nificantly simplify the problem

4⊥Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0,

C⊥A =

(
∂2Az
∂x2

+
∂2Az
∂y2

)
êz = 0.

Introduction of complex variables allows a very compact
description of a problem with unified description of elec-
tric and magnetic fields. Suppose we have a holomorphic
function of complex variable Z = x + i y which we will
call complex scalar potential which real part is defined to
be a longitudinal component of a vector potential and
imaginary part is the electric scalar potential

Ω(Z) = Az(x, y) + iΦ(x, y).

Since real or imaginary part of any holomorphic function
are harmonic functions, Az and Φ automatically satisfies
the Laplace equation. Indeed, suppose we have a vector
field F = (Fx, Fy). Introducing the Wirtinger derivatives

∂

∂Z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂Z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
one can write

∂ Ω

∂Z
= 0,

∂ Ω

∂Z
= F (Z),

where first equation is the Cauchy-Riemann condition for
Ω which guarantees that this field can be implemented
via either magnetic or electric potentials:

Fx = −∂ Φ

∂x
=

∂ Az
∂y

,

Fy = −∂ Φ

∂y
= −∂ Az

∂x
.

The second equation defines complex function of field
components such that

Fx = −=F (Z) and Fy = −<F (Z),

which all together are equivalent to F = −∇Φ = ∇×A.
The complex function F (Z) is the holomorphic function
again and Cauchy-Riemann equation gives

∂ F

∂Z
= 0,

that asserts that field F is irrotational and divergence free
which is equivalent to time-independent free of electric
charge and current densities Maxwell’s equations

∇ · F = 0 and ∇× F = 0.

For accelerator physics purposes the expansion of fields
usually represented in terms of homogeneous harmonic
polynomials of two variables, which are defined through
the complex power function

An(x, y) = <Zn =
1

2
[(x+ i y)

n
+ (x− i y)

n
]

=

n∑
k=0

(
n

k

)
xn−kyk cos

k π

2
,

Bn(x, y) = =Zn =
1

2 i
[(x+ i y)

n − (x− i y)
n
]

=

n∑
k=0

(
n

k

)
xn−kyk sin

k π

2
.

Explicit expressions up to 10-th order are in Table II.
These functions satisfy the Laplace equation4⊥ = 0 and
related to each other through Cauchy-Riemann equation
as

∂An
∂x

=
∂ Bn
∂y

and
∂An
∂y

= −∂ Bn
∂x

.

In addition one can introduce “ladder-like” lowering dif-
ferential operators as

n {A,B}n−1 =
∂

∂x
{A,B}n = ± ∂

∂y
{B,A}n .
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FIG. 4. Normal and skew 2n-pole magnets in Cartesian coordinates. Each figure shows magnetic (electric) field streamlines
and poles’ shape in transverse cross section. North (positive electrostatic potential) and south (negative electrostatic potential)
poles are shown in red and blue and are given by (B,A)n = ∓Rnp respectively, where Rp is the distance to the pole’s tip.

Thus one can define two independent of each other sets
of solutions, normal (sometimes called upright or straight)
and skew pure multipoles, which we will denote with over-
line (. . .) and underline (. . .) respectively. The complex
scalar potentials of pure multipoles are:

Ω
(n)

= − Cn
Zn

n!
and Ω(n) = −i C n

Zn

n!

where Cn and C n are coefficients determining the
strength of magnets. Corresponding vector fields are de-
fined to have an odd and even midplane symmetries

F
(n)

y (x, y) = F
(n)

y (x,−y) and F
(n)

x (x, 0) = 0,

F (n)
x (x, y) = F (n)

x (x,−y) and F (n)
y (x, 0) = 0.

Formulas for potentials and fields are listed below in Ta-
ble III and exact expressions are provided in Appendix A.
Figure 4 shows the cross section of idealized multipole
magnet’s poles and corresponding fields.

TABLE III. Formulas for the scalar potential, longitudinal
component of the vector potential and field components for
pure normal and skew 2n-poles in Cartesian coordinates.

Normal Skew

Φ
(n)

= −Cn
Bn
n!

Φ(n) = −C n

An
n!

A
(n)
z = −Cn

An
n!

A(n)
z = C n

Bn
n!

F
(n)
x = Cn

Bn−1

(n− 1)!
F (n)

x = C n

An−1

(n− 1)!

F
(n)
y = Cn

An−1

(n− 1)!
F (n)

y = −C n

Bn−1

(n− 1)!

Therefore, if one provided with experimental data of
the power series expansions of the fields in a horizontal
or vertical planes

Fx|x=0 = Fx|eq +
y

1!

∂ Fx
∂y

∣∣∣∣
eq

+
y2

2!

∂2 Fx
∂y2

∣∣∣∣
eq

+ . . . ,

Fy|x=0 = Fy|eq +
y

1!

∂ Fy
∂y

∣∣∣∣
eq

+
y2

2!

∂2 Fy
∂y2

∣∣∣∣
eq

+ . . . ,

Fx|y=0 = Fx|eq +
x

1!

∂ Fx
∂x

∣∣∣∣
eq

+
x2

2!

∂2 Fx
∂x2

∣∣∣∣
eq

+ . . . ,

Fy|y=0 = Fy|eq +
x

1!

∂ Fy
∂x

∣∣∣∣
eq

+
x2

2!

∂2 Fy
∂x2

∣∣∣∣
eq

+ . . . ,

the field derivatives on equilibrium orbit can be related
to strength coefficients, see Table IV, which allows to
expand a general R-element in terms of pure multipoles.

