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rrSapienza Università di Roma, I-00185 Roma, Italy

47Mitchell Institute for Fundamental Physics and Astronomy,
Texas A&M University, College Station, Texas 77843, USA



3

48Istituto Nazionale di Fisica Nucleare Trieste, ssGruppo Collegato di Udine,
ttUniversity of Udine, I-33100 Udine, Italy, uuUniversity of Trieste, I-34127 Trieste, Italy

49University of Tsukuba, Tsukuba, Ibaraki 305, Japan
50Tufts University, Medford, Massachusetts 02155, USA

51Waseda University, Tokyo 169, Japan
52Wayne State University, Detroit, Michigan 48201, USA

53University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
54Yale University, New Haven, Connecticut 06520, USA

(Dated: March 1, 2016)

We measure the forward–backward asymmetry of the production of top quark and antiquark
pairs in proton-antiproton collisions at center-of-mass energy

√
s = 1.96 TeV using the full data

set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to
an integrated luminosity of 9.1 fb−1. The asymmetry is characterized by the rapidity difference
between top quarks and antiquarks (∆y), and measured in the final state with two charged leptons
(electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level,

is measured to be Att̄
FB = 0.12 ± 0.13, consistent with the expectations from the standard-model

(SM) and previous CDF results in the final state with a single charged lepton. The combination of

the CDF measurements of the inclusive Att̄
FB in both final states yields Att̄

FB = 0.160± 0.045, which is
consistent with the SM predictions. We also measure the differential asymmetry as a function of ∆y.
A linear fit to Att̄

FB(|∆y|), assuming zero asymmetry at ∆y = 0, yields a slope of α = 0.14± 0.15,
consistent with the SM prediction and the previous CDF determination in the final state with a
single charged lepton. The combined slope of Att̄

FB(|∆y|) in the two final states is α = 0.227± 0.057,
which is 2.0σ larger than the SM prediction.
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I. INTRODUCTION

The forward–backward asymmetry of the production of
top-quark and antiquark pairs (tt̄) in high-energy proton-
antiproton collisions is an observable unique to the Teva-
tron experiments. It quantifies the preference of top
quarks to follow the proton direction, “forward,” instead
of the antiproton direction, “backward.” At leading order
(LO), quantum chromodynamics (QCD) predicts no net
asymmetry in tt̄ production. All asymmetric effects come
from interference effects with electroweak and higher-
order QCD amplitudes [1]. The top-quark-pair forward–
backward asymmetry (Att̄FB) measurement program at
the Tevatron uses the proton-antiproton initial state with
center-of-mass energy at 1.96 TeV to probe both the
higher-order effects of the standard model (SM) and sce-
narios beyond the SM. This complements the precision
measurements of top-quark physics at the LHC, where
top-quark-pair production is dominated by gluon-gluon
interactions and is therefore symmetric along the beam-
line direction [1]. There were tensions between the ex-
perimental results of Att̄FB [2, 3] and the SM theoretical
calculations [1, 4–7]. This article reports the final mea-
surement of Att̄FB by the Collider Detector at Fermilab
(CDF) experiment.

We define Att̄FB as

Att̄FB =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
, (1)

where N is the number of tt̄ pairs, y is the rapidity of
the top quark (yt) or antiquark (yt̄) defined relative to
the proton beam direction [8], and ∆y = yt − yt̄. A
next-to-next-to-leading order (NNLO) calculation yields
the prediction Att̄FB = 0.095 ± 0.007 [9], which becomes
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Att̄FB = 0.100 ± 0.006 after adding soft-gluon correc-
tions [10]. The predicted asymmetry is greatly enhanced
in certain kinematic regions, like the high tt̄ invariant-
mass region or the high-|∆y| region, thus measurements of
differential asymmetries are also of great importance [11].
If non-SM particles contribute to the dynamics, the asym-
metry could be significantly changed [12].

Measurements of the inclusive Att̄FB, corrected to the
entire phase space at parton level, can be made using top
quark-antiquark pairs that yield final states with either a
charged lepton (`) and four hadronic jets from collimated
cluster of incident hadrons from light (q) and bottom
(b) quarks (tt̄→ `νqq̄bb̄, or lepton+jets) or two charged
leptons and two bottom-quark jets (tt̄ → `+`−νν̄bb̄, or
dilepton). The Att̄FB measurement in the tt̄ → qqq̄q̄bb̄
(all-hadronic) final state is not practical at the Tevatron
experiments due to the experimental difficulties in deter-
mining the charge of the quarks that initiate the jets [13].
With the CDF data, corresponding to 9.4 fb−1 of inte-
grated luminosity, the measurement in the lepton+jets
final state yielded a value of 0.164± 0.047 [14], which is
consistent with the NNLO SM prediction [9] within 1.5σ.
The same measurements with data from the D0 collabora-
tion corresponding to 9.7 fb−1 of integrated luminosity in
the lepton+jets [15] and dilepton final state [16] yielded
0.106± 0.030 and 0.175± 0.063, respectively, which are
consistent with the NNLO SM prediction [9]. The dif-
ferential Att̄FB measurements as functions of the invariant
mass of tt̄ (mtt̄) and ∆y at CDF in the lepton+jets final
state [14] showed mild tension with the SM predictions,
while the results in the D0 lepton+jets final state [15]
showed consistency.

The leptons from the top-quark cascade decays carry
directional information from their parent top quarks, and
thus forward–backward asymmetry measurements of the
leptons (A`FB and A``FB) serve as complementary measure-

ments to Att̄FB [17]. Results from the CDF dilepton final
state and the D0 lepton+jets and dilepton final states
mostly showed agreement with the SM, whereas the CDF
lepton+jets result showed mild tension with the SM [18–
21].

Additionally, a more detailed study of the cross section
of the tt̄ system as a function of the production angle of
the top quark relative to the proton direction in the tt̄ rest
frame (θ∗) was performed in the lepton+jets final state at
CDF [22]. The differential cross section dσ/d cos θ∗ was
expanded in Legendre polynomials and the mild asym-
metry enhancement was attributed to the term linear in
cos θ∗. Since many features of top-quark-pair production
are well described by the SM, such as the inclusive cross
section [23] and the differential cross sections as functions
of the transverse momentum of the top quarks (pT,t), mtt̄,
etc. [24], any contribution from non-SM dynamics that
would affect the top-quark asymmetry would need to have
minimal impact on these properties to preserve consis-
tency with experimental constraints. Therefore, we use
an ad hoc procedure suggested by the dσ/d cos θ∗ mea-
surement to generically explore the variations in Att̄FB that

are consistent with all other experimental constraints.

