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Abstract
To explain quark and lepton masses and mixing angles, one has to extend the standard model,

and the usual practice is to put the quarks and leptons into irreducible representations of discrete

groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided

if we extend the gauge group. In the framework of SU(12) we give explicit examples of models

having varying degrees of predictability obtained by scanning over groups and representations and

identifying cases with operators contributing to mass and mixing matrices that need little fine-

tuning of prefactors. Fitting with quark and lepton masses run to the GUT scale and known

mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant

of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass

observed in neutrinoless double beta decay.
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I. INTRODUCTION

Family and flavor symmetries of the observed quarks and leptons appear to be intimately

related and remain much of a mystery today as to their precise structures. Although there

is some ambiguity in the literature, here we make use of family symmetry to relate parti-

cles within a family of quarks and leptons as in the standard model (SM) or within some

grand unified symmetry (GUTs) such as SU(5), SO(10) or E6. Flavor symmetry, on the

other hand, relates families which appear to be replicas of each other. The flavor symme-

try may be continuous as in the case of SU(3), SU(2), U(1) or discrete as in the case of

Z2, Z2 × Z2, S3, A4, S4, etc. (For reviews see [1–3].) The conventional picture is to assume

a direct product symmetry group, Gfamily ×Gflavor, where Gfamily is gauged but Gflavor is

discrete. The necessity of Gflavor reflects the replication of families due to the fact that there

are too few chiral, exotic free, irreducible representations (irreps) in the family groups for

the observed chiral fermion families: just 5̄ and 10 for SU(5), 16 for SO(10), and 27 for E6.

Family and flavor unification requires a higher rank simple group. Some early attempts

were based on SU(11), SU(8), SU(9) and SO(18), [4–8] but none were completely satis-

factory [9]. More recently such unification has been proposed in the framework of string

compactification, see [10]. Here we describe SU(12) models with interesting features that

were constructed with the help of a Mathematica computer package written by one of the

authors (RPF) called LieART [11]. This allows one to compute tensor products, branching

rules, etc., and perform detailed searches for satisfactory models, although the predictions

of such models are limited by the number of parameters needed to describe the data. We

find that after all the known quark and lepton mass and mixing data are used to fit the

data to our models, some predictions arise for the yet-unknown results for the neutrino mass

hierarchy and individual masses, leptonic CP violation, octant for the atmospheric mixing

angle, and the effective mass that can be observed in neutrinoless double beta decay.

Expanding the gauge group to eliminate all or part of the family and flavor symmetries

has been discussed previously, see references [12–14]. An earlier version of an SU(12) model

was previously published [15, 16], but subsequently several issues were found with some of

the details, which are corrected here. In addition, we have adopted a new approach, made a

more extensive study of the possibilities within this SU(12) framework, and present a more

comprehensive treatment of these models, all of which are discussed below.
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II. INGREDIENTS OF A UNIFICATION GROUP

Our starting point is a supersymmetric SU(N) unification group, where N must be large

enough to assign chiral SU(N) matter families to a number of irreps without the need for a

flavor symmetry to distinguish the families. In practice this requires N ≥ 8, while models

derived from orbifold compactifications of SO(32) and the heterotic string suggest N ≤ 14

[17]. The larger SU(N) GUT group replaces both the conventional GUT and the flavor

groups cited earlier.

A crucial issue then concerns the breaking of the large SU(N) group to a smaller

GUT/family group such as SU(5) which we choose for the rest of this paper. We con-

sider symmetry breaking that occurs in two possible ways. In the conventional approach,

the symmetry is broken one step at a time with the help of the SU(N) adjoint scalar fields:

SU(N)→ SU(N − 1)× U(1)→ ...→ SU(5)× U(1)N−5. (1)

Then complex irreps are typically needed to break the U(1)’s and reduce the rank to 4.

(This choice was improperly made in [15] and negates some of the results of that paper.)

The other choice which we employ here reduces the rank in one step without any U(1)’s

occurring, i.e., SU(N) → SU(5). This direct breaking preserves SUSY provided N is even,

no SU(N) adjoint is present, and the F-flat and D-flat conditions hold. As shown in [18–20],

a dramatic reduction in rank is possible provided the sum of the Dynkin weights vanishes

for the vacuum expectation values (VEVs) involved in lowering the rank. This possibility

exists for N = 12, as is easily demonstrated in Appendix A.

Other necessary conditions for a satisfactory unification group are the following. The

matter fields must form anomaly-free sets of SU(N) and SU(5) irreps with three SU(5)

families. Restrictions on the Higgs fields also must obtain. The SU(5) Higgs singlets must

arise from SU(N) conjugate pairs to ensure D-flat directions, and they acquire SU(5) VEVs

at the SU(5) GUT scale where the separation of scales is given by MSU(5)/MSU(N) ∼ 1/50.

With the SUSY GUT scale occurring around 2 × 1016 GeV, this implies the SU(N) scale

can be as high as 1018 GeV, very close to the string scale. In addition, an SU(5) adjoint 24

should be present to break the SU(5) symmetry to the SM, but this adjoint should not be

contained in an SU(N) adjoint which would spoil the desired symmetry-breaking pattern.