TABLE IV. Relationship between coefficients determining the
strength of pure R-multipoles and power series expansion of
field in horizontal and vertical planes on equilibrium orbit.

x = 0 y = 0

n Cn C n Cn C n

1 Fy Fx Fy Fx

2 ∂y Fx −∂y Fy ∂x Fy ∂x Fx

3 −∂2
y Fy −∂2

y Fx ∂2
x Fy ∂2

x Fx

4 −∂3
y Fx ∂3

y Fy ∂3
x Fy ∂3

x Fx

5 ∂4
y Fy ∂4

y Fx ∂4
x Fy ∂4

x Fx
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E. Multipoles in cylindrical coordinates

In the normalized right-handed cylindrical coordinate
system the Laplace equations are

4yΦ = 4⊥Φ +
1

ρ

∂ Φ

∂ρ

=
∂2Φ

∂ρ2
+

1

ρ

∂ Φ

∂ρ
+
∂2Φ

∂y2
= 0,

CyA =

(
4yAθ −

Aθ
ρ2

)
êθ

=

(
∂2Aθ
∂ρ2

+
1

ρ

∂ Aθ
∂ρ

+
∂2Aθ
∂y2

− Aθ
ρ2

)
êθ = 0.

Compared to the case with Cartesian coordinates these
equations look quite different from each other. In order
to retain the symmetry one can note that

(CyA)θ =
1

ρ

[
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂y2

]
(ρAθ) .

Thus looking for the solution in a form similar to har-
monic homogeneous polynomials

Φ = −
n∑
k=0

Fn−k(ρ)

(n− k)!

yk

k!

(
Cn sin

k π

2
+ C n cos

k π

2

)
,

Aθ = −
n∑
k=0

1

ρ

Gn−k(ρ)

(n− k)!

yk

k!

(
Cn cos

k π

2
− C n sin

k π

2

)
,

where Fn(ρ) and Gn(ρ) are the functions to be deter-
mined, one can find two recurrence equations

∂2Fn(ρ)

∂ρ2
+

1

ρ

∂ Fn(ρ)

∂ρ
= n (n− 1)Fn−2(ρ),

∂2Gn(ρ)

∂ρ2
− 1

ρ

∂ Gn(ρ)

∂ρ
= n (n− 1)Gn−2(ρ).

They relate Fn and Gn to each other through

Gn−1 =
1

n
ρ
∂ Fn
∂ρ

and Fn−1 =
1

n

1

ρ

∂ Gn
∂ρ

.

and allows to construct lowering operators

Fn =
1

(n+ 1)(n+ 2)

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)]
Fn+2,

Gn =
1

(n+ 1)(n+ 2)

[
ρ
∂

∂ρ

(
1

ρ

∂

∂ρ

)]
Gn+2,

and thus defines raising operators

Fn = n (n− 1)

∫ ρ

1

1

ρ

∫ ρ

1

ρFn−2 d ρd ρ,

Gn = n (n− 1)

∫ ρ

1

ρ

∫ ρ

1

1

ρ
Gn−2 d ρd ρ,

where limits of integration are taking care of two con-
stants of integration. These operators can be used to re-
cursively calculate all members of F− and G−functions;

an additional constraint to terminate recurrences defines
lowest orders n = 0, 1 as

F0 = 1, F1 = ln ρ, G0 = 1, G 1 = (ρ2 − 1)/2.

First ten members of Fn and Gn are listed in Ta-
bles VI, VII and are shown in FIG. 5; in Appendix B
one can find Taylor series of these functions at ρ = 1.
The difference relation for Fn including first members
have been found by E.M. McMillan and I would like to
acknowledge his result by given them a name of McMil-
lan radial harmonics. In addition to his results, adjoint
McMillan radial harmonics, Gn, are introduced in order
to provide the symmetry in description between electric
and magnetic fields.

Finally, in order to define the set of functions for pure
S-multipoles (Table V) we will define sector harmonics:

A(e)
n (ρ, y) =

n∑
k=0

(
n

k

)
Fn−k(ρ) yk cos

k π

2
,

A(m)
n (ρ, y) =

n∑
k=0

(
n

k

)
Gn−k(ρ)

ρ
yk cos

k π

2
,

B(e)n (ρ, y) =

n∑
k=0

(
n

k

)
Fn−k(ρ) yk sin

k π

2
,

B(m)
n (ρ, y) =

n∑
k=0

(
n

k

)
Gn−k(ρ)

ρ
yk sin

k π

2
.

obeying differential relations

n {A,B}(e )n−1 = ±∂ {B,A}
(e)
n

∂y
=

1

ρ

∂
(
ρ {A,B}(m)

n

)
∂ρ

,

n {A,B}(m)
n−1 = ±1

Aρ

∂
(
Aρ {B,A}

(m)
n

)
∂y

=
∂ {A,B}(e)n

∂ρ
.

Figure 6 shows the cross section of idealized multipole
magnet’s poles and corresponding fields. First six mem-
bers of spherical harmonics are listed in Table VIII and
exact expressions for potentials and fields in Appendix A.

TABLE V. Formulas for the scalar potential, azimuthal com-
ponent of the vector potential and field components for “pure
normal and skew 2n-poles in cylindrical coordinates.

Normal Skew

Φ
(n)

= −Cn
B(e)
n

n!
Φ(n) = −C n

A(e)
n

n!