This article describes the measurements of the inclusive
and differential Att̄FB values in the dilepton final state as
well as their combination with the lepton+jets results.
These measurements use the entire data set collected by
the CDF detector during Tevatron Run II, corresponding
to an integrated luminosity of 9.1 fb−1. The chief experi-
mental challenges are: 1) the reconstruction of the signal
kinematic properties needed to calculate the observed
asymmetry, and 2) the transformation of the observed
asymmetry, derived from experimentally-observed quan-
tities, into the parton-level asymmetry, which requires
corrections for experimental effects. The reconstruction of
the kinematic properties is complicated by the presence of
two final-state neutrinos and the ambiguity in associating
the b and b̄ jet with the lepton of appropriate charge. The
two final-state neutrinos leave the kinematic properties of
the signal experimentally underconstrained, introducing
assumptions and reconstruction ambiguities that degrade
the precision of the measurement. For each event, we use
observed kinematic quantities and probability densities
derived from simulation to construct a kinematic likeli-
hood that is a function of the unobservable quantities.
From that we extract the probability-density distribution
for the top-quark rapidity difference. In addition, the
difficulty in determining, event-by-event, whether a b jet
originates from a bottom quark or antiquark introduces
a further two-fold ambiguity in the proper reconstruction
of the W -boson decays, due to the two possible lepton-jet
pairings. We reduce the degradation of the results due to
these reconstruction difficulties by means of an optimiza-
tion. This aims at minimizing the total uncertainty as
evaluated by repeating the analysis on several ensembles
of simulated experiments that mimic the actual experi-
mental conditions. As a result, improved selection criteria
and use of both lepton-jet pairings for each event, oppor-
tunely weighted, leads to an 11% expected improvement
in the total uncertainty. Finally, determination of parton-
level results from the observed asymmetries is achieved
with a Bayesian-inference technique tested and tuned
using simulated samples under various configurations.

The outline of the article is as follows: The dilepton
analysis uses the same data set as Ref. [19], and is summa-
rized in Sec. II. A series of scenarios with various Att̄FB val-
ues, including those inspired by the dσ/d cos θ∗ measure-
ment, is also described in this section. The top-quark-pair
reconstruction of the momenta of the top (anti-)quarks
is described in Sec. III. We estimate the parton-level re-
sults using the Bayesian-inference technique described
in Sec. IV, and employ an optimization procedure to
minimize the expected uncertainties on the inclusive mea-
surement of Att̄FB as illustrated in Sec. V. Validations of
the reconstruction and correction methodology are shown
in Sec. VI. The estimation of systematic uncertainties is
described in Sec. VII. We present the final measurements
of both the inclusive Att̄FB and the differential measure-

ment of Att̄FB as a function of |∆y| in Sec. VIII. The
combination of the dilepton results and the lepton+jets
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results is shown in Sec. IX, followed by conclusions in
Sec. X.

II. DETECTOR DESCRIPTION, EVENT
SELECTION, AND SIGNAL AND
BACKGROUND ESTIMATION

The CDF II detector is a general purpose, azimuthally
and forward-backward symmetric magnetic spectrometer
with calorimeters and muon detectors [25]. Charged-
particle trajectories (tracks) are reconstructed with a
silicon microstrip detector and a large open-cell drift
chamber in a 1.4 T solenoidal magnetic field. Projective-
tower-geometry electromagnetic and hadronic calorime-
ters located outside the solenoid provide electron, jet, and
missing transverse energy (E/T ) detection [26]. Electrons
are identified by matching isolated tracks to clusters of
energy deposited in the electromagnetic calorimeter. Jets
are identified as narrow clusters of energy deposits in
the calorimeters consistent with collimated clusters of
incident hadrons. A non-zero missing transverse energy
indicates an imbalance in the total event transverse mo-
mentum [26]. Beyond the calorimeters are multilayer
proportional chambers that provide muon detection and
identification in the psuedorapidity [8] region |η| ≤ 1.0.

The standard event-selection criteria for top-quark mea-
surements in the dilepton final state at CDF are used
following Ref. [19]. We require two oppositely-charged
leptons (electrons and muons), two or more jets, and
a large amount of E/T . Other kinematic requirements
are made to enhance the signal purity, to ensure good
measurement of the event properties, and to ensure the
robust estimate of the backgrounds [19]. We refer to these
requirements as the baseline event-selection criteria. We
add more requirements, described in Sec. V, to further
improve the measurement sensitivity based on the quality
of top-quark-pair reconstruction.

Signal and background estimations also follow Ref. [19].
The pp→ tt̄→ `+`−νν̄bb̄ signal is modeled with the NLO
Monte Carlo (MC) generator powheg [27], with parton
hadronization modeled by pythia [28], and a detailed
simulation of the response of the CDF II detector [29].
Background sources include the production of a Z boson
or virtual photon in association with jets (Z/γ∗ + jets),
production of a W boson in association with jets (W +
jets), diboson production (WW, WZ, ZZ, and Wγ), and tt̄
production where one of the W bosons from the top-quark
pair decays hadronically and one jet is misidentified as a
lepton (tt̄ non-dilepton). Most sources of background are
modeled using simulation with the same CDF II detector
simulation as used for the signal [29], while the W +
jets background is modeled using data [30]. With these
estimations of signal and backgrounds, we expect the
baseline data set to be 568± 40 events, with 72% of the
contribution from signal, and we observe 569 events in
the baseline data set.

