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Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at
hadron colliders are computed through to three loops in the expansion of strong coupling, with
the help of bootstrap technique and supersymmetric decomposition. The corresponding rapid-
ity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for
transverse-momentum resummation and threshold resummation is found.

Introduction. The transverse-momentum (qT ) distri-
bution of generic high-mass color-neutral systems (Drell-
Yan lepton pair, Higgs, EW vector boson pair, etc.) pro-
duced in hadron collisions is of great interest since the
early days of Quantum ChromoDynamics (QCD) [1–6].
It provides a testing ground for examination and im-
provement of our understanding of QCD, both pertur-
batively and non-perturbatively. When qT is small com-
pared with the invariant mass Q of the system, fixed-
order perturbation theory breaks down due to the ap-
pearance of large logarithms of the form lnk(q2

T
/Q2)/q2

T
,

with k ≥ 0 at each order in strong coupling αS. These
large logarithms originate from incomplete cancellation
of soft and collinear divergences between real and vir-
tual diagrams. Fortunately, Collins, Soper, and Ster-
man (CSS) have shown that they can be systematically
resummed to all orders in perturbation theory [5], thanks
to QCD factorization.

In recent years, there have been increasing interests
in applying Soft-Collinear Effective Theory (SCET) [7–
11] to resum large logarithms in perturbative QCD using
renormalization group (RG) method. For qT resumma-
tion this has been done by a number of authors [12–
18]. For transverse-momentum observable, the relevant
momentum modes in light-cone coordinate for fields in
the effective theory are soft ps ∼ Q(λ, λ, λ), collinear
pc ∼ Q(λ2, 1, λ) and anti-collinear pc̄ ∼ Q(1, λ2, λ). Here
λ ∼ qT/Q is a power counting parameter. The corre-
sponding effective theory is SCETII . An important fea-
ture of SCETII is that soft and collinear modes live on
the same hyperbola of virtuality, p2s ∼ p2c ∼ p2c̄ ∼ λ2Q2.
Besides the usual large logarithms of ratio between hard
scale Q and soft scale λQ, there are also large rapid-
ity separations between soft, collinear, and anti-collinear
modes which need to be resummed. In this Letter we
adopt the rapidity RG formalism of Chiu, Jain, Neill, and
Rothstein [16, 17]. According to the rapidity RG formal-
ism, cross section at small qT factorizes into hard func-
tion H , (transverse-momentum-dependent) beam func-
tions B, and soft function S⊥. Schematically the factor-
ization formula reads:

1

σ

d3σ(res.)

d2~qT dY dQ2
∼H(µ)

∫

d2~b⊥
(2π)2

ei
~b⊥· ~QT

· [B ⊗B](~b⊥, µ, ν)S⊥(~b⊥, µ, ν) (1)

Large logarithms in virtuality is resummed by running
in the renormalization scale µ, while large logarithms in
rapidity is resummed by running in the rapidity scale
ν. The µ evolution of the hard function can be derived
from quark or gluon form factor and is well-known [19–
21]. Since the physical cross section is independent of µ
and ν order by order in the perturbation theory, it follows
that the µ and ν evolution of [B ⊗ B] is fixed once the
corresponding evolution for the soft function is known.
The knowledge of µ and ν evolution of hard, beam, and
soft function, together with the boundary conditions of
these functions at initial scales, determine the all order
structure of large logarithms of qT .
The naive definition of the soft function is a vacuum

expectation value of light-like Wilson loops with a trans-
verse separation, which suffers from light-cone/rapidity
divergence [3]. A proper definition of soft function re-
quires the introduction of appropriate regulator for the
rapidity divergence. Proposals to regularize the rapid-
ity divergence includes non-light-like axial gauge without
Wilson lines [5], tilting Wilson lines off the lightcone [22],
nearly light-like Wilson lines with subtraction of soft fac-
tor [23], modifying the phase space measure [15, 16, 24],
modifying the iε prescription of eikonal propagator [25],
etc. In this Letter, we follow the recent proposal [26]
by Neill and the current authors of implementing an in-
finitesimal shift in the time direction to the Wilson loop
correlator. Specifically, the soft function with the rapid-
ity regulator of Ref. [26] reads:

S⊥(~b⊥, µ, ν) = lim
ν→+∞

SF.D.(~b⊥, µ, ν) (2)

