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The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in
which it is necessary to know the absolute number of detected photons or precisely determine the
resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier re-
sponse to a low intensity light source with analytical approximations to the single photoelectron
distribution, often leading to biased estimates due to the inability to accurately model the full dis-
tribution, especially at low charge values. In this paper we present a simple statistical method to
extract the relevant single photoelectron calibration parameters without making any assumptions
about the underlying single photoelectron distribution. We illustrate the use of this method through
the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision
of the method using Monte Carlo simulations. The method is found to have significantly reduced
bias compared to conventional methods and works under a wide range of light intensities, making
it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

I. INTRODUCTION

Photomultiplier tubes (PMTs) are widely used to
detect low levels of light in scientific experiments,
medical apparatus and industrial equipment. PMT op-
eration is typically divided into two regimes - photon
counting, where the rate of detected photons is small
compared to the timing resolution of the detector and
individual photoelectron pulses do not overlap, and
signal integration, for light sources of higher intensities
where individual photoelectron signals cannot be
distinguished. In the latter case, for applications in
which the resolution of the signal plays an important
role, such as scintillation spectroscopy or pulse shape
discrimination, it is critical to obtain an accurate esti-
mate of the total number of generated photoelectrons,
as well as the relative width of the single photoelectron
pulse, since these are often the dominant contributors
to the resolution of the signal. The response of a PMT
is therefore typically calibrated relative to the mean
of the charge distribution corresponding to a single
detected photon, or equivalently, a single photoelectron
(SPE). The calibration of the PMT SPE response is also
necessary in order to combine the output signals from
several different PMTs operating at different gains.

The standard method to perform such a calibration is
to use an extremely low intensity light source such that
the probability of generating more than a single pho-
toelectron within the time resolution of the detector is
negligible. The output spectrum of the integrated sig-
nal is then fit with a parameterized analytical model of
the SPE response, in order to obtain the mean and vari-
ance for each individual PMT. The difficulty of such a
method lies in the choice of the analytical model. Elec-

tron multiplication within the dynode chain is a branch-
ing process where the output charge distribution at the
PMT anode depends on the secondary electron emis-
sion probability at each dynode. For typical photo-
electrons generated at the photocathode, the most com-
monly used approximation is a standard Gaussian dis-
tribution [1], where the mean of the single photoelec-
tron distribution is simply taken as the peak, though
more complicated models such as [2, 3] are also used to
more accurately model the electron cascade process.
Additionally, a large variety of sub-optimal trajectories
of electrons through the PMT dynodes are also possi-
ble. For example, a photon may pass through the cath-
ode and directly strike the first dynode [4, 5], a photo-
electron may inelastically backscatter of the first dyn-
ode [5, 6] or skip a dynode stage [7]. Such trajectories
often lead to under-amplified photoelectron signals,
increasing the component of the SPE spectrum with
charge lower than that at the peak. Since these under-
amplified photoelectrons are generated during normal
operation and contribute to the total integrated signal,
they should be included when estimating the mean and
variance of the SPE response. Under-amplified photo-
electrons can account for as much as 20% of the total
photoelectron spectrum in some models of PMTs, de-
creasing the mean of the SPE response by 10-20% rela-
tive to the peak charge [8, 9]. Ignoring the contribution
of under-amplified photoelectrons can lead to an un-
derestimation of the number of detected photoelectrons
and an incorrect estimation of the resolution.

The true shape of the under-amplified component
is often difficult to determine due to the large overlap
with contributions from electronics noise. Several
authors have proposed adding additional analytical
components to the fit function of the single photo-
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electron response, including a falling exponential, and
additional Gaussian components [9, 10]. However,
the relative weight and shape of the under-amplified
component can vary with the type of photocathode and
dynode structure, and can even differ for individual
PMTs of the same model and gain [4, 8]. Thus it is often
difficult to construct an analytical parameterization of
the single photoelectron spectrum that is suitable for a
range of PMTs and conditions.

In this work we present a simple statistical method
to calibrate the single photoelectron response of a pho-
tomultiplier tube without making any assumptions on
the shape of the single photoelectron spectrum. Rather
than using an analytical model, we rely on the known
distribution of photoelectrons produced by a laser pulse
to obtain the calibration parameters directly from the
spectrum itself, without requiring a fit. The general sta-
tistical nature of the method allows it to be applied to
any kind of photomultiplier tube with a wide range of
illumination levels, while only requiring a pulsed laser
light source, a device that is already commonly imple-
mented in scintillation detectors.

II. METHOD

The single photoelectron calibration method pre-
sented here focusses on accurately estimating the mean
and variance of the single photoelectron distribution at
the PMT output, including contributions from under-
amplified photoelectrons, without making any assump-
tions about the shape of the distribution. For most
experimental purposes, knowledge of the higher mo-
ments, or the entire functional form of the single pho-
toelectron response is not required. The linearity of the
PMT ensures that as the number of detected photoelec-
trons increases, by the central limit theorem (CLT), the
response to multiple photoelecrons quickly converges
to a Gaussian distribution that is completely described
by the first two central moments of the single photoelec-
tron response. This is illustrated in Figure 1, where it
can be seen that even for a heavily skewed single pho-
toelectron distribution with a large fraction of under-
amplified photoelectrons, the response to n ≥ 5 photo-
electrons (PE) is to a very good approximation Gaus-
sian, with a mean and variance n times that of the
entire SPE distribution. Even though the distribution
converges to a Gaussian for large number of photoelec-
trons, it is critical to include the under-amplified com-
ponent in the estimate of the mean and variance in or-
der to obtain the correct estimate of the photoelectron
statistics in the signal. For example, if one were to cal-
ibrate the SPE mean as simply the peak position of the
SPE distribution in the top left panel of Figure 1, one
would incorrectly underestimate the number of photo-
electrons in the other panels by the ratio of the peak po-
sition to the true mean position (i.e. a factor of 1.25). We
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FIG. 1. Black: Simulated charge distribution of 1, 2, 5 and 10
photoelectrons for a PMT with a large component of under-
amplified photoelectrons. Background noise was not included
in the simulation. Red: Gaussian distribution with the same
mean and variance as the PMT charge distribution for com-
parison.