One set or mixtures of two sets of Higgs doublets in 5 and 5 of SU(5) must be available to
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break the electroweak symmetry at the weak scale. The addition of massive matter pairs at

the SU(N) scale will then allow one to introduce an effective operator approach.

III. SU(12) UNIFICATION MODELS

After an extensive, but not exhaustive scan of possible SU(N) models, we have found a

relatively economical set of models forN = 12. Thus, for the rest of this paper we confine our

attention primarily to the SU(12) unification group. This group has twelve antisymmetric

irreps, ten of which are complex, while the 924 and singlet are real:

12, 66, 220, 495, 792, (924), 792, 495, 220, 66, 12, (1) (2)

which can be represented by Young diagrams with one to twelve blocks stacked vertically

in a single column. These irreps contain no SU(5) exotics. Among the smaller anomaly-free

sets containing exactly three families of SU(5) fermion matter are the following:

66 + 495 + 2(220) + 2(12)

220 + 3(66) + 3(12)

3(12) + 220 + 792 + 495 + 3(66)

66 + 2(495) + 792 + 2(220) + 8(12)

220 + 495 + 792 + 3(66) + 9(12)

3(66) + 3(792) + 3(495) + 6(12)

3(66) + 2(792) + 2(495) + 12(12)

(3)

where we assume any complex conjugate pairs of irreps become massive at the SU(12) scale.

Two of the anomaly-free sets, the first and fourth, are of special interest for the third

family top and bottom quarks are neatly contained in the 66 which has one 10-dimensional

irrep in the SU(5) subgroup. For the fourth set, the rank-7 SU(12)/SU(5) factor group

can be completely broken in one step while preserving supersymmetry with the aid of the

SU(5)-singlet chiral superpartners of the fermions acquiring VEVs at the SU(12) unification

scale. For the simplest first set, one needs the help of one additional scalar pair acquiring a

VEV at the unification scale. Examples are illustrated in Appendix A.
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With the aid of the SU(12) → SU(5) branching rules:

66 → 7(5) + (10) + + 21(1),

495 → 35(5) + 21(10) + 7(10) + (5) + 35(1),

792 → 7(5) + 21(10) + 35(10) + 35(5) + 22(1),

220 → (10) + 7(10) + 21(5) + 35(1),

12 → (5) + 7(1).

(4)

one can see that the two anomaly-free sets of interest break at the SU(5) scale to the following

sets of SU(5) irreps according to

66+495+2(220)+2(12) → 3(10 + 5 + 1) + 21(10 + 10) + 42(5 + 5) + 137(1),

66+2(495)+792+2(220)+8(12) → 3(10 + 5 + 1) + 63(10 + 10) + 84(5 + 5) + 236(1),

(5)

where both have three chiral families containing the observed lefthanded quarks and leptons

and lefthanded antiquarks and antileptons. The conjugate paired irreps all become massive

at the SU(12) scale and are of no more interest to us.

The three SU(5) families can then be selected from among the following:

(10)66 = (2 + 0), (5)495 = (4 + 0),

(10)495 = (2 + 2), (5)792 = (4 + 3),

(10)792 = (2 + 5), (5)220 = (4 + 5),

(10)220 = (2 + 7), (5)12 = (4 + 7),

(6)

where by Eq. (5) up to two sets of 495 and 220 and possibly more for 12 are available for

selection. For our purposes, no discrete symmetry is needed to distinguish them. We have

chosen an SU(12) basis (a+ b), where the first number a in parenthesis refers to the number

of SU(5) boxes placed on top of the second remaining number b of SU(12)/SU(5) boxes in

the column of Young diagram boxes. If two columns are present in a diagram representing

higher dimensional irreps, the two pairs of numbers will be separated by a comma.

Singlet Higgs conjugate pairs can be selected from among:

(1)12H = (0 + 1), (1)12H = (5 + 6),

(1)66H = (0 + 2), (1)66H = (5 + 5),

(1)220H = (0 + 3), (1)220H = (5 + 4),

(1)495H = (0 + 4), (1)495H = (5 + 3),

(1)792H = (0 + 5) or (5 + 0), (1)792H = (5 + 2) or (0 + 7).

(7)
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For simplicity we shall assume that the VEVs of the SU(5) Higgs singlets chosen in each

model and their couplings to fermions are real and equal.