≡ lim
ν→+∞

1

da

〈

0
∣

∣T
[

S†
n̄(−∞, 0)Sn(0,−∞)

]

· T
[

S†
n(−∞, yν(~b⊥))Sn̄(yν(~b⊥),−∞)

]
∣

∣0
〉

where the two Wilson loops are separated by the distance
yν(~b⊥) = (i b0/ν, i b0/ν, ~b⊥), with b0 = 2e−γE . Sn(n̄)

are path-ordered Wilson lines on the light-cone. They
carry fundamental or adjoint color indices, depending on
whether the color-neutral system is produced in qq̄ an-
nihilation (da = Nc) or gg fusion (da = N2

c − 1). T
is the time-ordered operator. The soft function S⊥ in
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eq. (2) is closely related to the so-called fully differential
soft function [14], SF.D.. The limit ν → +∞ means that
only the non-vanishing terms of SF.D. are kept in that
limit. The important role of SF.D. in our calculation will
be explained in the next section. Note that our definition
for the soft function doesn’t rely on perturbation theory.
However, we restrict to the perturbatively calculable part
of the soft function in this Letter.
After minimal subtraction of dimensional regulariza-

tion pole 1/ǫn in MS scheme, the soft function S⊥ de-
pends on both the renormalization scale µ and the ra-
pidity scale ν. The µ evolution of the soft function is
specified by the RG equation:

d lnS⊥(~b⊥, µ, ν)

d lnµ2
= Γcusp

[

αS(µ)
]

ln
µ2

ν2
− γs

[

αS(µ)
]

(3)

where Γcusp is the well-known light-like cusp anomalous
dimension [27, 28], which is known to three loops in
QCD [29]. γs is the soft anomalous dimension governing
the single logarithmic evolution, which can be extracted
through to three loops from QCD splitting function [29]
and quark and gluon form factor [19–21], as is confirmed
by explicit three-loop calculation [30]. The rapidity evo-
lution equation for the soft function reads:

d lnS⊥(~b⊥, µ, ν)

d ln ν2
=

∫ b2
0
/~b 2

⊥

µ2

dµ̄2

µ̄2
Γcusp

[

αS(µ̄)
]

+ γr
[

αS(b0/|~b⊥|)
]

(4)

where the rapidity anomalous dimension γr is intro-
duced for the single logarithmic evolution of rapidity
logarithms. Thanks to the non-Abelian exponentiation
theorem [31–33] which our regularization procedure [26]
preserves, the perturbative soft function can be written
as an exponential:

S⊥(~b⊥, µ, ν) = exp
[

aSS
⊥
1 + a2

S
S⊥
2 + a3

S
S⊥
3 +O(a4

S
)
]

(5)

where we have defined aS = αS(µ)/(4π) as our per-
turbative expansion parameter throughout this Letter.
The one and two-loop coefficients S⊥

1,2 can be found in
Ref. [26]. In the next section we outline the proce-
dure we used to calculate the three-loop coefficient S⊥

3 ,
from which the rapidity anomalous dimensions can be
extracted to the same order.
Method. To obtain the soft function S⊥ through to
three loops, we first calculate the fully differential soft
function to the same order. SF.D. obeys a RG equation
identical to eq. (3) [14]:

d lnSF.D.(~b⊥, µ, ν)

d lnµ2
= Γcusp

[

αS(µ)
]

ln
µ2

ν2
− γs

[

αS(µ)
]

(6)

In SF.D., ν is a parameter of the theory, not a regula-
tor. Therefore the ν dependence of SF.D. is in general

complicated. The perturbative solution to SF.D. is then
determined by eq. (6) and the boundary condition at ini-

tial scale, SF.D.(~b⊥, µ = ν, ν). Similar to S⊥, SF.D. can
also be written as an exponential, as in eq. (5). The
one and two-loop coefficients SF.D.

1,2 were first computed
in Ref. [34], and reproduced in Ref. [26].

By dimension analysis, SF.D.(~b⊥, ν, ν) is a function of

x = −~b 2
⊥ν

2/b20. A strategy based on the bootstrap
program for scattering amplitudes [35] is proposed in

Ref. [26] to compute SF.D.(~b⊥, ν, ν), which we briefly re-
call below. In Ref. [34], the one and two-loop coeffi-
cients SF.D.