note that the above considerations also apply when the
light is distributed over an array of photomultipliers,
and the total signal is obtained by summing the output
of all the PMTs. In this case, even though the single
photoelectron response of the individual PMTs are not
necessarily identical, variants of the classical CLT typ-
ically ensure convergence to a Gaussian distribution.
Thus, for scintillation signals that produce more than 5
PE on average, the contribution of the photomultiplier
response is determined by only the first two central
moments of the single photoelectron distribution. For
smaller signals, the knowledge of the mean and vari-
ance are still necessary for calibration, and are still accu-
rately estimated by the method described in this paper,
though higher moments may also need to be calculated
to fully model the shape of the detector response.

In order for the description of the method to be clear,
we must first briefly describe the corresponding exper-
imental setup. A low intensity, pulsed laser is used to
illuminate the PMT to be calibrated. The laser is ex-
ternally triggered and for each trigger the PMT output
is digitized at the time corresponding to the expected
anode output signal. We stress that in this setup the
PMT’s output for every trigger is recorded, even if no
visible signal is observed. This ensures that no low am-
plitude photoelectrons are missed.

For every trigger, there are two contributions to the
total measured charge q, one from the background
noise that is always present in the system, even in the
absence of a photoelectron signal, and one associated
with the presence of a photoelectron signal. The total
integrated charge is simply the sum of these two con-
tributions, which, by definition, are independent. We
will denote the probability distribution of the total inte-
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grated charge as T(q), and the background and signal
probability distributions as B(q) and S(q) respectively.
It then follows that

T(q) = B(q) ∗ S(q) (1)

where ∗ indicates a convolution of the two distribu-
tions. For independent random variables, the first two
moments are additive, and hence

E [T] = E [B] + E [S] (2)
V [T] = V [B] + V [S] (3)

where E [X] and V [X] denote the mean and variance
of the distribution X respectively, and we have omitted
the domain of the distributions for clarity. The signal
charge distribution can be written in terms of the num-
ber of photoelectrons p produced

S(q) =
∞

∑
p=0

S(q|p)L(p) (4)

where L(p) is the discrete probability distribution of
the number of photoelectrons produced in a single
laser pulse. Assuming that the PMT response is lin-
ear, we can write the multi-photoelectron response as
the repeated convolution of the single photoelectron re-
sponse, which we shall denote as ψ(q) ≡ S(q|p = 1)

S(q|p) = ψ(q) ∗ ... (p convolutions) ... ∗ ψ(q)
≡ ψp(q)

where ψ0(q) ≡ δ(0). We can now write the signal prob-
ability distribution as

S(q) =
∞

∑
p=0

ψp(q)L(p) (5)

Using the above, one can calculate the mean and vari-
ance of the signal:

E [S] = E [ψ] · E [L] (6)

V [S] = V [ψ] · E [L] + E2 [ψ] ·V [L] (7)

Finally, we can substitute the above in Eqs. 2 and 3 to
obtain the first two central moments of the single pho-
toelectron response ψ(q)

E [ψ] =
E [T]− E [B]

E [L]
(8)

V [ψ] =
V [T]−V [B]− E2 [ψ] ·V [L]

E [L]
(9)

As can be seen from the above equations, in order to ob-
tain the mean and variance of the single photoelectron
distribution, one needs to know the mean and variance
of the photoelectron distribution L(p).

For an ideal laser emitting coherent light in a sin-
gle mode, the distribution of the number of photons
follows a Poisson distribution [11], with the variance
equal to the mean. If the light is then attenuated by fil-
ters such that each photon independently has the same
probability to pass through, the output photon distri-
bution will also follow a Poisson distribution with a re-
duced mean. Even in the case where the emitted laser
light is not perfectly Poissonian, it can be shown that
after strong attenuation the output photon distribution
approaches a Poisson distribution. Explicitly, if the ini-
tial laser photon distribution has a ratio of the variance
to the mean, defined as the Fano factor [12], Fi, then af-
ter attenuation by a factor η (0 ≤ η ≤ 1), the Fano factor
Fo of the output photon distribution is

Fo = 1 + η(Fi − 1)

Thus even for non-ideal lasers, if the output is strongly
attenuated (η � 1), Fo ≈ 1 and the variance approaches
the mean, as for a Poisson distribution. Similarly, the
expectation value for low numbers of output photons
can also be shown to converge to those of a Poisson
distribution [13, 14]. Given these considerations, we can
assume that the distribution of photons from a strongly
attenuated laser light source follows a Poisson distri-
bution. Since the conversion from photons to photo-
electrons can also be considered a random attenuation
process, the distribution of photoelectrons produced at
the photocathode is also Poissonian. We can therefore
further simplify Eq. 9 by setting the variance of the pho-
toelectron distribution equal to the mean, V [L] = E [L],
to get:

V [ψ] =
V [T]−V [B]

E [L]
− E2 [ψ] (10)

Before discussing the method to estimate the param-
eters on the right hand side of Eq’s (8) and (10) it is
worthwhile to explicitly list some of the assumptions
made above and compare them to other methods of sin-
gle photoelectron calibration.

• Unlike fitting methods, we have not assumed any
functional form for the single photoelectron re-
sponse. The above equations are valid for any
SPE distribution with no assumptions about the
shape or amplitude of the under-amplified photo-
electron distribution.

• Similarly, we have also made no assumption
about the shape of the background noise distri-
bution, which is determined by the specific elec-
tronics used and the background noise present in
the setup.

• We have assumed that the PMT and any associ-
ated electronics respond linearly to the number of
photoelectrons. In the typical regime used by this
method, fewer than 20 PE are produced in each
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laser pulse, which is well within the linear range
of most PMTs.