As emphasized earlier, a 24-plet Higgs, which must be present to break the SU(5) GUT

symmetry down to the SM, can not be part of the SU(12) adjoint 143 in the one-step

breaking of SU(12) to SU(5). Instead, we find it best to include the SU(5) adjoint in the

complex pair of (24)5148H and (24)5148H Higgs irreps which can develop VEVs at the

GUT scale. In fact, the SU(12) breaking of this 5148 and 5148 pair yields only one (24)

each, as can be seen from the following decomposition for the 5148,

5148→ (24) + 245(5) + 147(10) + 49(10) + 7(5) + 35(15) + 21(40) + 7(45) + 224(1), (8)

and similarly for the conjugate irrep. The (24) Higgs contributions are represented by

(24)5148H = (4 + 0, 1 + 0), (24)5148H = (4 + 7, 1 + 7). (9)

Because these irreps represent complex pairs, we shall also assume that their VEVs are

complex conjugates of each other and assign a common VEV to the quarks and a different

common VEV to the leptons. This can be accomplished if their VEVs point in the 2B − L

direction which is a linear combination of the λ15 and λ24 generators of SU(5):

2B − L = (5/12)
√

6λ15 + (1/4)
√

10λ24

= diag(2/3, 2/3, 2/3, −1, −1)
(10)

We then adopt the following notation for their VEVs:

〈(24)5148H〉 = (2B − L)κ, 〈(24)5148H〉 = (2B − L)κ∗, (11)

Hence this choice provides a ready way in which to introduce complex phases into the mass

matrices. The different VEVs generated from these Higgs fields will also prove useful to

break the down-quark and charged-lepton mass spectral degeneracy.

In addition, we need a Higgs singlet to give mass to the lefthanded conjugate neutrinos.

Since all families of such neutrinos are in SU(5) and SU(12) singlets, it is convenient to

introduce a (1)1H Higgs singlet for this purpose. A dim-4 vertex mass diagram then requires

that this Higgs singlet must change lepton number by two units, or ∆L = +2.

In general, two sets of Higgs doublets which remain light down to the EW scale where

they get VEVs can be formed from linear combinations of the 5’s and 5’s of SU(5):

a1(5)12H + a2(5)495H, and b1(5)12H + b2(5)495H. (12)
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In what follows in Sect. IV., it will become apparent that the (5)495H must develop an

EW VEV, while the (5)12H can get massive without requiring that it also develops an EW

VEV. The situation is not so clear-cut for an EW (5) VEV generated from the 495H or

12H Higgs. We shall consider both cases individually in our search for models and comment

later on the results.

Renormalizable dim-4 operators can be formed from three-point vertices involving two

fermions and a Higgs. This requires we identify the appropriate SU(5) and SU(12) singlet

vertices. For this purpose, Young diagram product rules must be applied at every vertex,

so that the SU(5) boxes are on top of the remaining SU(12)/SU(5) boxes. For example,

(10)220.(5)12.(5)495H = (2 + 7).(4 + 7).(4 + 0) = (2 + 7).(5 + 7, 3 + 0) = (5 + 7, 5 + 7) is a

proper SU(5)- and SU(12)-singlet vertex with two columns of 12 boxes with the 5 SU(5) boxes

on top; on the other hand, the product (10)792.(5)495.(5)12H = (2 + 3).(4 + 4).(4 + 7) is

not, for one can not carry out the product keeping the 5 SU(5) boxes on top of the remaining

7 SU(12) boxes in both columns without rearrangements.

Effective higher-dimensional operators can be formed by inserting Higgs and massive

fermions in tree diagrams. With SUSY valid at the SU(5) scale, loop diagrams are highly

suppressed. The massive intermediate fermion pairs at the SU(12) scale, which are formed

from complex irreps and are obviously anomaly-free, can be selected from among the

12× 12, 66× 66, 220× 220, 495× 495, 792× 792 (13)

pair insertions. In order to maintain the proper basis with the SU(5) boxes at the top of

the Young diagrams, the only proper contractions of interest here involve the following:

(1)12 × (1)12, (5)12 × (5)12,

(1)66 × (1)66, (10)66 × (10)66,

(1)220 × (1)220, (10)220 × (10)220,

(1)495 × (1)495, (5)495 × (5)495,

(1)792 × (1)792.

(14)

We can now proceed to construct the most general Higgs and Yukawa superpotentials

preserving R-parity, where the Higgs superfields and the matter superfields are assigned

R-parity +1. The Higgs superpotential with the three-point couplings involving all Higgs
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fields which appear in SU(12) has the following SU(5) and SU(12) singlet terms:

WHiggs = (1)12H.(1)12H + (1)66H.(1)66H + (1)220H.(1)220H + (1)495H.(1)495H

+ (1)792H.(1)792H + (24)5148H.(24)5148H + (5)12H.(5)495H.(24)5148H

+ (5)495H.(5)12H.(24)5148H + (5)12H.(5)495H.(1)792H

+ (5)495H.(5)12H.(1)792H + (1)12H.(1)12H.(1)66H + (1)12H.(1)66H.(1)220H

+ (1)12H.(1)220H.(1)495H + (1)12H.(1)495H.(1)792H + (1)66H.(1)66H.(1)495H

+ (1)66H.(1)220H.(1)792H + (1)66H.(1)792H.(1)792H + (1)66H.(1)12H.(1)12H

+ (1)220H.(1)495H.(1)792H + (1)220H.(1)66H.(1)12H + (1)495H.(1)220H.(1)12H

+ (1)495H.(1)66H.(1)66H + (1)792H.(1)495H.(1)12H + (1)792H.(1)220H.(1)66H

+ (1)792H.(1)792H.(1)66H + (1)792H.(1)495H.(1)220H

(15)