1,2 are written in terms of classical and Nielsens
polylogarithms with argument x. A crucial observation
made in Ref. [26] is that the same results can be written
in terms of harmonic polylogarithms (HPL) H~w(x) [36],
with weight indices drawn from the set {0, 1}. Further-
more, for the available one and two-loop data, the first
entry and the last entry of the weight vectors were found
to be 0 and 1, respectively. The last entry condition can
be understood from the requirement that the soft func-
tion is free of branching cut around x = 0, while the first
entry condition seems to follow from requiring the soft
function to be finite in the x → 1 limit. A general ansatz
for L-loop fully differential soft function is proposed in
Ref. [26], which is a linear combination of HPLs with un-
determined rational coefficients, and whose weight vec-
tors obey the first and last entry conditions. The unde-
termined coefficients of the HPLs can then be fixed by
performing an expansion around x ∼ 0, together with
the constraint that rapidity divergence is only a single
logarithmic divergence at each order for the expansion
coefficients in eq. (5). It turns out that the x → 0 limit of
SF.D. is smooth, and the expansion is simply a Taylor se-
ries in x. As explained in Ref. [26], the leading x0 term of
the expansion reproduces the threshold soft function [30],
while the coefficient of xn can be obtained by inserting a
numerator (l+l−−l2)n into the integrand of the threshold
soft function, where l is the total momenta of real radi-
ation from the time-ordered Wilson loop. Furthermore,
using Integration-By-Parts (IBP) identities [37, 38], inte-
grals with high rank numerator insertion can be reduced
to a small number of master integrals, which have been
computed for other purpose recently [39–44].

Although the strategy outlined above is straightfor-
ward, it has two caveats. First, the maximal weight of
HPLs at three loops for massless perturbation theory is
6. It follows that the number of coefficients need to be
fixed is

∑4
i=0 2

i = 31. In other words, one needs to insert
a high-rank numerator (l+l− − l2)31 into the integrand
of threshold soft function in order to have enough data
to fix the coefficients, which is unfortunately beyond the
ability of the tools for IBP reduction [45–48]. Second, it
is not clear whether the conjectured sets of function in
Ref. [26] is sufficient to describe the three-loop soft func-
tion. To circumvent the above difficulties, we first per-
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form the calculation for soft Wilson loops whose matter
content [30, 40, 42] resembles those of N = 4 Supersym-
metric Yang-Mills theory (SYM). This has a number of
advantages: 1) it has been observed that for soft Wil-
son loops in SCET [30], the results in N = 4 SYM has
uniform degrees of transcendentality with transcenden-
tal weight 2L at L loops. Furthermore, the N = 4 re-
sults match the maximal-weight part of the correspond-
ing QCD results. Similar phenomenon was first observed
for anomalous dimension of twist-two operator for Wil-
son lines [49]. It also holds for some other quantities,
e.g., perturbative form factor [50]. Assuming that this is
also true in our current calculation, by calculating SF.D.

in N = 4 SYM first, we should automatically obtain the
maximal-weight part of SF.D. in QCD; 2) since the N = 4
SYM results have uniform degrees of transcendentality,
there are only 16 coefficients to be fixed at three loops,
which can be achieved within the current computation
power; 3) the remaining parts of the QCD result have

transcendental weight lower than 6, therefore only re-
quires 15 coefficients to be fixed. Alternatively, since
the Feynman diagrams corresponding to the lower-weight
part have less complicated analytical structure, they can
be computed by brute force. Direction calculation can
also test the completeness of the ansatz. And it turns
out that although the ansatz remain complete for the
three-loop N = 4 SYM result, it fails for the three-loop
QCD one. Fortunately, for QCD result, a brute-force cal-
culation for the terms proportional to nf is possible using
the method of Ref. [43]. More importantly, the result for
nf terms indicates which set of functions we should add
to the existing ansatz. The full results, for both N = 4
SYM and QCD, are presented in the next section.
Results. We first present the results for SF.D. in N = 4
SYM. We only give the results at the initial scale,
µ = ν. The full scale dependence can be inferred
from eq. (6). The one and two-loop coefficients can be
found in Ref. [26]. The three-loop coefficient in the four-
dimensional-helicity scheme [51] reads

SF.D.