A
(n)
θ = −Cn

A(m)
n

n!
A

(n)
θ = C n

B(m)
n

n!

F
(n)
ρ = Cn

B(m)
n−1

(n− 1)!
F (n)
ρ = C n

A(m)
n−1

(n− 1)!

F
(n)
y = Cn

A(e)
n−1

(n− 1)!
F (n)

y = −C n

B(e)
n−1

(n− 1)!
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TABLE VI. First ten members of F−functions.

n Fn(ρ)

0 1

1 ln ρ

2
1

2
(ρ2 − 1)− ln ρ

3
3

2

[
−(ρ2 − 1) + (ρ2 + 1) ln ρ

]
4 3

[
1

8
(ρ4 − 1) +

1

2
(ρ2 − 1)−

(
ρ2 +

1

2

)
ln ρ

]
5

15

2

[
−3

8

(
ρ4 − 1

)
+

(
1

4
ρ4 + ρ2 +

1

4

)
ln ρ

]
6

45

4

[
1

36

(
ρ6 − 1

)
+

1

2

(
ρ4 − 1

)
− 1

4

(
ρ2 − 1

)
−
(

1

2
ρ4 + ρ2 +

1

6

)
ln ρ

]
7

315

16

[
−11

54

(
ρ6 − 1

)
− 1

2
ρ2
(
ρ2 − 1

)
+

{
1

9

(
ρ6 + 1

)
+ ρ2

(
ρ2 + 1

)}
ln ρ

]
8

105

4

[
1

96

(
ρ8 − 1

)
+

4

9

(
ρ6 − 1

)
+

3

8

(
ρ4 − 1

)
− 2

3

(
ρ2 − 1

)
−
(

1

3
ρ6 +

3

2
ρ4 + ρ2 +

1

12

)
ln ρ

]
9

315

8

[
− 25

192

(
ρ8 − 1

)
− 5

6
ρ2
(
ρ4 − 1

)
+

{
1

16
+ ρ2

(
ρ2

2
+ 1

)(
1

8
ρ4 +

7

4
ρ2 + 1

)}
ln ρ

]

TABLE VII. First ten members of G−functions.

n Gn(ρ)

0 1

1
1

2
(ρ2 − 1)

2 1

[
−1

2
(ρ2 − 1) + ρ2 ln ρ

]
3

3

2

[
1

4
(ρ4 − 1)− ρ2 ln ρ

]
4 3

[
−5

8
(ρ4 − 1) +

1

2
(ρ2 − 1) + ρ2

(
ρ2

2
+ 1

)
ln ρ

]
5

15

4

[
1

12

(
ρ6 − 1

)
+

3

4
ρ2
(
ρ2 − 1

)
− ρ2

(
ρ2 + 1

)
ln ρ

]
6

45

8

[
−5

9

(
ρ6 − 1

)
− 1

2

(
ρ4 − 1

)
+
(
ρ2 − 1

)
+ ρ2

(
1

3
ρ4 + 2 ρ2 + 1

)
ln ρ

]
7

105

16

[
1

24

(
ρ8 − 1

)
+

7

6
ρ2
(
ρ4 − 1

)
−
(
ρ6 + 3 ρ4 + ρ2

)
ln ρ

]
8

35

4

[
−47

96

(
ρ8 − 1

)
− 2

(
ρ6 − 1

)
+

9

8

(
ρ4 − 1

)
+

4

3

(
ρ2 − 1

)
+ ρ2

(
1

4
ρ6 + 3 ρ4 +

9

2
ρ2 + 1

)
ln ρ

]
9

315

32

[
1

40

(
ρ10 − 1

)
+

35

24
ρ2
(
ρ6 − 1

)
+

5

2
ρ4
(
ρ2 − 1

)
−
(
ρ8 + 6 ρ6 + 6 ρ4 + ρ2

)
ln ρ

]
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P n(ρ) F n(ρ) G n(ρ)/ρ G n(ρ)

ρ

ρ

ρ

ρ

ρ ρ

ρρ

1

1−1

−1

1

1

1

1 1

1

1

1

−1

−1 −1 −1

−1−1−1

−1

2 2

2

2 2

2 2 2

2

2

2 2

22

1

1 1

1

1

1n
 =

 0
,2

,4
,6

,8
n

 =
 1

,3
,5

,7
,9

0

0

0

0

0 0

00

FIG. 5. First five even (top row) and odd (bottom row) members of regular polynomials Pn = ρn, Fn(ρ), Gn(ρ)
ρ

and Gn(ρ)
functions from the left to the right respectively.

0 1 2 ρ

-1

0

1

y

Normal S-Dipole

0 1 2 ρ

-1

0

1

y

Normal S-Quadrupole

0 1 2 ρ

-1

0

1

y

Normal S-Sextupole

0 1 2 ρ

-1

0

1

y

Normal S-Octupole

0 1 2 ρ

-1

0

1

y

Normal S-Decapole

0 1 2 ρ

-1

0

1

y

Skew S-Dipole

0 1 2 ρ

-1

0

1

y

Skew S-Quadrupole

0 1 2 ρ

-1

0

1

y

Skew S-Sextupole

0 1 2 ρ

-1

0

1

y

Skew S-Octupole

0 1 2 ρ

-1

0

1

y

Skew S-Decapole

FIG. 6. Normal and skew 2n-pole magnets in cylindrical coordinates. Each figure shows magnetic (electric) field streamlines
and poles’ shape in transverse cross section. North (positive electrostatic potential) and south (negative electrostatic potential)

poles are shown in red and blue and given by constant levels of (B,A)
(e)
n = ∓const respectively, const = 1 for this example.