The corresponding Yukawa superpotential has the following structure:

WYukawa = W(24) +W(5) +W(5) +W(1), (16)

where

W(24) = (10)66.(10)220.(24)5148H + (10)220.(10)66.(24)5148H

+ (5)12.(5)495.(24)5148H + (5)495.(5)12.(24)5148H,

W(5) = (10)220.(10)66.(5)12H + (10)220.(5)495.(5)12H + (10)66.(5)12.(5)12H

+ (5)66.(1)12.(5)12H + (5)220.(1)66.(5)12H + (5)495.(1)220.(5)12H

+ (5)792.(1)495.(5)12H + (5)495.(1)792.(5)12H + (10)66.(10)66.(5)495H

+ (10)220.(5)12.(5)495H + (5)12.(1)792.(5)495H + (5)220.(1)792.(5)495H

+ (5)495.(1)495.(5)495H + (5)792.(1)220.(5)495H

+ (5)792.(1)12.(5)495H,

W(5) = (10)66.(10)66.(5)495H + (10)220.(5)12.(5)495H + (5)792.(1)12.(5)495H

+ (5)792.(1)220.(5)495H + (5)495.(1)495.(5)495H + (5)220.(1)792.(5)495H

+ (5)12.(1)792.(5)495H + (10)66.(10)220.(5)12H + (10)220.(5)495.(5)12H

+ (10)66.(5)12.(5)12H + (5)495.(1)792.(5)12H + (5)792.(1)495.(5)12H

+ (5)495.(1)220.(5)12H + (5)220.(1)66.(5)12H + (5)66.(1)12.(5)12H,
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W(1) = (10)220.(10)495.(1)12H + (10)220.(10)66.(1)12H + (10)220.(10)792.(1)66H

+ (10)495.(10)66.(1)66H + (10)792.(10)66.(1)220H + (10)220.(10)792.(1)495H

+ (10)220.(10)495.(1)792H + (10)792.(10)66.(1)792H + (10)66.(10)220.(1)792H

+ (10)220.(10)66.(1)792H + (10)495.(10)220.(1)792H + (10)66.(10)792.(1)792H

+ (10)792.(10)220.(1)495H + (10)66.(10)792.(1)220H + (10)792.(10)220.(1)66H

+ (10)66.(10)495.(1)66H + (10)495.(10)220.(1)12H + (10)66.(10)220.(1)12H

+ (5)495.(5)792.(1)12H + (5)66.(5)12.(1)12H + (5)220.(5)12.(1)66H

+ (5)495.(5)792.(1)220H + (5)495.(5)12.(1)220H + (5)495.(5)495.(1)495H

+ (5)792.(5)12.(1)495H + (5)495.(5)220.(1)792H + (5)12.(5)495.(1)792H

+ (5)495.(5)12.(1)792H + (5)220.(5)495.(1)792H + (5)495.(5)495.(1)495H

+ (5)12.(5)792.(1)495H + (5)792.(5)495.(1)220H + (5)12.(5)495.(1)220H

+ (5)12.(5)220.(1)66H + (5)792.(5)495.(1)12H + (5)12.(5)66.(1)12H

+ (1)12H.(1)12.(1)66 + (1)12H.(1)66.(1)220 + (1)12H.(1)220.(1)495

+ (1)12H.(1)495.(1)792 + (1)66H.(1)66.(1)495 + (1)66H.(1)220.(1)792

+ (1)66H.(1)792.(1)792 + (1)66H.(1)12.(1)12 + (1)220H.(1)495.(1)792

+ (1)220H.(1)66.(1)12 + (1)495H.(1)220.(1)12 + (1)495H.(1)66.(1)66

+ (1)792H.(1)495.(1)12 + (1)792H.(1)220.(1)66 + (1)792H.(1)792.(1)66

+ (1)792H.(1)495.(1)220 + (1)12.(1)12H.(1)66 + (1)12.(1)66H.(1)220

+ (1)12.(1)220H.(1)495 + (1)12.(1)495H.(1)792 + (1)66.(1)66H.(1)495

+ (1)66.(1)220H.(1)792 + (1)66.(1)792H.(1)792 + (1)66.(1)12H.(1)12

+ (1)220.(1)495H.(1)792 + (1)220.(1)66H.(1)12 + (1)495.(1)220H.(1)12

+ (1)495.(1)66H.(1)66 + (1)792.(1)495H.(1)12 + (1)792.(1)220H.(1)66

+ (1)792.(1)792H.(1)66 + (1)792.(1)495H.(1)220 + (1)12.(1)12.(1)66H

+ (1)12.(1)66.(1)220H + (1)12.(1)220.(1)495H + (1)12.(1)495.(1)792H

+ (1)66.(1)66.(1)495H + (1)66.(1)220.(1)792H + (1)66.(1)792.(1)792H

+ (1)66.(1)12.(1)12H + (1)220.(1)495.(1)792H + (1)220.(1)66.(1)12H

+ (1)495.(1)220.(1)12H + (1)495.(1)66.(1)66H + (1)792.(1)495.(1)12H

+ (1)792.(1)220.(1)66H + (1)792.(1)792.(1)66H + (1)792.(1)495.(1)220H.