3,N=4

∣

∣

∣

µ=ν
=cs3,N=4

+N3
c

(

16ζ2H4 + 48ζ2H2,2 + 64ζ2H3,1 + 96ζ2H2,1,1 + 120ζ4H2 + 48H6 + 24H2,4 + 40H3,3

+ 72H4,2 + 128H5,1 + 16H2,1,3 + 56H2,2,2 + 80H2,3,1 + 80H3,1,2 + 144H3,2,1 + 224H4,1,1

+ 64H2,1,1,2 + 96H2,1,2,1 + 160H2,2,1,1 + 256H3,1,1,1 + 192H2,1,1,1,1

)

(7)

where cs3,N=4
= 492.609N3

c is the three-loop constant for
threshold soft function in N = 4 SYM [30]. We have used
the shorthand notation for the HPLs [36] and neglected
the argument x. It is interesting to note that each term in

eq. (7) has uniform sign and integer coefficient. Further-
more, overall sign is alternating at each order in αS [26].
The corresponding results for QCD in ’t Hooft-Veltman
scheme reads:

SF.D.

3

∣

∣

∣

µ=ν
= cs3 +

CaC
2
A

N3
c

(

SF.D.

3,N=4
(x)
∣

∣

∣

µ=ν
− cs3,N=4

)

+ CaC
2
A

[

−
1072

9
ζ2H2 − 176ζ3H2 −

88

3
ζ2H3 + 88ζ2H2,1

+
30790

81
H2 +

7120

27
H3 −

104

9
H4 −

440

3
H5 −

8

3

(

H1,1 −
H1,1

x

)

−
7120

27
H2,1 −

1072

9
H2,2 −

88

3
H2,3

−
3112

9
H3,1 − 88H3,2 −

352

3
H4,1 −

392

3
H2,1,1 +

88

3
H2,1,2 +

352

3
H2,2,1 +

352

3
H3,1,1 + 352H2,1,1,1

]

+ CaCAnf

[

160

9
ζ2H2 +

16

3
ζ2H3 − 16ζ2H2,1 −

7988

81
H2 −

2312

27
H3 −

64

3
H4 +

80

3
H5 +

8

3

(

H1,1 −
H1,1

x

)

+
2312

27
H2,1 +

160

9
H2,2 +

16

3
H2,3 +

224

3
H3,1 + 16H3,2 +

64

3
H4,1 −

32

9
H2,1,1 −

16

3
H2,1,2 −

64

3
H2,2,1

−
64

3
H3,1,1 − 64H2,1,1,1

]

+ Can
2
f

(

400

81
H2 +

160

27
H3 +

32

9
H4 −

160

27
H2,1 −

32

9
H3,1 +

32

9
H2,1,1

)

+ CaCFnf

(

32ζ3H2 −
110

3
H2 − 8H3 + 8H2,1

)

(8)

where Ca = CF for Drell-Yan process, and Ca = CA for Higgs production. cs3 is the three-loop scale in-
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dependent part of the treshold soft function in QCD,
c3s = Sthr

3 (τ, µ = τ−1), see for example Refs. [26, 30, 52].
It can be found in eq. (3.2) of Ref. [30] by multiply-
ing a casimir rescaling factor Ca/CA. We note that
the only term that goes beyond the naive ansatz [26]
is (H1,1 −H1,1/x)

1.
With the fully differential soft function at hand, it is

straightforward to obtain S⊥ by taking the limit ν →
+∞ using the package HPL [53]. The soft anomalous
dimension γs through to three loops can be found, e.g.,
in eq. (A.4-6) of Ref. [30] by an rescaling factor Ca/CA.
The rapidity anomalous dimensions are given by:

γr
0 =0

γr
1 =CaCA

(

28ζ3 −
808

27

)

+
112Canf

27

γr
2 =CaC

2
A

(

−
176

3
ζ3ζ2 +

6392ζ2
81

+
12328ζ3

27
+

154ζ4
3

− 192ζ5 −
297029

729

)

+ CaCAnf

(

−
824ζ2
81

−
904ζ3
27

+
20ζ4
3

+
62626

729

)

+ Can
2
f

(

−
32ζ3
9

−
1856

729

)

+ CaCFNf

(

−
304ζ3
9

− 16ζ4 +
1711

27

)

(9)

Note that γr
0 and γr

1 can be obtained from QCD anoma-
lous dimension known long time ago [54, 55]. They have
also been reproduced in SCET recently [26, 56–58]. The
three-loop coefficient γr

2 is new and is one of the main
results of this Letter. It is also straightforward to ob-
tain the boundary condition of S⊥ at the initial scale,
c⊥3 ≡ S⊥