Bottom row shows 3D models of sector magnets with θ = 3π/2: skew S-dipole, normal S-dipole, skew S-quadrupole, normal
S-quadrupole and skew S-sextupole from the left to the right respectively. Equilibrium orbit is shown in green color
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TABLE VIII. Sector harmonics.

n

A(e)
n 0 1

1 ln ρ

2

[
ρ2 − 1

2
− y2

]
− ln ρ

3

[
−3

ρ2 − 1

2

]
+ 3

(
ρ2 + 1

2
− y2

)
ln ρ

4

[
3(ρ4 + 4 ρ2 − 5)

8
− 6

ρ2 − 1

2
y2 + y4

]
− 3

(
1

2
+ ρ2 − 2 y2

)
ln ρ

5

[
−5

9 (ρ4 − 1)

16
+ 5× 6

ρ2 − 1

2
y2
]

+ 5

(
3(ρ4 + 4 ρ2 + 1)

8
− 6

ρ2 + 1

2
y2 + y4

)
ln ρ

A(m)
n 0

1

ρ

{
1

}
1

1

ρ

{[
ρ2 − 1

2

]}
2

1

ρ

{[
−ρ

2 − 1

2
− y2

]
+ ρ2 ln ρ

}
3

1

ρ

{[
3(ρ2 + 1)

4

ρ2 − 1

2
− 3

ρ2 − 1

2
y2
]
− 3

2
ρ2 ln ρ

}
4

1

ρ

{[
−3(5 ρ4 − 4 ρ2 − 1)

8
+ 6

ρ2 − 1

2
y2 + y4

]
+

3(2 + ρ2 − 4 y2)

2
ρ2 ln ρ

}
5

1

ρ

{[
5(ρ4 + 10 ρ2 + 1)

8

ρ2 − 1

2
− 10

3(ρ2 + 1)

4

ρ2 − 1

2
y2 + 5

ρ2 − 1

2
y4
]
− 15(1 + ρ2 − 4 y2)

4
ρ2 ln ρ

}
B(e)
n 0 0

1 y

{
1

}
2 y

{
2 ln ρ

}
3 y

{[
3
ρ2 − 1

2
− y2

]
− 3 ln ρ

}
4 y

{[
−12

ρ2 − 1

2

]
+ 4

(
3
ρ2 + 1

2
− y2

)
ln ρ

}
5 y

{[
5

3 (ρ4 + 4 ρ2 − 5)

8
− 10

ρ2 − 1

2
y2 + y4

]
− 5

(
3

2
+ 3 ρ2 − 2 y2

)
ln ρ

}
B(m)
n 0 0

1
y

ρ

{
1

}
2

y

ρ

{[
2
ρ2 − 1

2

]}
3

y

ρ

{[
−3

ρ2 − 1

2
− y2

]
+ 3 ρ2 ln ρ

}
4

y

ρ

{[
4

3(ρ2 + 1)

4

ρ2 − 1

2
− 4

ρ2 − 1

2
y2
]
− 6 ρ2 ln ρ

}
5

y

ρ

{[
−5

3(5 ρ4 − 4 ρ2 − 1)

8
+ 10

ρ2 − 1

2
y2 + y4

]
+ 5

(
3 +

3

2
ρ2 − 2 y2

)
ρ2 ln ρ

}
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F. Recurrence equations in sector coordinates

An alternative approach to find expansions for poten-
tials is to use general power series ansatz. In Cartesian
coordinates the use of

Φ = −
∞∑

m,n≥0

Vm,n
xm

m!

yn

n!

gives the recurrence relation

Vm+2,n + Vm,n+2 = 0.

This equation immediately defines all coefficients, and
up to a common factor, as easy to see, coincides with
harmonic homogeneous polynomials An and Bn.

In sector coordinates, the same substitution for Φ, and

Aθ = −
∞∑

m,n≥0

1

1 + x
Vm,n

xm

m!

yn

n!

substitution for longitudinal component of the vector po-
tential gives two new recurrences, respectively

Vm+2,n + Vm,n+2 = −(m± 1)Vm+1.n −mVm−1,n+2.

The detailed approach on how to treat these equations
can be found for example in [Wiedemann]. In order to
solve these recurrences, one can look for a solution where
each term can be expressed in a form

Vi,j = V ∗i,j + V
(i+j−1)
i,j + V

(i+j−2)
i,j + V

(i+j−3)
i,j + . . .

where starred variables are the “design” terms given by
pure multipole fields and thus satisfying

V ∗m+2,n + V ∗m,n+2 ≡ 0.

Other coefficients V
(k)
i,j are terms induced by lower k-th

order pure multipoles due to recurrence. Thus in order
to find an expression for a particular 2n-pole we will start
the recurrence form the n-th order assuming that

Vn,0 = −Vn−2,2 = . . . or Vn−1,1 = −Vn−3,3 = . . .

for normal and skew elements. Then we will start ex-
ploiting the recurrence where all terms in the form V

(n)
i,j

for i+ j > n are subject to be determined.
This approach has two major disadvantages. At first,

in order to use the result on will have to truncate a re-
currence. As a result the potentials representing mag-
nets do not satisfies the Laplace equation anymore. This
is a strong assumption which violate the “physics” and
should be avoided. While potentials can be approximated
with any precision by keeping an appropriate number of
terms, there is another issue. At second, at each new
order when solving the recurrence one will find that an
arbitrary constant αi ∈ (0; 1) should be introduced since
the system is undetermined. An additional assumption
(As,Φ) |x=0 ∝ yn allows to truncate or summate the se-
ries. The resulting solutions coincide with the one ob-
tained above.