In this analysis we use two categories of MC samples

with various assumed Att̄FB values to develop and val-
idate the measurement procedure. The first contains
ensembles of simulated samples, each generated with a
different choice for the true Att̄FB, relying on the measure-
ment of top-quark differential cross section [22]. This
measurement suggested that the potential Att̄FB excess
could be due to an additional contribution to the lin-
ear term of dσ/d cos θ∗. Samples with genuine asym-
metries in the range −0.1 < Att̄FB < 0.3 are simulated
by reweighting the powheg sample with appropriate
additional linear contributions as functions of cos θ∗ to
the cross section. We refer to these samples as the

“reweighted powheg MC samples”. The second category
contains a number of benchmark beyond-SM (BSM) sce-
narios generated with the LO generator madgraph [31].
These include models containing a t-channel Z ′ boson
with a mass of 200 GeV/c2 [32] or a s-channel gluon
with an axial coupling (axigluon) with various proper-
ties. The axigluon scenarios we simulate include a model
with an axigluon near the tt̄ production threshold with
pure axial coupling and mass of 425 GeV/c2 (425 GeV
Axi) [33], three models with light axigluons with left-
handed, pure axial, and right-handed couplings and mass
of 200 GeV/c2 (200 GeV AxiL/A/R) [34], and two mod-
els with heavy axigluons with a pure axial coupling and
masses of 1.8 and 2.0 TeV/c2 (1.8/2.0 TeV Axi) [2].

III. TOP-QUARK-PAIR RECONSTRUCTION

Since the primary goal is to measure the asymmetry
as defined in Eq. (1) using ∆y, we need to reconstruct
the kinematic properties of top quark and antiquark on
an event-by-event basis. This is achieved by combining
the final-state decay products together to form first two
W -boson candidates and then two top-quark candidates.
This involves pairing each charged lepton with a fraction
of the E/T , corresponding to the momentum of a neutrino,
to reconstruct a W boson, and then pairing each resulting
W boson with one of the jets to form a top quark. The
primary challenges of the reconstruction are to choose
the correct lepton-jet pairing, to solve for the neutrino
momentum within each pairing, and to determine the
best tt̄ kinematic solution when multiple solutions exist.

We use a likelihood-based algorithm to reconstruct the
momenta of the top quarks and antiquarks. We sample
the kinematically allowed space to obtain the likelihood
function of the data. This information is used to estimate
the parton-level results as described in the next section.
Additional event-selection criteria, partially based on the
reconstruction likelihoods, are used to optimize the sen-
sitivity of the analysis by rejecting poorly-reconstructed
top-quark pairs, as well as rejecting non-top-quark-pair
events.

In order to determine the four-momenta of both the
top quark and antiquark, we need to solve for the four-
momenta of all signal decay products. In addition to
the individual measurements of charged-lepton and jet
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momenta, and ~E/T , we have additional constraints by using the known masses of the top quark and the W
boson in the energy-momentum conservation equations,

M2
`+ν = (E`+ + Eν)2 − ( #   »p`+ + # »pν)2 = M2

W

M2
`−ν̄ = (E`− + Eν̄)2 − ( #   »p`− + # »pν̄)2 = M2

W

M2
`+νb = (E`+ + Eν + Eb)

2 − ( #   »p`+ + # »pν + #»pb)
2 = M2

t

M2
`−ν̄b̄ = (E`− + Eν̄ + Eb̄)

2 − ( #   »p`− + # »pν̄ + #»pb̄)
2 = M2

t

( # »pν + # »pν̄)x = E/x
( # »pν + # »pν̄)y = E/y,

(2)

where x and y are the horizontal and vertical coordi-
nates perpendicular to the proton beamline, z. The basic
ideas and assumptions associated with the top-quark-pair
reconstruction used in this analysis are the following:

1. Because charged leptons are measured with high pre-
cision [19], we neglect resolution effects and assume
that their true momenta are the observed momenta.

2. Because the bottom quarks in this analysis come
from the heavy top quarks, the two jets with the
largest ET (and |η| < 2.5) are assumed to come
from the hadronization of the b and the b̄ quarks.
The directions of the jets are assumed to correctly
indicate the directions of their original quarks. The
jet ET values, which are subject to standard correc-
tions [35], are further corrected so that the mean
of the difference between the jet ET value and the
corresponding b-quark ET value is zero [36] as es-
timated from powheg MC samples of tt̄ events.
In the reconstruction, the jet ET values are allowed
to float around their mean values according the ex-
pected resolutions. In addition, we fix the masses
of the b quarks to be 4.66 GeV/c2 [37].

3. Each charged lepton needs to be paired with a b
or a b̄ quark to form a t or a t̄ quark, respectively,
together with the neutrinos, which cannot be de-
tected. Since no accurate method is available to sep-
arate on an event-by-event basis jets from b quarks
and jets from b̄ quarks, we consider both lepton-jet
pairings in the reconstruction, and use techniques
described later in this section to statistically reduce
the contamination of the measurement from wrong
pairings.

4. While the two neutrinos in the final state are not
detected, resulting in six unknown variables assum-
ing massless neutrinos, the sum of the transverse

momenta of the two neutrinos produces the ~E/T in

the event [26]. Since the two measured components

of ~E/T (E/x and E/y) have large uncertainties, in the
reconstruction the vector sum of the transverse mo-
menta of the neutrinos is allowed to float around the
measured central value according to its resolution.

5. In all calculations we assume that the W bosons
and the top quarks are on mass shell, thus including
four constraints in the tt̄ system: the two W -boson
masses (mW = 80.4 GeV/c2) and the two top-quark
masses (mt = 172.5 GeV/c2) [37]. The systematic
uncertainty due to the uncertainties on the assumed
masses is negligible.

With these assumptions, within each of the two lepton-
jet pairings, there are ten unknown variables in the tt̄
dilepton final state, six from the momenta of the two
neutrinos, two from the floating jet-ET values and two

from the floating components of ~E/T . On the other hand,
we have six constraints from Eq. (2). Thus, for each event
there are two underconstrained systems with multiple
solutions in a four-dimensional parameter space. We
scan these two four-dimensional parameter spaces and
assign a likelihood to each point of the phase space based
on the measured quantities and their uncertainties. In
the next paragraph, additional information about the
expected pz, pT , and invariant mass of the tt̄ system
(pz,tt̄, pT,tt̄, and mtt̄, respectively) is also incorporated
into the likelihood to improve the reconstruction. By
incorporating this information, we are assuming that
the pz,tt̄, pT,tt̄, and mtt̄ spectra follow the predictions
of SM at NLO. The results of this analysis need to be
interpreted under this assumption. Any bias caused by
this assumption is discussed in Sec. VI.