• The above formulation divides the contributions
of the total charge into two categories, back-
ground and signal. The background distribution
accounts for all signals that are independent of
the photoelectron production by the laser. This
includes any noise from the electronics, the trig-
ger and the pulsing of the laser (which occurs
for every trigger) as well as dark count signals
produced by thermionic emission from the pho-
tocathode and dynode chain. The signal distribu-
tion is assumed to only include contributions that
are linear with the number of laser-induced pho-
toelectrons. In certain experimental setups, there
may be contributions that do not fall into either
category. For example, noise from a discriminator
firing (when the signal is above a certain thresh-
old) may only occur when the laser light produces
a signal, but it does not increase as the number of
photoelectrons increases. In such cases, as with
other calibration methods, care must be taken to
account for these contributions in the total charge
distribution.

III. PARAMETER ESTIMATION

As can be seen from Eq’s (8) and (10), in order to
determine the first two central moments of the SPE re-
sponse we need to evaluate the first two central mo-
ments of the total charge distribution and the back-
ground distribution, as well as the mean number of
photoelectrons produced in each trigger. Since we do
not have prior knowledge of the true underlying dis-
tributions, we will estimate the moments from a data
sample of N triggers.

The central moments of the total charge distribution
can be directly obtained by calculating the mean and
variance of the measured PMT output spectrum in the
presence of the laser. An example of this spectrum can
be seen in black in Figure 4 along with the mean and
variance. This is typically the spectrum that is used to
fit the single photoelectron response.

There is often an overlap of the background distri-
bution and the signal distribution of under-amplified
single photoelectrons. This makes it difficult to cleanly
determine the mean and variance of the background in
the presence of the laser signal. The simplest method
to measure the background spectrum is to take an in-
dependent data set (which we will refer to as “blank”,
as opposed to “laser”) and block any laser light from
reaching the PMT, while leaving the laser on. This
excludes signals associated with the laser light, while
including any possible electronics noise produced by
the pulsed laser. For simplicity we will assume that
the same number of triggers N are acquired for the

blank and the signal distributions. An example back-
ground distribution used to calculate the mean and
variance is shown in red in Figure 4.

The only parameter that is not straightforward to es-
timate is the mean number of laser-induced photoelec-
trons produced in each trigger, E [L], which we shall re-
fer to as occupancy. As discussed previously, the num-
ber of photoelectrons produced follows a Poisson dis-
tribution, which can be written as

L(p) =
λpe−λ

p!
(11)

λ ≡ E [L] = V [L] (12)

The occupancy λ is directly related to the probability of
producing zero laser-induced photoelectrons,

λ = − ln (L(0)) (13)

which can be estimated from the number of sample
triggers with zero laser-induced photoelectrons (zero-
pe triggers), N0, and the total number of sample trig-
gers N

λ̂ = − ln (N̂0/N) (14)

where λ̂ and N̂0 denote the estimates of the occupancy
and number of zero-pe triggers from the data sample
taken respectively.

There are several different techniques that can be
used to estimate the value N0 and the optimal method
will depend on the nature of the signal and background
distributions. For example, if the temporal shape of the
PMT output pulse is known, and the triggers are indi-
vidually recorded, one can assign a likelihood for the
presence of a laser-induced signal to each individual
trigger. For the purposes of this paper, we will restrict
ourselves to a very simple algorithm, whose statistical
and systematic uncertainties can be estimated analyti-
cally.
We will use the fact that we have access to a pure
sample of zero-pe events from the background dis-
tribution in the blank data and hence have empirical
information about the shape of the zero-pe distribu-
tion. Since triggers which contain a non-zero number
of laser-induced photoelectrons typically have a higher
charge output than triggers that only contain back-
ground noise, we can take the laser output distribution
and place a threshold cut at low charge values (see red
dashed line in Figure 5) such that the fraction of non-
zero-pe triggers that fall below the cut is negligible (this
will be quantified later). Let the number of triggers that
fall below the cut in the laser data set be AS, which
we will assume are only zero-pe triggers. In order to
account for the remaining number of zero-pe triggers
that fall above the cut, we calculate the fraction of the
blank distribution that falls below the cut and re-correct
our measured number of laser triggers below the cut by
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that fraction. If the fraction of blank triggers that fall
below our cut is AB/N, then our estimate for N0 is

N̂0 = AS ·
N
AB

(15)

IV. PARAMETER UNCERTAINTIES

In order to find the optimal operating parameters for
the laser intensity and number of triggers, it is useful
to calculate the statistical and systematic uncertainties
corresponding to the estimate of the moments from the
finite data sample.

From Eq (8) we can calculate the statistical uncer-
tainty on the single photoelectron mean as

V
[

Ê [ψ]
]
=

V
[

Ê [T]
]
+ V

[
Ê [B]

]
+ E2 [ψ] ·V

[
Ê [L]

]
E2 [L]

(16)

where Ê [X] denotes the estimated mean, i.e. the
estimate of the mean of the distribution X from the
finite data sample taken.

Since the mean of the total charge distribution, Ê [T],
is evaluated by calculating the arithmetic mean of the
distribution, the statistical uncertainty on the estimate
is simply the standard error on the mean

V
[

Ê [T]
]
=

V [T]
N

(17)

where N is the number of sample triggers. Using
Eq (10), one can write

V
[

Ê [T]
]
=

E [L] · (E2 [ψ] + V [ψ]) + V [B]
N

(18)

Similarly to Ê [T], the uncertainty on the estimate of
Ê [B] is simply the standard error on the mean

V
[

Ê [B]
]
=

V [B]
N

(19)

If the true fraction of zero-pe triggers that fall below the
threshold cut is denoted as f , such that f ≡ E [AB/N]
the statistical uncertainty in the estimate of the occu-
pancy can be written as (see Appendix A)

V
[
λ̂
]
≈
(
eλ + 1− 2 f

)
f N

(20)

Combining the individual statistical uncertainties from
Eqs (18), (19) and (20) into Eq (16), we get

V
[

Ê [ψ]
]
≈ λ(E2 [ψ] + V [ψ]) + 2V [B]

Nλ2

+
E2 [ψ]

(
eλ + 1− 2 f

)
f Nλ2 (21)

For a given photomultiplier and background spectrum,
the statistical uncertainty on the single photoelectron
mean as determined by this method decreases as the
number of trigger samples N increases and is smallest
for occupancies λ ∼ 2 PE/trigger.