IV. SUMMARY

The scalar and vector Laplace’s equations for static
transverse electromagnetic fields in curvilinear orthog-
onal coordinates with zero and constant curvature are
solved. In Cartesian coordinates these solutions are well
known harmonic homogeneous polynomials of two vari-
ables. The set of solutions in cylindrical coordinates
named sector harmonics, and should not be confused
with cylindrical harmonics where ρ-dependent term is
given by Bessel functions which occasionally are also
called cylindrical harmonics. In contrast, the radial part
is given by the set of introduced McMillan radial har-
monics, independently introduced by E.M. McMillan in
his “forgotten” article, and adjoint radial harmonics also
described in this work. The feature of sector harmonics
that when expanded around equilibrium orbit they re-
semble solution in Cartesian geometry. Compared to the
traditional approach, widely used in accelerator commu-
nity, of the use of recurrences based on general power
series ansatz, this set of functions has two major ad-
vantages. It do not require any truncation and is ex-
actly satisfying Laplace equation, and, provides a well
defined full basis of functions which can be related to
any field by its expansion in radial or vertical planes,
see Table IX. Including the model Hamiltonians for t-
and s-representations, where no assumptions but the field
symmetry has been used, one can construct numerical
scheme integrating equations of motion. Thus I would
like to suggest the set of sector harmonics as a new ba-
sis for description and design of any sector magnets with
translational symmetry along azimuthal coordinate.
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Appendix A: R- ans S- multipoles. Exact
expressions.

The scalar potentials, longitudinal component of vec-
tor potential, and field components for pure R- and S-
multipoles up to fifth order are listed in Table X–XI and
Tables XII–XIII respectively.
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TABLE IX. Relationship between coefficients determining the strength of “pure” normal and skew S-multipoles and power
series expansion of field in radial and vertical planes on equilibrium orbit.

n x = 0 y = 0

Cn 1 Fy Fy

2 ∂y Fx ∂x Fy

3 −∂2
y Fy ∂2

x Fy + ∂x Fy

4 −∂3
y Fx ∂3

x Fy + ∂2
x Fy − ∂x Fy

5 ∂4
y Fy ∂4

x Fy + 2 ∂3
x Fy − ∂2

x Fy + ∂x Fy

6 ∂5
y Fx ∂5

x Fy + 2 ∂4
x Fy − 3 ∂3

x Fy + 3 ∂2
x Fy − 3 ∂x Fy

7 −∂6
y Fy ∂6

x Fy + 3 ∂5
x Fy − 3 ∂4

x Fy + 6 ∂3
x Fy − 9 ∂2

x Fy + 9 ∂x Fy

8 −∂7
y Fx ∂7

x Fy + 3 ∂6
x Fy − 6 ∂5

x Fy + 12 ∂4
x Fy − 27 ∂3

x Fy + 45 ∂2
x Fy − 45 ∂x Fy

9 ∂8
y Fy ∂8

x Fy + 4 ∂7
x Fy − 6 ∂6

x Fy + 18 ∂5
x Fy − 51 ∂4

x Fy + 126 ∂3
x Fy − 225 ∂2

x Fy + 225 ∂x Fy

C n 1 Fx Fx

2 −∂y Fy ∂x Fx + Fx

3 −∂2
y Fx ∂2

x Fx + ∂x Fx − Fx
4 ∂3

y Fy ∂3
x Fx + 2 ∂2

x Fx − ∂x Fx + Fx

5 ∂4
y Fx ∂4

x Fx + 2 ∂3
x Fx − 3 ∂2

x Fx + 3 ∂x Fx − 3Fx

6 −∂5
y Fy ∂5

x Fx + 3 ∂4
x Fx − 3 ∂3

x Fx + 6 ∂2
x Fx − 9 ∂x Fx + 9Fx

7 −∂6
y Fx ∂6

x Fx + 3 ∂5
x Fx − 6 ∂4

x Fx + 12 ∂3
x Fx − 27 ∂2

x Fx + 45 ∂x Fx − 45Fx

8 ∂7
y Fy ∂7

x Fx + 4 ∂6
x Fx − 6 ∂5

x Fx + 18 ∂4
x Fx − 51 ∂3

x Fx + 126 ∂2
x Fx − 225 ∂x Fx + 225Fx

9 ∂8
y Fx ∂8

x Fx + 4 ∂7
x Fx − 10 ∂6

x Fx + 30 ∂5
x Fx − 105 ∂4

x Fx + 330 ∂3
x Fx − 855 ∂2

x Fx + 1575 ∂x Fx − 1575Fx

Appendix B: Taylor polynomials of Fn and Gn.