With these sets of assumptions, the kinematic prop-
erties of a tt̄ event are characterized as functions of the
momenta of the neutrinos ( # »pν and # »pν̄) and the transverse
energy of the b and b̄ quarks (ET,b and ET,b̄). The quan-
tities # »pν , # »pν̄ , ET,b, and ET,b̄ are not independent of each
other, but are subject to the constraints of Eq. (2). In
the kinematically allowed region, we define the following
likelihood to quantify the goodness of a solution:
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L( # »pν ,
# »pν̄ , ET,b, ET,b̄) = P (pz,tt̄)× P (pT,tt̄)× P (mtt̄)

× 1

σjet1
exp

[
−1

2

(
ET,jet1 − ET,b

σjet1

)2
]
× 1

σjet2
exp

[
−1

2

(
ET,jet2 − ET,b̄

σjet2

)2
]

× 1

σ(E/x)
exp

[
−1

2

(
E/x − ( # »pν + # »pν̄)x

σ(E/x)

)2
]
× 1

σ(E/y)
exp

[
−1

2

(
E/y − ( # »pν + # »pν̄)y

σ(E/y)

)2
]
,

(3)

where P (pz,tt̄), P (pT,tt̄), and P (mtt̄) are the probability-
density functions of each parameter obtained from the
simulated tt̄ signal events that pass the selection require-
ments, the two ET,jet values are the measured transverse
energies of the two jets, the two σjet values are the ex-
pected resolutions of the jet transverse energies estimated
with the same signal sample, E/x,y are the x and y compo-

nents of the measured ~E/T , and σ(E/x,y) are the expected

resolutions of E/x,y, estimated with the same sample. The

parameters
(
ET,jet1,2 − ET,b,b̄

)
/ (σjet1,2) quantify the de-

viation between the hypothetical b-quark ET values and
the measured jet ET values, and are referred to as “jet
deviations” (δj,1 and δj,2), where the labeling of 1 and 2
is random.

We employ a Markov-chain Monte Carlo (MCMC)
method [38] to efficiently sample from the kinematic pa-
rameter space with each of the two lepton-jet pairings.
The probability distribution of ∆y is obtained by marginal-
izing over the distributions of all other parameters [39].
An example probability distribution for one of the two
δj parameters and the ∆y parameter for one event from
the powheg signal sample is shown in Fig. 1. Based on
the information from the event generator, the left panels
refer to the correct lepton-jet pairing and the right panels
refer to the incorrect pairing. The vertical arrows show
the true values of the parameter. To make the best use of
the available information, we use the probability-density
distributions obtained from the MCMC method in the
extraction of the parton-level asymmetry, and weight the
two lepton-jet pairings based on the maximum likelihood
achieved in each of the two pairings (Lmax,1,2). The weight

of each lepton-jet pairing is determined by

w1,2 =
Lmax,1,2

Lmax,1 + Lmax,2
, (4)

so that the total weight w1 + w2 of each event is unity.
The information used in the parton-level Att̄FB extraction
comes from the sum of the ∆y distributions of the two
lepton-jet pairings weighted by Eq. (4). With this set of
choices we find that the resolution of the top-quark-pair
reconstruction algorithm is approximately 0.5 in ∆y.

IV. EXTRACTING PARTON-LEVEL
ASYMMETRY

We introduce a Bayesian procedure to extract a parton-
level measurement of Att̄FB from the ∆y distribution ob-
served in data. The two differ because of the limited
acceptance and efficiency of the detector, imperfect reso-
lution of the ∆y reconstruction, and the background con-
tributions. The procedure takes into account correlations
between measured ∆y values and allows a determination
of both the inclusive and differential asymmetries. A 4×4
matrix models the reconstruction resolution, by mapping
the parton-level ∆y into the reconstructed ∆y. The edges
−∞, −0.5, 0, 0.5, and∞ of bin 1, 2, 3, and 4, respectively,
are chosen to preserve approximately equal numbers of
expected events in each bin after reconstruction. The for-
ward region consists of bin 3, and 4, while the backward
region consists of bin 1, and 2. The parton-level inclusive
Att̄FB is expressed as

Att̄FB =
Nparton[3] +Nparton[4]−Nparton[1]−Nparton[2]

Nparton[3] +Nparton[4] +Nparton[1] +Nparton[2]
, (5)

where Nparton[p] represents the hypothesized parton-level
event rate in the pth bin. The expected number of events
in the rth bin after the top-quark-pair reconstruction for
a particular set of Nparton[p] is expressed as

Nexp[r] =

4∑
p=1

Nparton[p]·ε[p](Att̄FB)·S[p][r]+Nbkg[r], (6)

where

• ε[p](Att̄FB) represents the efficiency in the pth bin
at parton level, which accounts for the acceptance
imposed by the detector coverage and the efficiency
associated with the event selection, which is a func-
tion of the parton-level value of Att̄FB,

• S[p][r] represents the smearing matrix, which is sym-
metric and accounts for the detector resolution and
the smearing caused by the top-quark-pair recon-
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FIG. 1. Posterior-probability density of δj for one of the two jets (a) and ∆y (b) for one example event from the powheg-MC
sample of tt̄ events. Based on the generator-level information, the left panels refer to the correct lepton-jet pairing and the right
panels refer to the incorrect pairing. The red vertical arrows show the true values of the parameters.

struction procedure, is observed not to change as a
function of the input Att̄FB, and

• Nbkg[r] is the expected background contribution of
the rth bin.

The ε[p](Att̄FB) term is estimated with the reweighted
powheg MC samples described in Sec. II, and the S[p][r]
term is estimated with the nominal powheg MC sample
and normalized so that

∑
p S[p][r] = 1. The observed bin

count from data Nobs[r] is compared with the expecta-
tion Nexp[r] with a χ2 fit, with correlations among bins

estimated with the powheg tt̄ MC sample.
To allow for the use of well-motivated prior proba-

bility distributions, we reparametrize the hypothesized
Nparton[p] as follows:

1. Ntot =
4∑
p=1

Nparton[p] is the total number of signal

events, with a uniform prior probability distribution
in (0,∞)

2. Ain =
Nparton[3]−Nparton[2]
Nparton[3]+Nparton[2] = Att̄FB(|∆y| < 0.5) is the

asymmetry of bins 2 and 3, with a uniform prior in



9

(-1, 1)

3. Aout =
Nparton[4]−Nparton[1]
Nparton[4]+Nparton[1] = Att̄FB(|∆y| > 0.5) is

the asymmetry of bins 1 and 4, with a uniform prior
in (-1, 1)

4. Rin =
Nparton[2]+Nparton[3]

Ntot
is the fraction of events in

the inner two bins, with a uniform prior in (0, 1).

