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We discuss models involving two scalar fields coupled to classical gravity that satisfy the general
criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only
through − 1

12
ςφ2R couplings where ς departs from the special conformal value of 1; (iii) the Planck

mass is dynamically generated by the vacuum expectations values (VEVs) of the scalars (iv) there is
a stage of viable inflation associated with slow roll in the two–scalar potential; (v) the final vacuum
has a small to vanishing cosmological constant and an hierarchically small ratio of the VEVs and
the ratio of the scalar masses to the Planck scale. This assumes the paradigm of classical scale
symmetry as a custodial symmetry of large hierarchies.

The discovery of the weakly interacting Brout-Englert-
Higgs (BEH) boson, coupled with the absence of signif-
icant evidence for physics beyond the Standard Model,
has stimulated a re-evaluation of the possible explana-
tions of the hierarchy problem. In the Standard Model
(SM) of the strong and electroweak interactions, which
has no fundamental input mass scale other than the BEH
mass, an apparent hierarchy problem arises that is due
to the additive quadratically divergent radiative correc-
tions to the mass squared of the BEH boson. However,
in the pure Standard Model the quadratic divergences
are an artifact of the introduction of a mass scale cut-off
in momentum space [1]. In the context of field theory,
the coefficients of relevant operators have to be renor-
malised and the theory is defined ultimately by observ-
able renormalised coefficients. In this case neither the
quadratically divergent radiative correction to the BEH
mass nor the mass counter-term is measurable and only
the renormalised mass is physically meaningful. If one
maintains scale invariance broken only explicitly by the
various trace anomalies and spontaneously to generate
the BEH boson mass, then the latter must be viewed as
multiplicatively renormalized since no quadratic diver-
gence arises in the trace anomaly. This has further led
to the proposal of classically-scale-invariant models that
contain the SM, in which the electroweak scale is gen-
erated through spontaneous breaking of scale invariance
via Coleman-Weinberg mechanism [2, 3].

It has been suggested that scale invariance might even
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apply at the quantum level through “endogenous” renor-
malisation which requires that the regulator mass scale,
µ, associated with quantum loops in dimensional regu-
larization, is itself generated by a moduli field1. Alter-
natively, one can always introduce an arbitrary cut-off
scale Λ, e.g., by way of momentum space cut-off or Pauli-
Villars regularization, but then renormalize the theory at
a renormalization scale given by a moduli field to remove
the Λ dependence2. However we will not explore this
possibility here, concentrating on whether it is possible
to build a viable scale invariant theory broken only spon-
taneously and via the trace anomaly.

Of course a complete theory must include gravity and,
if one is to maintain classical scale invariance, it is neces-
sary to do so in a way that generates the Planck scale
through spontaneous breaking of the scale invariance
such as occurs in the Brans Dicke theory of gravity [5].
The inclusion of gravity means there are additional addi-
tive divergent contributions to the BEH mass but these,
too, are unphysical and should be absorbed in the renor-
malised mass which vanishes if the underlying theory is
classically scale invariant.

In this paper we construct a spontaneously broken
scale-free model. As such, there is no physical meaning

1 For a recent discussion of this see [4]
2 It is easy to see that if one subtracts at some mass scale M that

is specified externally to the defining field theory action, then the
trace anomaly arises as the variation of the renormalized action
wrt ln(M). In replacing the subtraction scale M by an actual
field χ that is part of the defining action of the theory, there
is no residual trace anomaly; the trace anomaly is simply ab-
sorbed into the improved stress tensor itself, which then remains
traceless.

ar
X

iv
:1

60
3.

05
98

3v
1 

 [
he

p-
th

] 
 1

8 
M

ar
 2

01
6

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

mailto:pedro.ferreira@physics.ox.ac.uk
mailto:hill@fnal.gov
mailto:g.ross1@physics.ox.ac.uk


2

to the vacuum expectation value (vev) of a single scalar
field and only ratios of vevs are measurable. A mimimal
model capable of generating an hierarchy requires the in-
troduction of two scalar fields, φ and χ coupled to gravity
in the form:

S = −
∫
d4x
√
−g[

1

12
αφ2R+

1

2
∇µφ∇µφ

+
1

12
βχ2R+

1

2
∇µχ∇µχ+W (φ, χ)] (1)

where: W (φ, χ) = λφ4 +ξχ4 +δφ2χ2. This theory has no
input mass scales, is conformally invariant if α = β = 1
and is invariant under independent φ→ ±φ, χ→ ±χ.

FIG. 1: Plot of the Hubble parameter, H, φ, χ and the ratio
of the two components of the effective Planck mass, M2

φ and

M2
χ, as a function of a; we have normalized the x-axis to the

scale factor at the end of inflation, ae.