3 (~b⊥, µ = b0/|~b⊥|, ν = b0/|~b⊥|):

c⊥3 =CaC
2
A

(

928ζ23
9

+
1100

9
ζ2ζ3 −

151132ζ3
243

−
297481ζ2

729

+
3649ζ4
27

+
1804ζ5

9
−

3086ζ6
27

+
5211949

13122

)

+ CaCAnf

(

40

9
ζ3ζ2 +

74530ζ2
729

+
8152ζ3
81

−
416ζ4
27

−
184ζ5
3

−
412765

6561

)

+ CaCFnf

(

−
80

3
ζ3ζ2

+
275ζ2
9

+
3488ζ3
81

+
152ζ4
9

+
224ζ5
9

−
42727

486

)

1 This term cancels out in the N = 4 combination, as is clear from
eq. (7). It also cancels out in the pure N = 1 SYM with adjoint
gluino, in which one simply sets nf → CA and CF → CA. We
thank Mingxing Luo and Lance Dixon for pointing out this.

+ Can
2
f

(

−
136ζ2
27

−
560ζ3
243

−
44ζ4
27

−
256

6561

)

(10)

Discussion. The explicit results for the rapidity anoma-
lous dimension in eq. (9) can be rewritten in a remarkable
form:

γr
0 = γs

0

γr
1 = γs

1 − β0c
s
1

γr
2 = γs

2 − 2β0c
s
2 − β1c

s
1 + 2β0ζ4 (11)

Eq. (11) is interesting because it connects between very
different objects: the rapidity anomalous dimension γr,
the soft anomalous dimension γs, the threshold constant
cs, and the QCD beta function. Similar relation also
holds in N = 4 SYM by dropping the beta function terms
in eq. (11).
In the CSS formalism, the resummation of large qT

logarithms is controlled by two anomalous dimension,
A
[

αS(µ)
]

=
∑

i=1 a
i
S
Ai and B

[

αS(µ)
]

=
∑

i=1 a
i
S
Bi. It

is straightforward to express these anomalous dimension
in terms of the anomalous dimension in SCET, see e.g.
Ref. [15, 59]. In particular, we obtain the B anomalous
dimension in the original CSS scheme through to three
loops:

B1 = γV

0 − γr
0

B2 = γV

1 − γr
1 + β0c

H

1

B3 = γV

2 − γr
2 + β1c

H
1 + 2β0

(

cH2 −
1

2

(

cH1
)2
)

(12)

where γV is the anomalous dimension of hard function
results from matching QCD onto SCET. cH is the scale
independent terms of the hard matching. For Drell-Yan
production they can be extracted from quark form fac-
tor [19–21], while for Higgs production from gluon form
factor [19–21], and additionally from effective coupling
of the Higgs boson to gluons [60]. Eq. (12) partially ex-
plains the close connection between γr and γs, because
the combination γV − γs is given by the δ(1− x) part of
the single pole in the QCD splitting function [29]. Sub-
stituting the actual numbers in eq. (12), we find

BDY

1 = −8, BDY

2 = 13.3447 + 3.4138nf ,

BDY

3 = 7358.86− 721.516nf + 20.5951n2
f (13)

for Drell-Yan production. For Higgs production, the re-
sults are

BH

1 = −22 + 1.33333nf , BH

2 = 658.881− 45.9712nf ,

BH

3 = 35134.6− 7311.10nf + 293.017n2
f

−
(

836 + 184nf − 14.2222n2
f

)

ln
m2

t

m2
H

(14)

The one and two-loop results are known for a long
time [54, 55]. The three-loop results are new. We note
that numerically BDY

3 is quite large for nf = 5.
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In summary, we have presented the first calculation
of soft function for transverse-momentum resummation
in rapidity RG formalism through to three loops, using
the rapidity regulator recently introduced in Ref. [26].
As a by product, we have also obtained the fully dif-
ferential soft function to the same order. Our calcula-
tion combine the use of bootstrap technique and super-
symmetric decomposition in transcendental weight. We
found a surprising relation between the anomalous di-
mensions for the transverse-momentum resummation and
the threshold resummation, whose explanation calls for
further investigation. Our three-loop results pave the
way for transverse-momentum resummation for produc-
tion of color neutral system at hadron colliders at N3LL
+ NNLO accuracy. The method and results of our calcu-
lation also make generalizing qT -subtraction method [61]
to N3LO promising.
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