The prior-probability distributions of Aout and Ain are as-
signed to be uniform to assume no knowledge on these pa-
rameters. The final result is not sensitive to the prior prob-
ability distribution of Rin. With this new parametrization,
the inclusive Att̄FB in Eq. (5) is written as

Att̄FB = RinAin + (1−Rin)Aout. (7)

The posterior-probability distribution of each param-
eter of interest (Att̄FB, Att̄FB(|∆y| < 0.5) and Att̄FB(|∆y| >
0.5)) is obtained by marginalizing over the distributions
of all other parameters. The measured values of the pa-
rameters and their statistical uncertainties are extracted
by fitting a Gaussian function to the core of the resulting
posterior distribution of the parameter of interest.

The procedure is validated and the uncertainties are es-
timated using two ensembles of 5,000 pseudoexperiments
each. One set of pseudoexperiments is generated by ran-
domly sampling events from the nominal powheg MC
sample with the number of events following the signal
expectation for data. The second set is generated by
randomly sampling events from both the signal and the
background estimation samples in the same way. The
parton-level Att̄FB is estimated in each pseudoexperiment
using the procedure described above. The pseudoexper-
iments are used to test for potential biases as well as
to determine the expected statistical uncertainty with
signal only, and the total statistical uncertainty when the
backgrounds are included. As is shown in Sec. VI, no bias
is observed. The expected total statistical uncertainty
for the inclusive measurement in data is estimated as the
standard deviation of the results from the second set of
pseudoexperiments. Before the optimization we describe
in Sec. V, this expected total statistical uncertainty is
around 0.12, and is expected to be the dominant uncer-
tainty. As in Ref. [19], we take the systematic uncertainty
due to the uncertainty on the background normalization
and shape to be equal to the difference, in quadrature,
between the total statistical uncertainty and the signal-
only statistical uncertainty, as it captures the uncertainty
caused due to the existence of the background. The back-
ground systematic uncertainty is estimated to be 0.06
before the optimization. Additional uncertainties are
described in Sec. VII.

V. OPTIMIZATION

We implement an optimization procedure to improve
the top-quark-pair reconstruction and asymmetry deter-
mination. The goal of the optimization is to minimize

the quadrature sum of the expected total statistical un-
certainty and the background systematic uncertainty, as
other uncertainties are expected to be small. Besides
the statistical uncertainty due to the limited data sample
size, the uncertainty of the parton-level Att̄FB measurement
receives a contribution from the resolution of the recon-
structed ∆y. This contribution is dominated by events in
which the reconstructed value of ∆y differs significantly
from the true parton-level value. Reducing this fraction
of poorly reconstructed events effectively reduces the un-
certainty of the measurement. The usual reconstruction
method of only using the solution that maximizes the
likelihood [14] suffers from two primary problems: 1) the
algorithm occasionally selects the wrong lepton-jet pair-
ing and 2) the algorithm occasionally gives the highest
likelihood values to a set of solutions to Eq. (2) that is
different from the one corresponding to the real event
within the right lepton-jet pairing. To ameliorate these
problems we calculate the probability distributions associ-
ated to both options of lepton-jet pairings and use them
to calculate weights instead of choosing the maximum-
likelihood solution. This improves the resolution for the
Att̄FB measurement, as it reduces the expected statistical

uncertainty of the inclusive Att̄FB by approximately 15%
(relative).

We further optimize by incorporating additional selec-
tion requirements to reject badly-reconstructed lepton-jet
pairings and by giving larger weights to pairings that are
more likely to be the correct ones. For wrong lepton-jet
pairings or background events, the top-quark-pair recon-
struction algorithm occasionally yields a heavily biased
estimate of ET to try to make a valid tt̄ pair, resulting
in a large |δj|. For simplicity we examine only the max-
imum, δj,peak, of the posterior-probability distribution
of δj for each jet. We reject any lepton-jet pairing with√
δ2
j,peak1 + δ2

j,peak2 > Θ(δj), where Θ(δj) is the threshold

to be optimized, and reject the event if both lepton-jet
pairings are rejected.

The jet charge Qjet1,2, calculated with the JetQ al-
gorithm [13], is correlated with the charge of the quark
that originated the jet and provides additional separation
between the b quark and the b̄ quark, thus helping to
identify the correct lepton-jet pairing. This technique was
recently used in Ref. [40]. While the jet charge suffers
from dilution due to bottom-hadron oscillations and cas-
cade decays, and biases due to the detector material and
track reconstruction [41], it still provides a worthwhile
improvement in the resolution of Att̄FB. For each event
we examine the sign of ∆Q = Qjet1 − Qjet2, where the
labeling of 1 and 2 is random, after assigning Qjet = 0
for jets without valid reconstructed charges for simplic-
ity; positive values of ∆Q suggest that jet1 is from the b̄
quark and jet2 is from the b quark, and vice versa. The
case ∆Q = 0 indicates that the jet charge is unable to
provide distinguishing power. To use this information,
we introduce a global jet-charge probability weight wQ
that quantifies the probability that the jet charge gives
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the correct lepton-jet pairing. We then amend the Lmax

of the two pairings used in Eq. (4) to Lmax × wQ if ∆Q
suggests this pairing and Lmax× (1−wQ) if ∆Q suggests
otherwise, and proceed with Eq. (4) in determining the
weights of the two pairings. We optimize for the value of
wQ.

A third improvement consists in rejecting the lepton-jet
pairings with high m2

lb, which are unlikely to originate
from a top-quark decay, where mlb is the invariant mass of
the lepton+b-quark system [42]. We reject any lepton-jet
pairings with m2

lb > Θ(m2
lb), and reject the event if both

lepton-jet pairings are rejected. We optimize for the value
of Θ(m2

lb).

Finally, events with a lepton appearing too close to a jet
either cannot be well reconstructed or are likely to result
from associated production of a W boson and a jet where
a b jet is reconstructed both as a lepton and a jet [43],
which happens when a muon is present in the b-quark
hadronization process. This effect is quantified using
the minimum radius ∆R =

√
(∆η)2 + (∆φ)2 between

any lepton and any jet (∆Rmin(`, j)). We optimize for a
requirement of ∆Rmin(`, j) > Θ(∆Rmin) as it helps reject
W+jets background events without significantly reducing
the number of well-reconstructed tt̄ events.