Such a theory has remarkable properties that we illus-
trate for one representative choice of parameters (α, β,
λ, ξ, δ) in Figure 1. At early times it has a period of
inflation during which, as we will show later on, observa-
tionally viable spectra of scalar and tensor perturbations
can be generated. Furthermore, it has an infra-red (IR)
fixed point set by ratios of the coupling constants and
which is radiatively stable to quantum corrections and
during which the universe undergoes accelerated expan-
sion. The effective planck mass, M2 = M2

φ +M2
χ (where

M2
φ = −αφ2/6 and M2

χ = −βχ2/6) is time varying dur-

ing during the inflationary period (when M2
φ � M2

χ)
but constant during the late time accelerated expansion
phase (when M2

φ �M2
χ), obeying current constraints on

gravitational physics. In the rest of the letter we flesh
out this scenario in detail.

The field equations follow from eq.(1):

M2Gαβ = Tφαβ + Tχαβ − gαβW (φ, χ) (2)

where:

Tφαβ =
(

1− α

3

)
∇αφ∇βφ+

(
α

3
− 1

2

)
gαβ∇µφ∇µφ

−α
3
φ∇α∇βφ+

α

3
gαβφ�φ

Tχαβ =

(
1− β

3

)
∇αχ∇βχ+

(
β

3
− 1

2

)
gαβ∇µχ∇µχ

−β
3
χ∇α∇βχ+

β

3
gαβχ�χ (3)

and:

�φ− α

6
φR− ∂W

∂φ
= 0, �χ− β

6
χR− ∂W

∂χ
= 0. (4)

To obtain the normal form of the Einstein equations at
late times, M2 must be positive and therefore at least
one of the coefficients α or β must be negative, inconsis-
tent with the conformally invariant choice. However the
resultant theory is still scale-independent. Taking the
trace of the Einstein field equations we have:

−M2R = (α− 1)∇µφ∇µφ+ (β − 1)∇µχ∇µχ
+αφ�φ+ βχ�χ− 4W (5)

which determines the Ricci scalar.
We now restrict the analysis to study the cosmologi-

cal evolution for a Friedmann Robertson Walker (FRW)
metric, gαβ = (−1, a2δij). The FRW equation is given
by:

H2 − D

3M2
H − ρT

3M2
= 0 (6)

where H ≡ ȧ/a is the Hubble parameter, D = αφφ̇+βχχ̇

and ρT = φ̇2/2 + χ̇2/2 +W . The evolution equations for
φ and χ can be uncoupled to give:(

�φ
�χ

)
=

1

K

(
1 + β2χ2

6M2 −αβφχ6M2

−αβφχ6M2 1 + α2φ2

6M2

)(
Sφ
Sχ

)
(7)

where K = 1 + (α2φ2 + β2χ2)/(6M2) and:

Sφ = α(α− 1)
φφ̇2

6M2
+ α(β − 1)

φχ̇2

6M2

+
4αφ

6M2
W +

∂W

∂φ

Sχ = β(β − 1)
χχ̇2

6M2
+ β(α− 1)

χφ̇2

6M2

+
4βχ

6M2
W +

∂W

∂χ
(8)

As advertised, this theory has an infrared fixed point
which can be found by setting φ̈ = φ̇ = χ̈ = χ̇ = 0 leading
to:

Sφ ≡ −4α
φ

αφ2 + βχ2
W +

∂W

∂φ
= 0

Sχ ≡ −4β
χ

αφ2 + βχ2
W +

∂W

∂χ
= 0 (9)
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Note that φSφ +χSχ = 0 is automatically satisfied since
our full potential, W (φ, χ), is classically scale invariant:
δW/δ lnφ+ δW/δ lnχ = 4W This guarantees that non-
trivial solutions generally exist in the ratio of the VEV’s
of φ and χ given by:

〈χ0〉2

〈φ0〉2
=

4λβ − 2αδ

4αξ − 2βδ
(10)

One can readily show that this is an IR stable fixed point
so that 〈φ0〉, 〈χ0〉 are the IR vevs of the scalar fields.
Note that it is only dimensionless ratios of VEVs that are
physical. The absolute value of a VEV, not determined
by the static equations, is not measurable.