With these ingredients in mind, we can now construct SU(12) models whose renormal-

izable and effective higher-dimensional operators determine the elements of the quark and

lepton mass matrices. The fitting procedure to be described later then allows us to deter-

9



mine which models are viable and acceptable in describing the quark and lepton mass and

mixing data.

IV. SU(12) MODEL CONSTRUCTION WITH EFFECTIVE OPERATORS

Starting with either the first or fourth anomaly-free sets of Eq. (5), we can assign SU(12)

irreps for the three SU(5) (10) family members defining the up quark mass matrix (MU),

the three (5) family members required in addition to define the down quark mass matrix

(MD), and the additional three singlets defining the Dirac neutrino (MDN) and Majorana

neutrino (MMN) mass matrices. Because of the greater arbitrariness in making these family

assignments for the fourth anomaly-free set, we shall concentrate our attention from now

on to the simplest first anomaly-free set of Eq. (5). The contributions to the matrix ele-

ments for the Yukawa matrices involving the up quarks (Uij), down quarks (Dij), charged

leptons (Lij), and Dirac neutrinos (DNij), as well as the Majorana matrix for the heavy

righthanded neutrinos (MNij), can arise from renormalizable dim-4 operators as well as

higher dimensional effective operators involving SU(5) (1) scalar singlets and (24) scalar

adjoints appearing in external lines, along with a (5) or (5) EW Higgs scalar in the case of

the Yukawa matrices. Each effective operator diagram must be constructed according to the

Young diagram multiplication rules illustrated in the previous section, where each vertex of

the diagram represents a term in the superpotential of Eq. (16).

A. Possible Sets of Assignments for the Chiral Fermion Families

We begin with the 33 component of the up quark Yukawa matrix (U33) and strive for a

dim-4 renormalizable contribution, as that will represent the largest source for the top quark

mass. Scanning through the four possible (10) matter families and (5) Higgs assignments

in Eqs. (6) and (12), it becomes clear that only one possibility exists for a proper 3-point

vertex singlet, namely,

U33 : (10)663.(5)495H.(10)663

= (2 + 0).(1 + 7).(2 + 0) = (5 + 7) ∼ (1)1.
(17)

For all other U matrix elements, the effective operators will be dim-5 or higher, with one

or more singlet and adjoint Higgs fields, as well as the (5)495H Higgs field attached to the
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fermion line. We shall assume the other (5)12H is inert and does not develop a VEV.

For the simplest anomaly-free set of Eqs. (3) and (5), the possible assignments of the

(10) family members are (10)495, (10)220, (10)663 and its permutation of the first and

second family assignments, along with (10)220, (10)220, (10)663. The three (5) family

members can then be selected from the four possibilities given in Eq. (6), consistent with the

anomaly-free set in question in Eq. (5). We list below the permissible (10) and (5) family

combinations,

(10)495, (10)220, (10)663; (5)220, (5)12, (5)12;

(10)220, (10)220, (10)663; (5)495, (5)12, (5)12,
(18)

where only one SU(5) family is assigned to each of the SU(12) irreps in the set. It is to be

understood that aside from the third (10) family member being associated with (10)663,

all permutations of the family assignments are allowed.

Since all the non-trivial SU(12) irreps in the set have already been assigned, the conjugate

lefthanded (or heavy righthanded) neutrinos must appear in stand alone SU(12) singlet

irreps, i.e., (1)1’s, one for each massive Majorana family: (1)11, (1)12, (1)13 with the

assumption of three families of righthanded singlet neutrinos.

B. Construction of the Mass Matrix Elements

We now have all the necessary ingredients to assemble the renormalizable and effective

operator contributions to the four Dirac and one Majorana mass matrices. We begin the

actual mass matrix constructions with the U matrix where, as noted earlier, the only suitable

dim-4 contribution arises for the 33 element which involves the (5)495H EW Higgs, which

we repeat here,

U33 : (10)663.(5)495H.(10)663. (19)

In order to obtain an appropriate hierarchy for the Uij mass matrix elements, all other

matrix elements must arise from dim-5 or higher contributions involving the (5)495H and

at least one singlet or adjoint Higgs field, and one or more massive fermion pairs. From

the structure of the MU matrix which involves only light (10) SU(5) chiral fermion families,

it is clear that only (10) and (10) massive fermions can contribute in the intermediate

states. From Eq. (14) it is then obvious that the only possible mass insertions will involve
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(10)66 × (10)66 and/or (10)220 × (10)220 irreps. As for the Higgs singlet vertices or

those involving a Higgs (24), these will be determined by the list of Higgs fields considered,

the light fermion families involved, and the proper Young diagram product rules explained

earlier. In any case, we retain only the lowest-order contributions to each matrix element.

We now turn to the MD mass matrix which connects the (10) lefthanded down quarks

and the (5) lefthanded conjugate quarks with either the (5)495H or (5)12H EW Higgs.