The minimizations of the expected uncertainty for all
criteria and weight values are done simultaneously. Table I
shows the optimal values. Figure 2 shows the expected
uncertainties as functions of the criteria and weights with
other values fixed at the optimal points. We proceed with
the analysis with this optimized configuration. The resolu-
tion in ∆y after the optimization remains approximately
0.5. The signal efficiency of the top-quark-reconstruction
requirements is 95% with a background rejection of 40%
relative to the baseline event selection requirements. The
minimum expected uncertainties achieved are 0.106 for the
signal-only statistical uncertainty, 0.114 for the statistical
uncertainty of signal and backgrounds (total statistical un-
certainty, improved by 7%), and 0.121 for the quadrature
sum of the total statistical and the background systematic
uncertainties (improved by 11%). For the differential mea-
surement, we find expected total statistical uncertainties
of 0.34 for Att̄FB(|∆y| < 0.5) and 0.16 for Att̄FB(|∆y| > 0.5).

TABLE I. Summary of the criteria and weight values used to
optimize the expected uncertainties in the measurement of the
inclusive Att̄

FB.

Quantity Optimal value
Θ(δj) 3.5
wQ 0.7
Θ(m2

lb) 24000 GeV2/c4

Θ(∆Rmin) 0.2

VI. VALIDATION

The expected numbers of events from all SM sources,
along with the observed number of events passing all the
baseline event selections and the top-quark-pair recon-
struction quality selections, are summarized in Table II.
The distributions of pT,tt̄, pz,tt̄, and mtt̄ from data are
shown in Fig. 3(a)-(c) and compared to the signal and
background models. The agreement between data and
the predictions is good. The distribution of reconstructed
∆y is shown in Fig. 3(d). The Att̄FB result is extracted
from this distribution.

TABLE II. Expected and observed number of events passing
all the baseline event selections and the top-quark-pair recon-
struction quality selections. The quoted uncertainties are the
quadratic sums of the statistical and systematic uncertainties
in each row.

Source Events
Diboson 26 ± 5
Z/γ∗+jets 37 ± 4
W+jets 28 ± 9
tt̄ non-dilepton 5.3± 0.3
Total background 96 ± 18
Signal tt̄ (σ = 7.4 pb) 386 ± 18
Total SM expectation 482 ± 36
Observed 495

Figure 4 shows the reconstruction resolution, defined
as the difference between reconstructed and generated
values of ∆y, estimated for events from the powheg MC
samples. The distribution shown in this figure is obtained
by summing the posterior-probability distribution of the
reconstruction resolution over all events in the sample,
where each event is weighted equally. In 61% of the cases
the ∆y is reconstructed within 0.5 of its true value. The
detector smearing matrix S[p][r] is shown in Fig. 5. The
efficiencies ε[p] in the four bins are approximated to linear
functions of Att̄FB and are shown in Fig. 6.

We test the parton-level Att̄FB estimation procedure with
the reweighted powheg MC samples. The results are
shown in Fig. 7. The error bars correspond to the statis-
tical uncertainties based on a sample of 70 000 simulated
events that meet the selection criteria. No bias is observed.
In addition, we test the estimation procedure with the LO
SM calculations from pythia [28], alpgen [44], and
herwig [45] as well as a series of benchmark non-SM
scenarios described in Sec. II. The results are shown in
Fig. 8. We do not expect the estimation of Att̄FB to be
unbiased in all non-SM scenarios, since the assumptions
on the pz,tt̄, pT,tt̄, and mtt̄ distributions we made in top-
quark-pair reconstruction no longer hold, both due to the
effect of non-SM dynamics and because these samples are
only calculated at LO. Particularly, the pT,tt̄ spectrum
calculated at LO shows deviation from data due to lack
of higher-order amplitudes with non-zero pT,tt̄, while the
NLO calculation provides reasonable agreement [14]. The
largest deviation is 0.08.
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FIG. 2. Expected uncertainties as functions of the four optimization parameters. In each plot is shown the statistical uncertainty
for signal only (dash-dotted line), statistical uncertainty for signal and backgrounds (total statistical uncertainty, dashed line)
and the quadrature sum of the total statistical uncertainty and the background systematic uncertainty (solid line). The optimal
values are based on the minimum point of the green solid line, as marked with the vertical arrows on the plots, and summarized
in Table I. For each plot, all other optimization parameters are held at their optimal values.

Figure 9 shows a comparison of Att̄FB(|∆y| < 0.5) and

Att̄FB(|∆y| > 0.5) between the measured values from the
reweighted powheg MC samples and their input values.
The error bars correspond to the statistical uncertainties
with the entire powheg MC sample which is over a
factor of 100 larger than the data. The small potential
bias shown in Fig. 9 is negligible compared to the expected
statistical uncertainties in the data. We do not correct
for this potential bias and take the difference between
the generated and measured asymmetry at the measured
central values from data as a systematic uncertainty.

VII. SYSTEMATIC UNCERTAINTIES

In addition to the systematic uncertainty due to the
background, several other sources are considered. We
estimate the systematic uncertainty due to the potential
biases in the NLO SM assumption made in the top-quark-
pair reconstruction and in the parton-level asymmetry
extraction as the difference between the generated Att̄FB

and the measured Att̄FB with the pythia MC sample.
The systematic uncertainty due to the modeling of parton

showering and color coherence [14], the modeling of color
reconnection [46], the amount of initial- and final-state
radiation, the size of the jet-energy scale corrections [35],
and the underlying parton-distribution functions [47] are
evaluated by repeating the measurement after introduc-
ing appropriate variations into the assumptions used in
modeling the behavior of the signals, following Ref. [14].
Table III summarizes the statistical and systematic uncer-
tainties of the inclusive Att̄FB measurement, and Table III

summarizes the uncertainties for the Att̄FB vs. |∆y| mea-
surements.