We are interested in the case that 〈φ2
0〉 � 〈χ2

0〉 so that,
at late times, a large hierarchy develops. To have an hi-
erarchically light “matter” sector also requires that the
χ mass should be small relative to the Planck scale and
this in turn requires that the χ mass contribution com-
ing from the δφ2χ2 term should be hierarchically small
relative to the Planck mass, i.e. δ ≤ 〈χ2

0〉/〈φ2
0〉. Finally

if the cosmological constant at late times is small then
this requires a fine-tuning of the parameters in W such
that it is (or is close to) a perfect square. Furthermore,
we need λ ≤ 〈χ4

0〉/〈φ4
0〉 which, in the absence of a α

12φ
2R

term, is natural because φ is shift symmetric in the limit
the small parameters vanish. Thus the radiative correc-
tions to the small parameters can only be gravitational
in origin (we will discuss these corrections later in this
letter).

What happens to the scale factor in the IR? For static
scalar fields the FRW equation, Eq. 6, implies:

3M2

(
ȧ

a

)2

= W = (λ+ ξµ4 + δµ2)φ4
0 (11)

(where µ2 ≡ 〈χ0〉2/〈φ0〉2) and we can define an effective
cosmological constant Λeff = (λ + ξµ4 + δµ2)φ2

0/(α +
βµ2). With the ordering of the couplings discussed above
Λeff ≤ ξχ4

0/M
2. To obtain zero cosmological constant

requires fine tuning of the couplings corresponding to the
potential having the form of a perfect square.

This theory is equivalent to a multi-scalar Jordan-
Brans-Dicke theory of gravity with a potential [5–7]. Cur-
rent constraints on Brans-Dicke theories from Shapiro
time delay measurements are particularly stringent and a
naive application to this theory leads to α2 < 2.5×10−5.
However, the particular scale invariant form of the poten-
tial W implies that �φ = 0 at the fixed point, implying
that it decouples from the “matter” field, χ, suggesting
that the bound may not apply. Clearly this warrants a
more detailed study of quasi-static solutions in the pres-
ence of matter in a cosmological background, beyond the
scope of the current letter.

A remarkable feature of the scale-independent struc-
ture, that we see in Fig 1, is that it readily leads to an
inflationary era. Non-minimally coupled models of infla-
tion have been looked at before [8–11]. Multifield, non-
minimal models have also been looked at in some detail,

with a particular focus on models with an explicit Planck
mass [12] or perfectly (or almost perfect) conformal in-
variance (with α = β = 1) [13].

However this case is characteristically different, with
no explicit Planck mass and the slow-roll condition re-
sulting from a cancellation of terms due to the scale in-
variance of non-gravitational sector. To understand its
inflationary regime, it useful to rewrite Eq. 7 in terms of
M2
φ and M2

χ. In the regime where W ' ξχ4, Eqs 7 gives
us:

d

dN

(
M2
φ

M2
χ

)
=

4

3

M2
φ(M2

φ +M2
χ)

(α− 1)M2
φ + (β − 1)M2

χ

(
(1− β)α
(α− 1)β

)
(12)

where N = ln a. Slow-roll results in the β � α regime
where M2

χ �M2
φ because the scale invariant form of the

scalar potential results in a cancellation of the large ∂W
∂χ

term in eq(8) so that the rhs of eq(12) is proportional to
M2
φ. Solving this equation gives the inflationary solution

M2
φ = M2

Ee
−νN and M2

χ = M2
E

[
1 + γ

(
1− e−νN

)]
where

ν = −4α/3 and γ = β(1−α)/α(1−β), and we haveN = 0
at the end of inflation when M2

φ = M2
χ = M2

E . We have
checked that this solution is a superb approximation to
the numerical solution to Eqs 7.

With our analytical solution in hand, assuming that
at the beginning of inflation we have φ ∼ χ ∼ ΦI , we
find that the total number of e-folding during inflation is
Ntot = −(1/ν) ln[(1 + γ)/(β/α + γ)]. This allows us to
determine the value of the effective Planck mass today
as a function of MI = −αΦ2

I through M2
E ' M2

I e
νNtot .

If α, β � 1 we have that M2
E 'M2

I while being possible
to have Ntot →∞.

We can also calculate the predictions for the in-
flationary observables [14]. We have that H2(N) '
(18ξ/β2)M4