The first ten terms of Maclaurin series of Fn(x), Gn(x)

and
Gn(x)

1 + x
are listed in Table XIV.
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TABLE X. Longitudinal component of the vector potential and scalar potential for pure normal and skew R-multipoles.

n Az Φ

0 calibration −C0 0

1 normal dipole − 1

1!
(x)C1 − 1

1!
(y)C1

2 normal quadrupole − 1

2!
(x2 − y2)C2 − 1

2!
(2x y)C2

3 normal sextupole − 1

3!
(x3 − 3x y2)C3 − 1

3!
(3x2y − y3)C3

4 normal octupole − 1

4!
(x4 − 6x2y2 + y4)C4 − 1

4!
(4x3y − 4x y3)C4

5 normal decapole − 1

5!
(x5 − 10x3y2 + 5x y4)C5 − 1

5!
(5x4y − 10x2y3 + y5)C5

0 calibration 0 C 0

1 skew dipole
1

1!
(y)C 1 − 1

1!
(x)C 1

2 skew quadrupole
1

2!
(2x y)C 2 − 1

2!
(x2 − y2)C 2

3 skew sextupole
1

3!
(3x2y − y3)C 3 − 1

3!
(x3 − 3x y2)C 3

4 skew octupole
1

4!
(4x3y − 4x y3)C 4 − 1

4!
(x4 − 6x2y2 + y4)C 4

5 skew decapole
1

5!
(5x4y − 10x2y3 + y5)C 5 − 1

5!
(x5 − 10x3y2 + 5x y4)C 5

TABLE XI. Horizontal and vertical components of pure normal and skew R-multipole magnets’ field.

n Fx Fy

0 calibration — —

1 normal dipole 0 C1

2 normal quadrupole
1

1!
(y)C2

1

1!
(x)C2

3 normal sextupole
1

2!
(2x y)C3

1

2!
(x2 − y2)C3

4 normal octupole
1

3!
(3x2y − y3)C4

1

3!
(x3 − 3x y2)C4

5 normal decapole
1

4!
(4x3y − 4x y3)C5

1

4!
(x4 − 6x2y2 + y4)C5

0 calibration — —

1 skew dipole C 1 0

2 skew quadrupole
1

1!
(x)C 2 − 1

1!
(y)C 2

3 skew sextupole
1

2!
(x2 − y2)C 3 − 1

2!
(2x y)C 3

4 skew octupole
1

3!
(x3 − 3x y2)C 4 − 1

3!
(3x2y − y3)C 4

5 skew decapole
1

4!
(x4 − 6x2y2 + y4)C 5 − 1

4!
(4x3y − 4x y3)C 5
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TABLE XII. Azimuthal component of the vector potential and scalar potential for “pure” normal and skew S-multipoles.

n

A
(n)
θ 0 − 1

0!

1

ρ

{
1

}
C0

1 − 1

1!

1

ρ

{[
ρ2 − 1

2

]}
C1

2 − 1

2!

1

ρ

{[
−ρ

2 − 1

2
− y2

]
+ ρ2 ln ρ

}
C2

3 − 1

3!

1

ρ

{[
3(ρ2 + 1)

4

ρ2 − 1

2
− 3

ρ2 − 1

2
y2
]
− 3

2
ρ2 ln ρ

}
C3

4 − 1

4!

1

ρ

{[
−3(5 ρ4 − 4 ρ2 − 1)

8
+ 6

ρ2 − 1

2
y2 + y4

]
+

3(2 + ρ2 − 4 y2)

2
ρ2 ln ρ

}
C4

5 − 1

5!

1

ρ

{[
5(ρ4 + 10 ρ2 + 1)

8

ρ2 − 1

2
− 10

3(ρ2 + 1)

4

ρ2 − 1

2
y2 + 5

ρ2 − 1

2
y4
]
− 15(1 + ρ2 − 4 y2)

4
ρ2 ln ρ

}
C5

Φ
(n)

0 0

1 − 1

1!
y

{
1

}
C1

2 − 1

2!
y

{
2 ln ρ

}
C2

3 − 1

3!
y

{[
3
ρ2 − 1

2
− y2

]
− 3 ln ρ

}
C3

4 − 1

4!
y

{[
−12

ρ2 − 1

2

]
+ 4

(
3
ρ2 + 1

2
− y2

)
ln ρ

}
C4

5 − 1

5!
y

{[
5

3 (ρ4 + 4 ρ2 − 5)

8
− 10

ρ2 − 1

2
y2 + y4

]
− 5

(
3

2
+ 3 ρ2 − 2 y2

)
ln ρ

}
C5

A
(n)
θ 0 0

1
1

1!

y

ρ

{
1

}
C 1

2
1

2!

y

ρ

{[
2
ρ2 − 1

2

]}
C 2

3
1

3!

y

ρ

{[
−3

ρ2 − 1

2
− y2

]
+ 3 ρ2 ln ρ

}
C 3

4
1

4!

y

ρ

{[
4

3(ρ2 + 1)

4

ρ2 − 1

2
− 4

ρ2 − 1

2
y2
]
− 6 ρ2 ln ρ

}
C 4

5
1

5!

y

ρ

{[
−5

3(5 ρ4 − 4 ρ2 − 1)

8
+ 10

ρ2 − 1

2
y2 + y4

]
+ 5

(
3 +

3

2
ρ2 − 2 y2

)
ρ2 ln ρ

}
C 5

Φ(n) 0 − 1

0!

{
1

}
C 0

1 − 1

1!

{
ln ρ

}
C 1

2 − 1

2!

{[
ρ2 − 1

2
− y2

]
− ln ρ

}
C 2

3 − 1

3!

{[
−3

ρ2 − 1

2

]
+ 3

(
ρ2 + 1

2
− y2

)
ln ρ

}
C 3

4 − 1

4!