VIII. DILEPTON RESULTS

We finally determine the Att̄FB value by applying the
parton-level extraction to data. Figure 10 shows the
posterior-probability density of the inclusive Att̄FB. A
Gaussian function is fitted to the core of the distribution
to determine the central value of Att̄FB and its statistical
uncertainty. Including the systematic uncertainties sum-
marized in Table III, the parton-level inclusive Att̄FB is
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FIG. 3. Distributions of pT,tt̄ (a), pz,tt̄ (b), mtt̄ (c), and ∆y (d) from data compared with the SM expectations.

TABLE III. Uncertainties for the inclusive Att̄
FB, Att̄

FB(|∆y| < 0.5) and Att̄
FB(|∆y| > 0.5) measurements.

Source of uncertainty Att̄
FB(inclusive) Att̄

FB(|∆y| < 0.5) Att̄
FB(|∆y| > 0.5)

Statistical uncertainty 0.11 0.33 0.13
Background 0.04 0.13 0.06
Parton showering 0.03 0.07 0.06
Color reconnection 0.03 0.12 0.06
Initial- and final-state radiation 0.03 0.05 0.03
Jet energy scale 0.02 0.02 0.02
NLO assumption 0.02 0.06 0.02
Parton-distribution functions 0.01 0.01 0.01
Total systematic uncertainty 0.07 0.20 0.11
Total uncertainty 0.13 0.39 0.17

measured to be

Att̄FB = 0.12± 0.11(stat)± 0.07(syst) = 0.12± 0.13. (8)

The result is compared to previous Att̄FB measurements
performed at the Tevatron and NLO and NNLO SM
predictions in Fig. 11 [1, 9]. No significant deviation is
observed.

The posterior-probability densities of Att̄FB(|∆y| < 0.5)

and Att̄FB(|∆y| > 0.5) are also Gaussian distributed. Gaus-
sian functions are fitted to the core of the distributions
to determine the central values of Att̄FB(|∆y| < 0.5) and

Att̄FB(|∆y| > 0.5) and their statistical uncertainties. In-

cluding the systematic uncertainties summarized in Ta-
ble III, the parton-level values for Att̄FB vs. |∆y| are
measured to be

Att̄FB(|∆y| < 0.5) = 0.12± 0.33(stat)± 0.20(syst)

= 0.12± 0.39,
(9)

Att̄FB(|∆y| > 0.5) = 0.13± 0.13(stat)± 0.11(syst)

= 0.13± 0.17,
(10)

consistent with the predictions from powheg MC simu-
lation of 0.017±0.001 and 0.081±0.001, respectively. The
uncertainties on the predictions are due to the limited
number of generated events in the MC simulation. The
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FIG. 4. Distribution of the difference between reconstructed
and generated values for ∆y from events in the nominal
powheg tt̄ MC after all the event-selection criteria. Each
event contributes a probability distribution with a unity weight.
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FIG. 5. Detector smearing matrix estimated with the nominal
powheg tt̄ MC sample.

uncertainty for |∆y| < 0.5 is larger because of the large
bin migrations in that region, which reduce the statistical
power of the data. Figure 12 shows the two-dimensional
posterior-probability-density distribution of Att̄FB in the
two |∆y| regions, which shows that the two measurements
are anticorrelated as expected. The correlation is −0.44.

To determine the slope of Att̄FB vs. |∆y|, we display
the data points at the bin centroids predicted by the
powheg MC sample and fit the two differential Att̄FB re-
sults with a linear function with zero intercept [14], taking
all uncertainties with their correlations into account. The
resultant slope is α = 0.14± 0.15. Figure 13 shows a com-
parison of the Att̄FB-vs-|∆y| results of this measurement

with the NNLO SM prediction of α = 0.114+0.006
−0.012 [11].

The result is consistent with the prediction.

IX. COMBINATION OF INCLUSIVE AND
DIFFERENTIAL Att̄

FB RESULTS

We combine the dilepton results with results obtained
in the lepton+jets final state and reported in Ref. [14].
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FIG. 6. Efficiencies in the four bins, approximated to linear
functions of the Att̄

FB, estimated with the reweighted powheg
MC samples.
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FIG. 7. Comparison of the Att̄
FB values observed in the

reweighted powheg MC samples and the Att̄
FB values gener-

ated. The dashed line shows where the measured and generated
values are equal. No bias is observed.

The inclusive Att̄FB measured in the lepton+jets final state

is 0.164± 0.039(stat)± 0.026(syst), with the slope of Att̄FB
as a function of |∆y| measured to be 0.253± 0.062.

The treatment of the correlations of the statistical and
systematic uncertainties between the two measurements
follows Ref. [19]. Here, we summarize the various un-
certainties and how they are combined. Since the two

Att̄
FB generated

-0.1 0 0.1 0.2 0.3 0.4

A
tt̄ F

B
m
ea
su
re
d

-0.1

0

0.1

0.2

0.3

0.4
Nominal powheg

Pythia

200 GeV Axi L

Alpgen

200 GeV Axi A

Herwig

200 GeV Axi R

t-channel Z′

1.8 TeV Axi

425 GeV Axi2.0 TeV Axi

FIG. 8. Same as Fig. 7, but with a number of predicted values
for Att̄

FB from LO SM calculations and a few benchmark BSM
scenarios. The description of the BSM scenarios is in the main
text.
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FIG. 9. Same as Fig. 7, but for the Att̄
FB(|∆y| < 0.5) (a)

and Att̄
FB(|∆y| > 0.5) (b) measurements. The uncertainties

correspond to the size of the powheg MC sample which is
over a factor of 100 larger than the data, and the measured
values are always within 1σ of the generated values. (Note the
different vertical scales in the two subfigures.)
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FIG. 10. Posterior-probability density for the measurement
of the inclusive Att̄

FB. A Gaussian function is fitted to the
core of the distribution to extract the result. The NNLO SM
prediction is 0.095± 0.007.

measurements are based on statistically independent sam-
ples, the statistical uncertainties are uncorrelated. While
the two measurements share a small portion of the back-
ground source (W+jets), the background systematic un-
certainties are mainly caused by the uncertainties in the
shape of the background ∆y distributions, which are un-
correlated between the two measurements, and thus the
associated uncertainties are treated as uncorrelated. The
correction and parton-level Att̄FB estimation procedures
are different in the two measurements. Thus, the corre-
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FIG. 11. A comparison of all inclusive top-quark-pair forward–
backward asymmetry results from the Tevatron with the NLO
and NNLO SM predictions.

sponding uncertainties are treated as uncorrelated. The
effects due to the uncertainties in the parton shower model,
the jet-energy scale, the initial- and final-state radiation,
the color-reconnection model, and the parton-distribution
functions are estimated in identical ways. Thus, they
are treated as fully correlated. Table IV summarizes the
uncertainties and the correlations in both inclusive Att̄FB

measurements. The combination of the inclusive Att̄FB is
based on the best-linear-unbiased estimator [48]. With
these uncertainties and the correlations, the combined
value is

Att̄FB = 0.160± 0.045. (11)

The weights of the lepton+jets result and the dilepton
result are 91% and 9%, respectively. The correlation
between the two results is 10%. The comparison of the
combined result with other measurements and SM calcu-
lations is shown in Fig. 14(a).