The dominant systematic uncertainty arises from the
evaluation of the occupancy. The estimation of the oc-
cupancy is made under the assumption that the num-
ber of non-zero-pe triggers falling below the thresh-
old cut is negligible. However measurements of sig-
nals from photomultiplier tubes operated at high gain
have shown contributions from under-amplified pho-
toelectrons of arbitrarily small charge [4, 8]. Triggers
with a laser-induced photoelectron that produces a very
small integrated charge can fall below the threshold cut
and be incorrectly included in the calculated number of
zero-pe triggers N̂0. This leads to systematic decrease
in the estimated occupancy λ̂, and correspondingly a
systematic increase in the estimated single photoelec-
tron mean.
The number of non-zero-pe triggers, l, leaking below
the threshold cut can be reasonably expected to be pro-
portional to the number of events that produce exactly
one photoelectron, since the probability of two or more
photoelectrons producing a combined signal that falls
below the threshold cut should be negligible. One can
then write the mean number of leakage events l as

l = k · N · L(1) (22)
= k · N · λ · L(0) (23)

where k is the fraction of all triggers with exactly one
laser-induced photoelectron, whose total charge falls
below the threshold cut. This translates into a biased
estimate of the single photoelectron mean Ê [ψ] (see Ap-
pendix B)

E
[

Ê [ψ]
]
≈ E [ψ] ·

(
1 +

k
f

)
(24)

Thus, in order to minimize the systematic bias in the
estimate of the single photoelectron mean, the value of
the threshold cut must be chosen such that k/ f (the
ratio of the fraction of the single photoelectrons below
the threshold cut to the fraction of the background spec-
trum below the cut) is small.

The uncertainty in the estimation of the single pho-
toelectron variance is difficult to calculate analytically
and was evaluated using the simulations described in
Section VI.

V. EXPERIMENTAL METHOD

In order to test the calibration method described
above we have used the experimental setup illustrated
in Figure 2. A Hamamatsu R11410 3” photomultiplier
with a box and linear-focused dynode structure [15], to-
tal divider resistance of 37 MΩ and the recommended
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FIG. 2. Schematic diagram of the experimental setup used
to measure the single photoelectron spectrum with a pulsed
laser light source.

voltage distribution ratio was placed in a custom-made
metal darkbox that featured a continuous conducting
surface to reduce the effect of electrical noise. The
PMT was illuminated by a collimated optical fibre that
carried light from a fast pulsed laser diode (Hama-
matsu PLP-10-040C [15]) which we will henceforth re-
fer to as a laser. The laser pulses had a typical width
of 60 ps (FWHM) and a wavelength of 405 nm. The in-
tensity of the light incident on the PMT was varied by
placing different neutral density filters along the laser
path. For all data sets acquired, the combined attenu-
ation factor η of the filters was kept ≤ 10−5, in order
to ensure that the photon distribution was Poissonian.
The anode of the PMT was terminated with a 50 Ω re-
sistor and connected to a custom fast amplifier with a
10x gain. The output of the amplifier was then sent
to a 12 bit, 250 MHz CAEN V1720 digitizer [16]. The
digitizer was externally triggered by the synchronous
output of the laser which was delayed by 500 ns with
respect to the optical signal, to avoid the PMT output
overlapping with noise produced by the digitizer trig-
gering. For each trigger a 1 µs digitized waveform was
recorded and stored for analysis offline.

For each configuration of light intensity and
PMT voltage that was studied, two data sets of N =
500, 000 triggers were acquired at a trigger rate of
1 kHz. A “laser” data set was acquired with the op-
tical fibre connected such that the laser light illumi-
nated the PMT and another “blank” data set was ac-
quired with the optical fibre disconnected before the
filter box, and the fibre feedthrough capped. In or-
der to ensure that the noise levels remained the same
for both the laser and blank data, all the electronics
were kept in the same operating conditions for both
runs. As a consistency check, for a few configurations, a
blank data set was taken before and after the laser data
set and the integrated charge distribution for the two
blank data sets were compared using the Kolmogorov-
Smirnov test. In all cases, the integrated charge spec-
trum of the blank data sets were found to be compatible
(p-value > 0.1).

The event reconstruction required for this calibration
method is straightforward. The expected time win-
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FIG. 3. Example of a digitized PMT signal within a sam-
ple trigger window, acquired during a laser data set. The
black points indicate the digitized waveform, with the red
line showing the estimated baseline. The shaded blue region
indicates the fixed laser time window chosen for integration.
The negative pulse in the laser time window likely indicates
the presence of a laser-induced photoelectron signal.

dow for the laser-induced PMT signal is first identi-
fied empirically by averaging together all the wave-
forms acquired during a laser data set and selecting
a 208 ns time window that included the entire laser-
induced signal. Outside of the laser time window a
baseline is calculated for each individual waveform us-
ing a moving average of ± 20 ns around each sample.
The baseline within the laser time window is then lin-
early interpolated using the samples on either side of
the window. This method ensures that the baseline is
evaluated in the same way regardless of whether or not
a laser signal is present. A sample waveform along with
the defined laser time window and estimated baseline
is shown in Figure 3.