The same considerations will apply to the ML mass matrix connecting the (5) lefthanded

charged leptons and the (10) lefthanded charged conjugate leptons, where the diagrams are

the transpose of those for the down quarks. Whether or not dim-4 contributions appear in

these mass matrices depends on which of the two possible down-type Higgs are chosen for

the models to be illustrated, (5)495H or (5)12H, as well as the light family assignments. In

the first instant, a dim-4 vertex may be present involving

Dij : (10)220i.(5)495H.(5)12j, (20)

while in the second instance, a dim-4 vertex may be present involving either of the two

possibilities
D3j : (10)663.(5)12H.(5)12j,

Dij : (10)220i.(5)12H.(5)495j.
(21)

The transverse conditions apply for the corresponding Lji Yukawa matrix elements.

Higher dimensional contributions can involve not only (10) and (10) intermediate states

as for the MU mass matrix, but also (5) and (5) states. Again from Eq. (14), we see the

latter choices are just (5)12 × (5)12 and (5)495 × (5)495. The same considerations as in

the previous paragraphs also apply for the (1) and (24) Higgs vertices.

For the MDN mass matrix connecting the SU(5) (5) lefthanded neutrinos with the (1)

lefthanded conjugate neutrinos, we assume that the same (5)495H EW Higgs is involved as

for the up quark sector. A dim-4 contribution to the MDN mass matrix is possible, if one of

the (5) family states arises from the 495 as in the second family assignment of Eq. (18), but

not so otherwise. For the higher dimensional contributions to the MDN mass matrix, the

massive fermion insertions involve the same (5) and (5) possibilities as for the MD and ML

mass matrices. As with the other three Dirac matrices, singlet (1) and adjoint (24) Higgs

scalars can appear in the MDN matrix elements.

Finally, for the MMN heavy righthanded Majorana mass matrix, since only (1)1 fermion
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singlets are involved, any mass insertions must involve only (1) singlets. This fact then

negates the appearance of (24)5148H or (24)5148H Higgs contributions which would allow

complex VEVs. Hence the Majorana matrix in all models discussed here will be real. The

simplest dim-4 mass contribution is then given by

MNij : (1)1i.(1)1H.(1)1j (22)

for all i and j. Note that this Higgs singlet must carry lepton number L = 2, in order

to balance the two L = −1 lefthanded conjugate neutrino assignments. When this Higgs

singlet obtains a VEV, L is broken by two units, and the Majorana mass matrix element

obtains a mass ΛR. The mass matrix then corresponds to a democratic matrix, aside from

O(1) prefactors which make the matrix non-singular.

In general, a restricted set of Higgs singlets and/or massive fermions may provide just

one contribution to each mass matrix element. Allowing more and more Higgs singlets and

massive fermion insertions may lead to many contributions of the same, higher, or even

lower order for certain matrix elements. Since only the lowest-dimensional contributions per

matrix element are of interest, the more contributing tree diagrams that appear, the flatter

the hierarchy will tend to be for any given mass matrix.

C. Illustrated Structure for One Model of Interest

We have selected one model leading to interesting mixing results as a way of illustrating

the steps involved to form the mass matrices and their consequent mixing matrices and

mixing parameters. The model in question has the following family structure, massive

fermions, and Higgs fields:

First Family: (10)4951 → uL, u
c
L, dL, e

c
L; (5)2201 → dcL, eL, νeL; (1)11 → N c

1L

Second Family: (10)2202 → cL, c
c
L, sL, µ

c
L; (5)122 → scL, µL, νµL; (1)12 → N c

2L

Third Family: (10)663 → tL, t
c
L, bL, τ

c
L; (5)123 → bcL, τL, ντL; (1)13 → N c

3,L

(23)

Massive fermions: 12×12, 66×66, 220×220, 495×495, 792×792

Higgs bosons: (5)495H, (5)12H, (24)5148H, (24)5148H, (1)1H,

(1)66H, (1)66H, (1)792H, (1)792H

(24)
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From the above irreps appearing in the model, we can construct the leading-order con-

tributions to each Yukawa matrix element. The complete list for this model is presented in

Appendix B. for the U, D, L, DN, and MN matrix elements. For the U Yukawa matrix,

dimensional contributions of order 4, 5, and 6 are found to appear, which are scaled accord-

ing to the ratios 1 : ε : ε2, where ε is related to the ratio of the SU(5) scale to the SU(12)

scale. More precisely, ε is set equal to the ratio of a singlet VEV, times its fermion coupling,

divided by the SU(12) unification scale where the massive fermions obtain their masses. The

5 and 5̄ EW VEVs are labeled vu and vd, respectively, while the (1)1H ∆L = 2 VEV is set

equal to ΛR. The VEVs for (24)5148H and (24)5148H involve κ and κ∗, respectively, as

noted earlier in Eq. (11).