χ/M
2 which we use to determine the slow roll

parameters, ε = −H ′ and η = ε − ε′/2ε, and then cal-
culate the tensor to scalar ratio, r = 16ε and the scalar
spectra index, ns = 1+2η−4ε. We then find the expres-
sions:

r =
8ν

eνNe − 1
(13)

ns − 1 = −ν e
νNe + 1

eνNe − 1
(14)

where Ne is the number of e-foldings before inflation. To
obtain (r, ns) consistent with the Planck measurements
[15], i.e. r ≤ 0.1 and ns ∼ 0.96, we need νNe ∼ 1 which
means that α ∼ 10−2 for Ne ∼ 50 − 60. Future B-mode
constraints will further tighten bounds on r, leading to
a lower-bound on α. We have ignored the effect of fluc-
tuations in the φ which could in principal lead to addi-
tional isocurvature fluctuations and non-negligable non-
Gaussian effects [16]. A cursory analysis shows that the
curvature of the inflationary trajectories in field space is
small (i.e. φ̇2/(φ̇2 + χ̇2) � H2) and hence we expect
deviations from adiabiticity and gaussianity to be small
but a more in depth study is required.
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The generation of a hierarchy requires that the choice
of parameters in the tree level Lagrangian is also hi-
erarchical and it is important to check whether this
choice is stable against radiative corrections. The choice
λ � δ � ξ is stable against non-gravitational correc-
tions because in the limit that λ and δ vanish there is an
enhanced shift symmetry φ → φ + c. This implies that
non-gravitational corrections to δ are proportional to δ
while the corrections to λ are proportional to δ2 or λ,
both being perturbatively small.

Gravitational corrections to scalar masses do not occur
if the scalar field is shift symmetric. In the case of the
χ field this shift symmetry is broken by its O(1) quartic
interaction proportional to ξ so one expects corrections
to its mass at two loop order involving both the grav-
itational coupling and ξ. However this contribution is
quadratically divergent and so unmeasurable. The di-
vergence is absorbed in the counter term and the renor-
malised mass vanishes due to the classical scale invari-
ance. The same is true of the mass generated for the χ
field due to its shift breaking coupling to the Ricci scalar.

Turning to gravitational radiative corrections to the
φ mass and the δφ2χ2 coupling we note that any such
corrections must be inversely proportional to powers of
the effective Planck scale set by the φ vev. As a result
there are no such corrections because any power of φ in
the numerator will be more than compensated by the
powers of φ in the denominator.

Thus we find that the classical scale invariance is un-
broken by gravitational corrections. Indeed there are no
gravitational trace anomalies, trace anomalies being gen-
erated only by the non-gravitational couplings which do
not spoil the hierarchy. This result follows because the
theory in the IR has no heavy states with Planck scale
masses and so does not have a “real” hierarchy problem.
Indeed, if one employs the “endogenous” renormalisa-
tion mentioned in the introduction, the theory has no
such trace anomalies as it is scale invariant even at the
quantum level.

While the model is very simple, it should be possi-
ble to extend it to include the Standard Model states
with the χ vev coupled to the BEH scalar to provide the
electroweak scale3. Of course the SM states should have
hierarchically small coupling to the φ field but such small
couplings will again be radiatively stable due to the en-
hanced symmetry when the couplings are zero. One prob-
lem with the scale independent approach applied to the
Standard Model is the presence of the Landau pole as-
sociated with the U(1) gauge group factor. This signals
that the SM becomes strongly interacting at the scale

associated with the Landau pole. It is common to as-
sume that there will be massive bound states associated
with this strong interaction that will couple significantly
to the BEH boson and create the “real” hierarchy prob-
lem4. One possible way to evade this is to embed the SM
in a theory with no Abelian gauge group factor that does
not have a Landau pole [17]. This must be done close to
the electroweak scale to avoid introducing the hierarchy
problem via new massive states and leads to a profusion
of new states that may be visible at the LHC. However
the Landau pole in the SM lies above the Planck scale
where gravitational effects cannot be neglected and it is
far from clear clear what the physics above the Landau
pole will be and whether it indeed reintroduces the hi-
erarchy problem. For the same reason we did not insist
on the absence of a Landau pole in the model considered
here. Similarly it is possible that, when gravity becomes
strong, it leads to massive states that generate the real
hierarchy problem. However it is not know if this hap-
pens and, as with the Landau pole problem, we chose to
ignore this possibility here.

We have shown that a simple two-scalar model coupled
to gravity can satisfies the general criteria: (i) the theory
has no mass input parameters, i.e., is classically scale in-
variant; (ii) scale symmetry is broken only through the
scalar coupling to the Ricci scalar which depart from the
special conformal value of −1/6; (iii) the Planck mass is
dynamically generated by the scalar VEV’s (iv) there is
a viable stage of inflation associated with slow roll in the
two–scalar potential; (v) the final vacuum has a small to
vanishing cosmological constant and an hierarchical ra-
tio between the Planck scale and the scalar mass scale.
Our analysis assumes the paradigm of classical scale sym-
metry as a custodial symmetry of large hierarchies and
we have argued that the hierarchies are preserved even
when quantum corrections are included. We will present
generalizations of this scheme to multi-scalar theories as
well as the inclusion of SM states and expand the formal
implications elsewhere [18].
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