The integral (inverted to account for the negative
PMT pulses) of the baseline-subtracted waveform over
the defined laser time window is calculated for each
trigger. Figure 4 shows the distribution of the inte-
gral for a laser and blank data set, acquired at a PMT
voltage of 1700 V (≈ 1.6 × 107 gain) and a filter at-
tenuation of 5 × 10−6. In both distributions the peak
centered at zero is primarily due to fluctuations of the
noise about the estimated baseline with no photoelec-
tron signal present. The peak at 400 count·samples in
the laser data is due to fully amplified single photoelec-
trons from the photocathode, and a peak due to two
fully amplified photoelectrons at 800 count·samples is
also visible. The small peak at 400 count·samples in the
blank data is due to dark noise photoelectrons and pos-
sibly small amounts of stray light entering the dark-
box (< 0.2% of triggers) that accidently fall within the
laser time window. The inclusion of these events in
the blank data allows us to correctly account for their
presence in the laser data and exclude them from the
estimation of the single photoelectron mean, since the
spectrum of dark noise photoelectrons do not necessar-
ily follow the same distribution as photon-induced pho-
toelectrons [6, 9].
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FIG. 4. Black: Integrated charge spectrum for a laser data set
acquired at a PMT voltage of 1700 V and an estimated occu-
pancy of 1.35 photoelectrons/trigger. Red: Integrated charge
spectrum for a blank data set taken at the same settings as the
laser data set, but with the optical fibre disconnected.
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FIG. 5. Same data as in Figure 4, with the blank data spectrum
scaled to match the laser data spectrum using the estimated
occupancy. The red vertical line indicates the position of the
threshold cut used to estimate the occupancy. The black verti-
cal line indicates the value of the estimated single photoelec-
tron mean.

Figure 5 focuses on the low charge region of the
laser and blank data set shown in Figure 4, with the
blank spectrum scaled to match the number of zero
laser-induced photoelectron triggers in the laser spec-
trum using the estimated occupancy. The occupancy
was estimated using the method described in Sec-
tion III, where a threshold cut was placed such that the
fraction of the blank data set that falls below the cut is
f = 0.333 (red dashed line in Figure 5). As discussed
in Section IV, the position of the threshold cut was cho-
sen to keep the fraction of the single photoelectron trig-
gers falling below the cut small, while still maintaining
enough statistics below the cut in the blank spectrum
to accurately estimate the occupancy. The placement
of the cut below an integrated charge of zero implies
that only very small single photoelectron signals, which
when summed with the background noise lead to an

overall negative charge (after baseline subtraction), will
fall below the threshold cut.

It can be seen in Figure 5 that between 50 and
100 count·samples the excess of the laser spectrum
above the blank spectrum differs significantly from
a Gaussian tail, indicating the presence of a distinct
population of under-amplified photoelectrons with low
integrated charge. The mean of the single photo-
electron distribution, as estimated by the method de-
scribed in this paper, is shown by the black dashed
line in Figure 5. As one would expect, the pres-
ence of under-amplified photoelectrons with lower out-
put charge pushes the estimated mean distinctly be-
low the peak of the fully-amplified single photoelec-
tron distribution. For the PMT and operating gain de-
scribed above, the estimated mean of the entire single-
photoelectron distribution, including under-amplified
photoelectrons, is ≈ 80% of the peak of the fully-
amplified single-photoelectron distribution.

In order to study the robustness of the method with
respect to intensity of laser light used, several data sets
were taken with the PMT supplied at a constant volt-
age, but with different filter attenuation. Since dif-
ferent numbers and combinations of filters were used
to obtain different light intensities, the observed oc-
cupancy did not directly scale with the filter attenua-
tion used, due to reflections between filters. Figure 6
shows the obtained laser spectra, where the distribu-
tions have been normalized to have the same num-
ber of zero-pe triggers, based on the estimated occu-
pancy. The results for the estimated single photoelec-

tron mean and standard deviation, ŜD [ψ] ≡
√

V̂[ψ],
are shown in Table I. It can be seen that unlike most
commonly used fitting methods which require a very
low occupancy (due to difficulties in calculating and
fitting analytical functions for two or more photoelec-
trons), this method produces consistent results for the
single photoelectron mean, with statistical uncertainties
below 2%, over a range of laser intensities that span
from 0.2 to 2.4 PE/trigger. While the experimental data
was limited by the set of available filters, Eq. 21 indi-
cates that for the parameters of this experimental setup,
the method has a precision of better than 3% for occu-
pancies spanning nearly two orders of magnitude from
0.1 to 9.5 PE/trigger. This is especially useful for large
detectors that contain an array of photomultiplier tubes,
where a uniform illumination of the PMTs with optical
fibers may not be possible.

Due to dynamic range limitations in many experi-
mental setups, it is often not possible to run PMTs at
high gain values. Running at lower gain often results
in the under-amplified photoelectron spectrum falling
under the zero-pe background, as shown in Figure 7
where laser spectra for data sets were taken at a con-
stant laser intensity but varying voltage applied to the
PMT.

Since the method described above uses a simple
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Attenuation Occupancy SPE Mean SPE Std. Dev. SPE Rel. Std. Dev.

η λ̂ Ê [ψ] ŜD [ψ]
ŜD [ψ]

Ê [ψ]

[PE/trigger] [count·samples] [count·samples]

1E-5 2.395± 0.008 324± 1 185± 2 0.571± 0.007

5E-6 1.351± 0.005 323± 1 184± 2 0.571± 0.007

1E-6 0.206± 0.003 330± 5 180± 7 0.55± 0.03

1E-7 0.012± 0.003 390± 90 140± 30 0.4± 0.1

TABLE I. Results for the estimated occupancy, single photoelectron mean and standard deviation for data acquired at a fixed
PMT voltage (1700 V), with different optical filters to vary the intensity of laser light.
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FIG. 6. Integrated charge spectra for laser data sets acquired
at 1700 V with varying light intensity (λ̂ = 2.40, 1.35, 0.21
and 0.01 photoelectrons/trigger), along with the correspond-
ing blank data set shown in black for comparison. The spectra
are all scaled to have the same number of zero-pe triggers us-
ing the estimated occupancy.

threshold cut to estimate the occupancy, the overlap-
ping of the noise and under-amplified photoelectrons
makes it difficult to accurately estimate the occupancy
and hence the single photoelectron mean and variance.
The results for the estimated single-photoelectron mean
and variance are shown in Table II, where it can be
seen that the estimated occupancy steadily decreases
as the gain decreases. While there may be some small
loss of photomultiplier efficiency at lower voltages due
to inefficient focussing in the dynode structure, as we
will see in Section VI, the decrease in estimated occu-
pancy is consistent with the expected systematic bias
described in Section IV. More sophisticated algorithms
that rely on other parameters to estimate the occupancy
will likely be less biased at low gains.