The five mass matrices for the model in question then are found to have the following

textures:

MU =


hu

11ε
2 hu

12(ε2 − 2κε
3

) hu
13ε

hu
21(ε2 + 2κε

3
) hu

22(ε2 − 4κ2

9
) hu

23(ε+ 2κ
3

)

hu
31ε hu

32(ε− 2κ
3

) hu
33

 vu,

MD =


2hd

11ε
2 hd

12ε hd
13ε

hd
21ε 2hd

22ε 2hd
23ε

hd
31ε hd

32 hd
33

 vd,

ML =


2h`11ε

2 h`12ε h`13ε

h`21ε 2h`22ε h`23

h`31ε 2h`32ε h`33

 vd,

MDN =


2hdn

11ε 2hdn
12ε 2hdn

13ε

hdn
21 (2ε− κ) hdn

22 (2ε− κ) hdn
23 (2ε− κ)

hdn
31 (2ε− κ) hdn

32 (2ε− κ) hdn
33 (2ε− κ)

 vu,

MMN =


hmn

11 hmn
12 hmn

13

hmn
21 hmn

22 hmn
23

hmn
31 hmn

32 hmn
33

ΛR.

(25)

The corresponding h’s are the prefactors to be determined numerically and are all required

to lie in the range ±[0.1, 10] to achieve a satisfactory model that avoids fine tuning. Note

that MU exhibits a hierarchical structure, MDN and MMN do not, while MD and ML have
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no simple hierarchical structure.

V. MODEL SCAN AND FITTING PROCEDURE

In this section we explain the aforementioned computerized model scan in more detail.

The scan determines anomaly-free sets of family assignments for SU(N) irreps and scans

possible unification models by adding EW Higgs fields and SU(5) Higgs singlets, as well as

sets of massive fermions in a systematic way. The scan is built on top of LieART for the

determination of tensor products extended to handle products of embeddings as described in

Sect. III. Potential models are fit to phenomenological particle data, such as masses, mixing

angles and phases, to analyze their viability. The scan is not restricted to SU(12) or a specific

anomaly-free set of family assignments as discussed in this article, but we found SU(12) to

be the lowest rank yielding realistic models not requiring discrete group extensions of the

symmetry, and its lowest anomaly-free set of irreps is maximally economical as it assigns all

SU(12) irreps to SU(5) family irreps.

A pure brute-force scan of all possible family assignments and sets of Higgs and mas-

sive fermions has proven impractical due to the enormous number of possible combinations.

Instead, we break up the full number of combinations into independent parts that are orga-

nized in enclosed loops: (1) Fermions embedded in 10’s of SU(5), which include all up-type

quarks, are first assigned to suitable chiral irreps of the SU(12) anomaly-free set and prove

sufficient to construct the MU mass matrix, once the sets of Higgs and massive fermion ir-

reps are defined. (2) Likewise, assignment of fermions embedded in 5 of SU(5) complete the

quark and charged lepton sectors and allows one to compute the MD and ML mass matrices

and thus the CKM matrix. We fit the MU, MD and ML mass matrix prefactors and four

of the model parameters to the known quark masses and mixing angles, as well as charged

lepton masses, at the GUT scale according to [21]. (3) Only for viable quark models do we

loop over assignments of SU(12) irreps embedding SU(5) singlets as Majorana neutrinos.

These assignments allow the construction of the MDN and MMN mass matrices and thus a

fit to the lepton sector phenomenology. To this end we fit the MDN and MMN prefactors, as

well as the righthanded scale ΛR, to the known neutrino mass squared differences and two

PMNS mixing angles. The MU, MD and ML prefactors and all other parameters from the

quark sector remain fixed as determined by the first fit to avoid the variation of too many
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fit parameters at once. The lepton sector fit is performed twice: one favoring normal and

the other inverted hierarchy of the light neutrino masses. Further details follow below.

A. Scan of Assignments

First, a list of anomaly-free sets of totally antisymmetric SU(N) irreps that yield three

families on the SU(5) level is constructed, where N > 5. The list is ordered by the total

number of SU(N) irreps in the sets and, since there is an infinite number of anomaly-free

sets, is cut off at some chosen maximum. For SU(12) a list of the simpler anomaly-free sets

has been given in (3). In looping over this list, the scan performs family assignments only

for irreps from one set at a time to ensure freedom from anomalies.

For each anomaly-free set the scan loops over the SU(12) irreps containing 10’s of SU(5)

for the assignment of the three up-type quarks to construct theMU mass matrix. In terms of

Young tableaux the 10’s are embedded in the upper part of the column for the SU(12) irreps,

i.e., the regular embedding. Similarly, the scan loops over the SU(12) irreps containing 5’s

of SU(5) for the assignment of the three down-type quarks and leptons in a later step.

In a third loop the scan constructs subsets of possible assignments of EW Higgs doublets,

SU(5) Higgs singlets, and massive fermion pairs. Both, the SU(12) Higgs irreps and the

massive fermion pairs are selected from all totally antisymmetric complex irreps with the

SU(5) EW Higgs and Higgs singlet irreps being regularly embedded. For our special SU(12)

scenario at hand we add the (24)5148H and (24)5148H to accommodate a CP phase and to

abet the breaking of SU(5) to the SM. To reduce the number of Higgs sets from the beginning,

we keep only those EW Higgses that yield a dim-4 mass term for the U33 element with

the selected third-family fermion assignment, i.e., the largest contribution to the top-quark

mass term at lowest order, as pointed out in Sect. IVB. For the simple anomaly-free set of

SU(12) the only possible U33 at dim 4 using the regular embedding is given in expression

(17). The loop over Higgs and massive-fermion-pair subsets starts with the smallest set of

Higgses and massive fermions increasing to larger ones. Limits on the subset size can be

imposed to focus on economical models.