{[
3(ρ4 + 4 ρ2 − 5)

8
− 6

ρ2 − 1

2
y2 + y4

]
− 3

(
1

2
+ ρ2 − 2 y2

)
ln ρ

}
C 4

5 − 1

5!

{[
−5

9 (ρ4 − 1)

16
+ 5× 6

ρ2 − 1

2
y2
]

+ 5

(
3(ρ4 + 4 ρ2 + 1)

8
− 6

ρ2 + 1

2
y2 + y4

)
ln ρ

}
C 5
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TABLE XIII. Radial and vertical components of “pure” normal and skew S-multipoles’ field.

n

F
(n)
ρ 0 calibration —

1 normal dipole 0

2 normal quadrupole − 1

1!

y

ρ

{
1

}
C2

3 normal sextupole − 1

2!

y

ρ

{[
2
ρ2 − 1

2

]}
C3

4 normal octupole − 1

3!

y

ρ

{[
−3

ρ2 − 1

2
− y2

]
+ 3 ρ2 ln ρ

}
C4

5 normal decapole − 1

4!

y

ρ

{[
4

3(ρ2 + 1)

4

ρ2 − 1

2
− 4

ρ2 − 1

2
y2
]
− 6 ρ2 ln ρ

}
C5

F
(n)
y 0 calibration —

1 normal dipole
1

0!

{
1

}
C1

2 normal quadrupole
1

1!

{
ln ρ

}
C2

3 normal sextupole
1

2!

{[
ρ2 − 1

2
− y2

]
− ln ρ

}
C3

4 normal octupole
1

3!

{[
−3

ρ2 − 1

2

]
+ 3

(
ρ2 + 1

2
− y2

)
ln ρ

}
C4

5 normal decapole
1

4!

{[
3(ρ4 + 4 ρ2 − 5)

8
− 6

ρ2 − 1

2
y2 + y4

]
− 3

(
1

2
+ ρ2 − 2 y2

)
ln ρ

}
C5

F (n)
ρ 0 calibration —

1 skew dipole
1

0!

1

ρ

{
1

}
C 1

2 skew quadrupole
1

1!

1

ρ

{[
ρ2 − 1

2

]}
C 2

3 skew sextupole
1

2!

1

ρ

{[
−ρ

2 − 1

2
− y2

]
+ ρ2 ln ρ

}
C 3

4 skew octupole
1

3!

1

ρ

{[
3(ρ2 + 1)

4

ρ2 − 1

2
− 3

ρ2 − 1

2
y2
]
− 3

2
ρ2 ln ρ

}
C 4

5 skew decapole
1

4!

1

ρ

{[
−3(5 ρ4 − 4 ρ2 − 1)

8
+ 6

ρ2 − 1

2
y2 + y4

]
+

3(2 + ρ2 − 4 y2)

2
ρ2 ln ρ

}
C 5

F (n)
y 0 calibration —

1 skew dipole 0

2 skew quadrupole
1

1!
y

{
1

}
C 2

3 skew sextupole
1

2!
y

{
2 ln ρ

}
C 3

4 skew octupole
1

3!
y

{[
3
ρ2 − 1

2
− y2

]
− 3 ln ρ

}
C 4

5 skew decapole
1

4!
y

{[
−12

ρ2 − 1

2

]
+ 4

(
3
ρ2 + 1

2
− y2

)
ln ρ

}
C 5



17

TABLE XIV. Maclaurin series of Fn(x), Gn(x) and Gn(x)
1+x

; they are also Taylor polynomials of Fn(ρ), Gn(ρ) and Gn(ρ)
ρ

at ρ = 1.

n T(Fn)

0 1

1 x−
1

2
x
2
+

1

3
x
3 −

1

4
x
4
+

1

5
x
5 −

1

6
x
6
+

1

7
x
7 −

1

8
x
8
+

1

9
x
9 −

1

10
x
10

+O(x
11

)

2 x
2 −

1

3
x
3
+

1

4
x
4 −

1

5
x
5
+

1

6
x
6 −

1

7
x
7
+

1

8
x
8 −

1

9
x
9
+

1

10
x
10 −

1

11
x
11

+O(x
12

)

3 x
3 −

1

2
x
4
+

7

20
x
5 −

11

40
x
6
+

8

35
x
7 −

11

56
x
8
+

29

168
x
9 −

37

240
x
10

+
23

165
x
11 −

7

55
x
12

+O(x
13

)

4 x
4 −

2

5
x
5
+

3

10
x
6 −

17

70
x
7
+

23

112
x
8 −

5

28
x
9
+

19

120
x
10 −

47

330
x
11

+
57

440
x
12 −

17

143
x
13

+O(x
14

)

5 x
5 −

1

2
x
6
+

5

14
x
7 −

2

7
x
8
+

27

112
x
9 −

47

224
x
10

+
689

3696
x
11 −

355

2112
x
12

+
263

1716
x
13 −

1129

8008
x
14

+O(x
15

)

6 x
6 −

3

7
x
7
+

9

28
x
8 −

11

42
x
9
+

25

112
x
10 −

241

1232
x
11

+
123

704
x
12 −

181

1144
x
13

+
2319

16016
x
14 −

535

4004
x
15

+O(x
16

)

7 x
7 −

1

2
x
8
+

13

36
x
9 −

7

24
x
10

+
131

528
x
11 −

689

3168
x
12

+
5339

27456
x
13 −

9683

54912
x
14

+
16

99
x
15 −

1367

9152
x
16

+O(x
17

)