If one assumes that the PMT efficiency remains con-
stant for all the voltages applied, one can fix the occu-
pancy to the value obtained at the highest gain, where
the systematic bias is least. Table III shows the results
obtained by using the value of the occupancy obtained
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FIG. 7. Integrated charge spectra for laser data sets acquired
at a fixed laser intensity (λ̂ = 1.35 photoelectrons/trigger) with
varying PMT voltage (1400 V, 1500 V, 1600 V, 1700 V).

at the highest gain to estimate the single photoelectron
moments at lower PMT voltages. The results obtained
using this method give more consistent values for both
the single photoelectron relative variance and the ratio
of the single photoelectron peak to mean. Thus, for ap-
plications in which the photomultiplier is required to
be calibrated at low gain, it is recommended to esti-
mate the occupancy by temporarily running the PMT
at a higher gain, while keeping the laser intensity con-
stant. The value of the occupancy can then be used to
calculate the single photoelectron mean and variance
at the desired operating gain. If it is not possible to
temporarily increase the PMT gain, the systematic bias
in the estimated single photoelectron moments can be
estimated using simulations, as discussed in the follow-
ing section. As we will see, for the given experimental
setup and simple algorithm used to estimate the occu-
pancy, the bias at the lowest operating gain is still less
than 10% and the result obtained is always more accu-
rate than using a simple Gaussian fit.
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PMT HV Occupancy SPE Mean SPE Std. Dev. SPE Rel. Std. Dev. SPE Mean/Peak

λ̂ Ê [ψ] ŜD [ψ]
ŜD [ψ]

Ê [ψ]

[Volts] [PE/trigger] [count·samples] [count·samples]

1400 1.257± 0.005 76.9± 0.3 35.4± 0.4 0.460± 0.006 0.854± 0.005

1500 1.289± 0.005 127.3± 0.5 64.0± 0.7 0.503± 0.007 0.815± 0.004

1600 1.324± 0.005 204.3± 0.8 111± 1 0.543± 0.006 0.803± 0.004

1700 1.351± 0.005 323± 1 184± 2 0.571± 0.007 0.791± 0.004

TABLE II. Estimated occupancy, single photoelectron mean and standard deviation for data acquired at a fixed light intensity
(1.35 PE/trigger), with varying PMT voltages to vary the single photoelectron gain.

PMT HV Occupancy SPE Mean SPE Std. Dev. SPE Rel. Std. Dev. SPE Mean/Peak

λ̂ Ê [ψ] ŜD [ψ]
ŜD [ψ]

Ê [ψ]

[Volts] [PE/trigger] [count·samples] [count·samples]

1400 1.351± 0.005 71.5± 0.3 39.4± 0.4 0.551± 0.008 0.795± 0.004

1500 1.351± 0.005 121.5± 0.5 68.0± 0.7 0.560± 0.007 0.778± 0.004

1600 1.351± 0.005 200.2± 0.8 114± 1 0.569± 0.007 0.786± 0.004

1700 1.351± 0.005 323± 1 184± 2 0.571± 0.007 0.791± 0.004

TABLE III. Estimated single photoelectron mean and standard deviation for data acquired at a fixed light intensity (1.35
PE/trigger), with varying PMT voltages to vary the single photoelectron gain. For all data sets the occupancy was set to
the occupancy estimated at the highest gain, where the systematic bias of the method is expected to be smallest.

VI. MONTE CARLO

In order to verify that the single photoelectron cal-
ibration method described in this paper works accu-
rately not only for the specific photomultiplier and con-
ditions studied in the experimental setup, but also for
different single photoelectron spectra, light intensities,
and PMT gain, a Monte Carlo generator was written to
simulate laser-induced PMT pulses and overlay them
on waveforms taken during blank data sets. The sim-
ulated events were then processed in the same man-
ner as the experimental data and the estimated single
photoelectron moments, averaged over a large number
of trials, were compared to the simulated inputs as a
function of the gain, occupancy and shape of the single
photoelectron spectrum.

The simulation of each event in a given configuration
begins by drawing a random number of photoelectrons
from a Poisson distribution with a fixed mean corre-
sponding to the desired occupancy. The integrated
charge corresponding to each photoelectron was then
independently drawn from a spectrum. Since the true
shape of the single photoelectron charge spectrum is
not known, three different spectra were studied. The
first spectra was derived from the experimental data,
with a Gaussian peak representing the fully amplified
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FIG. 8. Different integrated charge spectra used as single
photoelectron distributions in the Monte Carlo simulations.
Blue: Gaussian distribution. Black: Gaussian distribution
plus an under-amplified component whose shape was ob-
tained from the difference of the experimentally measured
laser and blank spectra. Red: Gaussian distribution with an
exponential under-amplified distribution.

photoelectron distribution and a under-amplified
distribution that was obtained by subtracting the scaled
blank spectrum from the events acquired at highest
gain and occupancy. This empirically derived spec-
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trum, shown in black in Figure 8, displays a prominent
peak at low charge values, very similar to the shapes
obtained in other experimental setups for a variety
of different photomultiplier tubes [4, 8, 10]. We then
considered two other shapes as potential extreme cases:
a simple Gaussian truncated at zero, representative
of a single photoelectron distribution without any
contribution from under-amplified photoelectrons,
and a Gaussian with an under-amplified distribution
that rises exponentially at low charge values [9]. For
the latter two distributions, shown in blue and red
respectively in Figure 8, the shape of the spectrum
was tuned to try and match the experimental data as
best as possible. In order to simulate different gains,
the spectra were linearly scaled such that the peak of
the Gaussian matched the experimental data at each
PMT high voltage value.