For the differential Att̄FB, rather than combining the
data, we perform a simultaneous fit for the slope α of
the differential Att̄FB as a function of |∆y| using both sets
of data points (four in the lepton+jets final state and
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TABLE IV. Table of uncertainties for the inclusive and differential Att̄
FB measurements in the lepton+jets [14] and the dilepton

final states and their correlations.

Source of uncertainty Lepton+jets Dilepton Correlation
Background shape 0.018

0.04 0
Background normalization 0.013
Parton shower 0.01 0.03 1
Jet energy scale 0.007 0.02 1
Inital- and final-state radiation 0.005 0.03 1
Correction procedure / NLO assumption 0.004 0.02 0
Color reconnection 0.001 0.03 1
Partion-distribution functions 0.001 0.01 1
Total systematic uncertainty 0.026 0.07
Statistical uncertainty 0.039 0.11 0
Total uncertainty 0.047 0.13
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FIG. 12. Two-dimensional posterior-probability-density distri-
bution of Att̄

FB(|∆y| > 0.5) vs. Att̄
FB(|∆y| < 0.5).

two in the dilepton final state). The position of the bin
centroids expected by the powheg-MC sample and the
Att̄FB in those bins are summarized in Table V with the
eigenvalues and the eigenvectors of the corresponding
covariance matrix in Table VI. The treatment of the
correlations in the covariance matrix follows that used
in the combination of the inclusive Att̄FB, summarized in
Table IV. The simultaneous fit is obtained by minimizing
a χ2-like quantity defined as

χ2 =

6∑
i=1

6∑
j=1

(Att̄FB[i]− α|∆y|[i])C−1[i][j](Att̄FB[j]− α|∆y|[j]), (12)

where |∆y|[i] and Att̄FB[i] are the ith bin centroids and the

Att̄FB(|∆y|) values shown in Table V respectively, C−1[i][j]
is the corresponding element of the inverse of the covari-
ance matrix whose eigenvalues and eigenvectors are shown
in Table VI, and α is the slope determined by the fit. The
result is α = 0.227± 0.057, which is 2.0σ larger than the
NNLO SM prediction of 0.114+0.006

−0.012 [11]. A comparison
of the slope α with all results from CDF and D0 and the
NNLO SM prediction is shown in Fig. 14(b).

X. CONCLUSION

We measure parton-level the forward–backward asym-
metries in the production of top quark and antiquark
pairs reconstructed in the final state with two charged

leptons using the full data set of
√
s = 1.96 TeV proton-

antiproton collisions collected by the CDF II detector
and corresponding to an integrated luminosity of 9.1 fb−1.
We measure the asymmetries inclusively and as func-
tions of rapidity difference between top quark and an-
tiquark. The results from the dilepton final state are
Att̄FB = 0.12± 0.13, Att̄FB(|∆y| < 0.5) = 0.12± 0.39, and

Att̄FB(|∆y| > 0.5) = 0.13 ± 0.17. A linear fit with zero

intercept to the differential Att̄FB as a function of |∆y|
yields a slope of α = 0.14± 0.15. We combine the above
results with previous CDF results based on the final state
with a single charged lepton and hadronic jets [14]. The
inclusive Att̄FB yields a value of Att̄FB = 0.160 ± 0.045,
which is consistent with the NNLO SM prediction of
0.095± 0.007 [9] within 1.5σ. The simultaneous linear fit
for Att̄FB as a function of |∆y| with zero intercept yields
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TABLE V. Bin centroids and the differential Att̄
FB in the Att̄

FB vs. |∆y| measurements in both the lepton+jets and the dilepton
final states.

Lepton+jets Dilepton
|∆y| < 0.5 0.5 < |∆y| < 1.0 1.0 < |∆y| < 1.5 |∆y| > 1.5 |∆y| < 0.5 |∆y| > 0.5

Bin centroid 0.24 0.73 1.22 1.82 0.24 1.01

Att̄
FB(|∆y|) 0.048 0.180 0.356 0.477 0.11 0.13

TABLE VI. The eigenvalues and eigenvectors of the covariance matrix for the Att̄
FB vs. |∆y| measurements in both the lepton+jets

and the dilepton final states. Each row contains first an eigenvalue, then the error eigenvector that corresponds to that eigenvalue.

Lepton+jets Dilepton
Eigenvalue λ |∆y| < 0.5 0.5 < |∆y| < 1.0 1.0 < |∆y| < 1.5 |∆y| > 1.5 |∆y| < 0.5 |∆y| > 0.5
0.156 -0.018 0.001 0.008 0.030 -0.984 0.174
0.0296 0.064 -0.030 -0.440 -0.830 -0.087 -0.322
0.0251 -0.012 -0.014 -0.172 -0.286 0.155 0.930
0.00732 -0.371 -0.840 -0.344 0.193 0.005 -0.023
0.000682 0.904 -0.235 -0.281 0.219 -0.008 0.024
0.000476 -0.201 0.487 -0.761 0.378 0.006 -0.021
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FIG. 13. Comparison of the Att̄
FB vs. |∆y| dilepton results with

the NNLO SM prediction [11]. The data points are displayed
at the bin centroids predicted by the powheg MC sample.
The linear fit with zero intercept yields a slope of 0.14± 0.15.

a slope of α = 0.227 ± 0.057, which is 2.0σ higher than
the NNLO SM prediction [11]. These are the final results
of the CDF program for the exploration of top forward-
backward asymmetries and, along with previous findings,
show consistency with the predictions of the standard
model at next-to-next-to-leading order.
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