8 x
8 −

4

9
x
9
+

1

3
x
10 −

3

11
x
11

+
185

792
x
12 −

353

1716
x
13

+
1267

6864
x
14 −

3457

20592
x
15

+
5647

36608
x
16 −

855

5984
x
17

+O(x
18

)

9 x
9 −

1

2
x
10

+
4

11
x
11 −

13

44
x
12

+
289

1144
x
13 −

509

2288
x
14

+
457

2288
x
15 −

2

11
x
16

+
9461

56576
x
17 −

192991

1244672
x
18

+O(x
19

)

n T(Gn)

0 1

1 x+
1

2
x
2

2 x
2
+

1

3
x
3 −

1

12
x
4
+

1

30
x
5 −

1

60
x
6
+

1

105
x
7 −

1

168
x
8
+

1

252
x
9 −

1

360
x
10

+
1

495
x
11

+O(x
12

)

3 x
3
+

1

2
x
4 −

1

20
x
5
+

1

40
x
6 −

1

70
x
7
+

1

112
x
8 −

1

168
x
9
+

1

240
x
10 −

1

330
x
11

+
1

440
x
12

+O(x
13

)

4 x
4
+

2

5
x
5 −

1

10
x
6
+

3

70
x
7 −

13

560
x
8
+

1

70
x
9 −

1

105
x
10

+
31

4620
x
11 −

13

2640
x
12

+
8

2145
x
13

+O(x
14

)

5 x
5
+

1

2
x
6 −

1

14
x
7
+

1

28
x
8 −

1

48
x
9
+

3

224
x
10 −

17

1848
x
11

+
7

1056
x
12 −

17

3432
x
13

+
61

16016
x
14

+O(x
15

)

6 x
6
+

3

7
x
7 −

3

28
x
8
+

1

21
x
9 −

3

112
x
10

+
3

176
x
11 −

173

14784
x
12

+
271

32032
x
13 −

37

5824
x
14

+
59

12012
x
15

+O(x
16

)

7 x
7
+

1

2
x
8 −

1

12
x
9
+

1

24
x
10 −

13

528
x
11

+
17

1056
x
12 −

103

1952
x
13

+
151

18304
x
14 −

43

6864
x
15

+
179

36609
x
16

+O(x
17

)

8 x
8
+

4

9
x
9 −

1

9
x
10

+
5

99
x
11 −

23

792
x
12

+
97

5148
x
13 −

271

20592
x
14

+
199

20592
x
15 −

2425

329472
x
16

+
1009

175032
x
17

+O(x
18

)

9 x
9
+

1

2
x
10 −

1

11
x
11

+
1

22
x
12 −

31

1144
x
13

+
41

2288
x
14 −

29

2288
x
15

+
43

4576
x
16 −

4489

622336
x
17

+
7079

1244672
x
18

+O(x
19

)

n T(Gn/ρ)

0 1− x+ x
2 − x3

+ x
4 − x5

+ x
6 − x7

+ x
8 − x9

+O(x
10

)

1 x−
1

2
x
2
+

1

2
x
3 −

1

2
x
4
+

1

2
x
5 −

1

2
x
6
+

1

2
x
7 −

1

2
x
8
+

1

2
x
9 −

1

2
x
10

+O(x
11

)

2 x
2 −

2

3
x
3
+

7

12
x
4 −

11

20
x
5
+

8

15
x
6 −

11

21
x
7
+

29

56
x
8 −

37

72
x
9
+

23

45
x
10 −

28

55
x
11

+O(x
12

)

3 x
3 −

1

2
x
4
+

9

20
x
5 −

17

40
x
6
+

23

56
x
7 −

45

112
x
8
+

19

48
x
9 −

47

120
x
10

+
171

440
x
11 −

17

44
x
12

+O(x
13

)

4 x
4 −

3

5
x
5
+

1

2
x
6 −

16

35
x
7
+

243

560
x
8 −

47

112
x
9
+

689

1680
x
10 −

71

176
x
11

+
263

660
x
12 −

1129

2860
x
13

+O(x
14

)

5 x
5 −

1

2
x
6
+

3

7
x
7 −

11

28
x
8
+

125

336
x
9 −

241

672
x
10

+
123

352
x
11 −

181

528
x
12

+
773

2288
x
13 −

2675

8008
x
14

+O(x
15

)

6 x
6 −

4

7
x
7
+

13

28
x
8 −

5

12
x
9
+

131

336
x
10 −

689

1848
x
11

+
5339

14784
x
12 −

9683

27456
x
13

+
80

231
x
14 −

1367

4004
x
15

+O(x
16

)

7 x
7 −

1

2
x
8
+

5

12
x
9 −

3

8
x
10

+
185

528
x
11 −

353

1056
x
12

+
8869

27456
x
13 −

17285

54912
x
14

+
5647

18304
x
15 −

855

2816
x
16

+O(x
17

)

8 x
8 −

5

9
x
9
+

4

9
x
10 −

13

33
x
11

+
289

792
x
12 −

3563

10296
x
13

+
2285

6864
x
14 −

32

99
x
15

+
9461

29952
x
16 −

192991

622336
x
17

+O(x
18

)

9 x
9 −

1

2
x
10

+
9

22
x
11 −

4

11
x
12

+
35

104
x
13 −

729

2288
x
14

+
175

572
x
15 −

1357

4576
x
16

+
13851

47872
x
17 −

353047

1244672
x
18

+O(x
19

)