For each simulated photoelectron a temporal pulse is
generated based on measurements of the average single
photoelectron pulse shape. The integral of the pulse is
scaled to equal the charge assigned to the photoelectron
and the peak time is set to match the arrival time of the
PMT signal in the experimental setup. The pulses corre-
sponding to all the photoelectrons in a given trigger are
then summed together and overlaid on top of a wave-
form taken during a blank data set taken in the same
configuration, accounting for the discreteness of the
ADC samples in time and amplitude. The use of the ex-
perimentally obtained waveforms from the blank data
set allows us to accurately include all of the relevant ef-
fects such as noise, stray photoelectrons and dark cur-
rent into the simulation. Each waveform is the pro-
cessed identically to the experimentally obtained data
in order to obtain the simulated laser spectra and esti-
mate the single photoelectron mean and variance.

Using the results of the simulation, we studied the
effects of the systematic bias described in Section IV
for the three different single photoelectron spectra. At
lower gains, the overlap of the under-amplified photo-
electrons and the electronics noise increases, and the
bias is expected to increase. For the simple occupancy
estimation method described in this paper, the single
photoelectron mean is expected to be biased upward
by approximately a factor of (1 + k/ f ) (where k/ f is
the ratio of the fraction of the single photoelectrons be-
low the threshold cut to the fraction of the background
spectrum below the cut). In Table V we report the re-
sults of the simulation for single photoelectron gain set-
tings corresponding to the PMT HV supply values used
in the experimental setup, and an occupancy of 1.35
PE/trigger. As expected, the systematic bias is directly
proportional to the overlap of the single photoelectron
spectrum with the noise. For the Gaussian spectrum
there is no significant bias at all gains, while for the em-
pirical spectrum obtained from the experimental mea-
surements of the R11410, the bias varies from +1% to
+8%, depending on the gain, consistent with the corre-

sponding k/ f ratio. It should be noted that even in the
worst case considered, with a exponentially increasing
under-amplified spectrum at low gain, the systematic
bias in the single photoelectron mean and standard de-
viation of +10% and -15% respectively is significantly
lower than the bias one would obtain by ignoring the
under-amplified electrons and only fitting the Gaussian
component (+19% and -50% respectively).

In order to test the sensitivity of the method to the
intensity of laser light, we simulated datasets at var-
ious occupancies, for all three different single photo-
electron spectra at a gain equivalent to the experimen-
tal data taken at 1700 V. The results are shown in Ta-
ble VII, where it can be seen that the calibration method
provides results that are consistent with the simulated
single photoelectron moments (after accounting for the
small systematic bias discussed above). The statisti-
cal uncertainties on the single photoelectron mean and
standard deviation for all three considered single pho-
toelectron spectra are less than 3% and 4% respectively
for occupancies ranging from 0.1 to 7.5 PE/trigger. This
confirms the validity of the method for a wide range of
PMT illumination.

VII. CONCLUSIONS

In this paper we have presented a simple new method
to calibrate the single photoelectron response of photo-
multiplier tubes, taking into account the important con-
tributions of under-amplified photoelectrons. Unlike
conventional fitting methods, the proposed procedure
determines the single photoelectron mean and variance
statistically, without making any assumption about the
underlying shape of the single photoelectron spectrum,
and can thus be used to calibrate PMTs with various
photocathode and dynode structures. Following the
description of the method, we have outlined the pro-
cedure to estimate the required parameters and their
uncertainties, and applied the method to experimental
data acquired with a Hamamatsu R11410 photomulti-
plier. Additionally we have used a Monte Carlo simula-
tion with experimentally measured noise levels to study
the results of the method as a function of the single
photoelectron spectrum, photomultiplier gain and light
intensity. The method is found to accurately estimate
the single photoelectron mean (variance) to better than
5% (6%) for all single photoelectron spectra considered,
at PMT gain values above 1× 107. At lower gains, a sys-
tematic bias is present due to the overlap of the under-
amplified spectra with the noise. For the experimen-
tal setup considered, the bias on the single photoelec-
tron mean (variance) ranges from 0% (0%) to +10% (-
15%) at a gain of 3.5 × 106, depending on the single
photoelectron spectrum. In all cases the bias is signifi-
cantly less than other methods that ignore the contribu-
tion of under-amplified photoelectrons, and can likely
be further reduced by the use of more sophisticated al-
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Sim. Gain Gaussian Empirical Gaussian + Exponential
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Ê [ψ]
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Ê [ψ]
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k
f

E
[

Ê [ψ]
]

Esim [ψ]

SD
[

Ê [ψ]
]

Ê [ψ]

3.5× 106 1.0009 0.999± 0.003 0.004 1.075 1.079± 0.004 0.004 1.103 1.113± 0.004 0.004

5.9× 106 1.0005 0.999± 0.003 0.004 1.045 1.045± 0.004 0.004 1.075 1.079± 0.003 0.004

9.8× 106 1.0003 1.000± 0.003 0.004 1.021 1.021± 0.004 0.004 1.050 1.050± 0.004 0.004

1.6× 107 1.0001 0.999± 0.003 0.004 1.010 1.009± 0.004 0.004 1.033 1.035± 0.004 0.004

TABLE IV. Simulation results for the estimated single photoelectron mean for a fixed occupancy (1.35 PE/trigger), with varying
gain. Results are presented for all three simulated single photoelectron distributions with the first column indicating the
analytically estimated fractional bias for each distribution and gain (see Section IV). The second column indicates the estimated
fractional bias from the simulation compared to the true simulated value Esim [ψ], and the third column indicates the fractional
statistical uncertainty (precision).

Sim. Gain Gaussian Empirical Gaussian + Exponential

E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

3.5× 106 1.00± 0.02 0.017 0.881± 0.007 0.008 0.848± 0.007 0.008

5.9× 106 1.00± 0.02 0.018 0.936± 0.006 0.007 0.903± 0.005 0.007

9.8× 106 0.99± 0.02 0.017 0.969± 0.006 0.006 0.938± 0.006 0.006

1.6× 107 0.99± 0.02 0.018 0.984± 0.006 0.006 0.959± 0.006 0.006

TABLE V. Simulation results for the estimated standard deviation of the single photoelectron distribution for a fixed occupancy
(1.35 PE/trigger), with varying gain. Results are presented for all three simulated single photoelectron distributions with the
first column indicating the fractional bias (accuracy) compared to the true simulated value SDsim [ψ], and the second column
indicating the fractional statistical uncertainty (precision).

gorithms to distinguish between signal and noise. The
method also works well over a wide range of light in-
tensities and is thus suitable for the calibration of arrays
of photomultipliers in large detectors, where uniform
illumination is not possible.
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Appendix A

The statistical uncertainty in the estimate of the occu-
pancy λ (excluding any bias from non-zero-pe triggers
leaking below the amplitude cut) can be evaluated by

first calculating the uncertainty in the number of zero-
pe triggers N̂0 = AS · N/AB. Let the true fraction of
zero-pe triggers be L(0) and the true fraction of zero-
pe triggers that fall below the cut be f . Then, for an
ensemble of data sets with N triggers each

E [AS] = NL(0) f ; V [AS] = NL(0) f (1− L(0) f )

E
[

N
AB

]
≈ 1

f
; V

[
N
AB

]
≈ 1− f

N f 3

where we have used the fact that both AS and AB follow
a binomial distribution and we have used a first-order
Taylor expansion to estimate the mean and variance of
the inverse of AB. We can then write the mean and
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Sim. Occ. Gaussian Empirical Gaussian + Exponential

λ
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Ê [ψ]
]

Esim [ψ]

SD
[
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Ê [ψ]
]

Ê [ψ]

E
[

Ê [ψ]
]

Esim [ψ]

SD
[

Ê [ψ]
]

Ê [ψ]

0.10 0.99± 0.02 0.028 1.01± 0.02 0.029 1.04± 0.02 0.029

0.21 1.00± 0.01 0.014 1.01± 0.02 0.015 1.04± 0.02 0.015

1.35 0.999± 0.003 0.004 1.009± 0.004 0.004 1.035± 0.004 0.004

2.40 1.000± 0.004 0.003 1.008± 0.004 0.003 1.035± 0.004 0.003

5.00 1.000± 0.006 0.006 1.006± 0.006 0.006 1.032± 0.006 0.006

7.50 1.00± 0.02 0.014 1.00± 0.01 0.014 1.03± 0.01 0.013

TABLE VI. Simulation results for the estimated single photoelectron mean for a fixed gain (1.6× 107), with varying occupancy.
Results are presented for all three simulated single photoelectron distributions with the first column indicating the fractional bias
(accuracy) compared to the true simulated value Esim [ψ], and the second column indicating the fractional statistical uncertainty
(precision).

Sim. Occ. Gaussian Empirical Gaussian + Exponential

λ
E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

E
[
ŜD [ψ]

]
SDsim [ψ]

SD
[
ŜD [ψ]

]
ŜD [ψ]

0.10 1.03± 0.08 0.153 0.96± 0.06 0.037 0.94± 0.05 0.037

0.21 0.97± 0.08 0.072 0.98± 0.02 0.019 0.94± 0.03 0.019

1.35 0.99± 0.02 0.018 0.984± 0.006 0.006 0.959± 0.006 0.006

2.40 0.99± 0.02 0.017 0.987± 0.005 0.006 0.959± 0.005 0.006

5.00 0.99± 0.03 0.031 0.988± 0.008 0.009 0.960± 0.007 0.008

7.50 0.96± 0.08 0.069 0.99± 0.02 0.018 0.96± 0.02 0.017

TABLE VII. Simulation results for the estimated standard deviation of the single photoelectron distribution for a fixed gain
(1.6× 107), with varying occupancy. Results are presented for all three simulated single photoelectron distributions with the
first column indicating the fractional bias (accuracy) compared to the true simulated value SDsim [ψ], and the second column
indicating the fractional statistical uncertainty (precision).

variance of N̂0 and λ̂ as

E
[

N̂0

]
≈ NL(0)

V
[

N̂0

]
≈ NL(0)

(
1 + L(0)

f
− 2L(0)

)
E
[
λ̂
]
≈ − ln (L(0))

= λ

V
[
λ̂
]
≈

(
1+L(0)

f − 2L(0)
)

NL(0)

=

(
eλ + 1− 2 f

)
N f

Appendix B

Triggers with laser-induced single photoelectrons
that fall below the amplitude cut lead to an overesti-
mate of zero-pe triggers below the cut AS and hence
the estimated total number of zero-pe triggers N̂0

E [AS] = NL(0) f + l
= NL(0)( f + kλ)

E
[

N̂0

]
≈ NL(0)

(
1 +

k
f
· λ
)
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This translates into biased estimates of the occupancy λ̂

and the single photoelectron mean Ê [ψ]

E
[
λ̂
]
= E

[
− ln

(
N̂0/N

)]
≈ λ− ln

(
1 +

k
f
· λ
)

E
[

Ê [ψ]
]
≈ E [ψ] ·

(
1 +

k
f

)

where we have assumed that k/ f � 1.
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