With the assignments of the SU(12) irreps containing the 10’s of SU(5), the 5H’s asso-

ciated with EW doublets, and SU(5) Higgs singlets, as well as massive fermions assigned

to SU(12) irreps, the U matrix elements can be constructed. For a given set of fermion,
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Higgs and massive-fermion assignments determined by the iteration of the enclosing loops,

the scan tries to construct diagrams for each matrix element beginning with a minimum,

dim-4 or higher. If none is found at some dimension, it tries a higher dimension up to an

adjustable upper limit. If one or more diagrams for a given dimension is found, the scan

will turn to the next matrix element. Thus, only the lowest order contribution is taken into

account. The algorithm allows one to set a range of admissible dimensions for each matrix

element, e.g., the U11 element must not be of dimension 4 or 5, but may be of dimension

6 or 7. It is also possible to allow for no contribution up to a maximum dimension, i.e.,

there may be no contribution at all amounting to a texture zero or a contribution of an

even higher dimension, which is not analyzed further. A mass-term diagram is constructed

from Higgs and massive fermion insertions depending on its dimension. The validity of the

constructed mass-term diagrams is ensured if all vertices are singlets on their own at both

the SU(12) and SU(5) levels and under application of the Young-tableaux multiplication

rules. A mass-term diagram can then be translated to powers of ε and κ according to the

orders of singlet VEVs and VEVs of (24)5148H and (24)5148H, respectively.

WithMU mass matrices matching the desired texture set by the dimension requirements,

the MD mass matrix is constructed from subsets of three unassigned irreps of the anomaly-

free set containing 5’s of SU(5), looping over the regular embedding. The construction of

the mass matrix elements is analogous to that for the MU mass matrix. The ML matrix can

be constructed from the reverse of the D matrix element diagrams. With the MD and ML

matrices constructed, all assignments of the quark and charged lepton sectors are fixed.

We fit the quark sector and the charged leptons to phenomenological data run to the

GUT scale taken from [21]. The description of this fit and the lepton sector fit is deferred

to the next section. Since the quark sector is fully determined without the assignment of

lefthanded conjugate Majorana neutrinos, we detach quark and lepton sector fits, to avoid

fitting seemingly complete models where the quark sector itself does not reproduce SM

phenomenology.

For models with quark and charged lepton sectors determined to be viable by the fit, a

last loop over subsets of irreps assigned to Majorana neutrinos is performed. This requires

SU(12) irreps containing SU(5) singlets. They are taken from unassigned irreps of the

anomaly-free set or from additional SU(12) singlets, since they do not need to be chiral.

The MDN and MMN matrices are constructed in analogy with the MU and MD matrices.
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Once they are known, the lepton sector can be fit as well using the fit results of the quark

sector performed in the stage prior to the assignment of Majorana neutrinos.

B. Quark and Lepton Sector Fits

Now we return from a more general description of the scanning procedure to our specific

model setup to describe the separate quark and lepton sector fits to phenomenological data

using the simplest anomaly-free set of SU(12) and the addition of (24)5148H and (24)5148H

scalars with complex valued VEVs introducing a source of CP violation.

1. Quark Sector Fit

The MU, MD, and ML matrices enter the quark and charged lepton fit in terms of their

prefactors hu
ij, hd

ij and h`ij, powers of ε related to the SU(5) singlet VEVs appearing, and

the complex-valued VEVs of (24)5148H and (24)5148H involving κ and κ∗, respectively.

The two EW VEVs of the 2-Higgs-Doublet-Model are labeled vu and vd, with only one

independent and chosen to be vu since v2 = v2
u + v2

d must give v = 174GeV. Because

(24)5148H and (24)5148H give different contributions to the MD and ML mass matrices

according to (11) and asymmetric contributions to theMU matrix, we refrain from imposing

any symmetries on the prefactors and allow them to remain independent parameters. Thus,

we have 27 real prefactors (9 per mass matrix), one real ratio ε, one complex ratio κ, and

the EW VEV vu, yielding a total of 31 parameters for the quark sector fit.

As initial values of the fit parameters we choose ε=|κ| = 1/6.52=0.0237, motivated by

[22], arg(κ) = 45◦ and vu =
√
v2/(1 + ε2), where v = 174GeV. The choice of unity for all

initial values of the prefactors leads to cancellations in the matrix diagonalizations, thus

resulting in fine tuning. Hence, we choose to set initial prefactor values randomly in the

intervals [−1.3,−0.7] and [0.7, 1.3]. Models with any prefactor fit to absolute values lower

than |0.1| or higher than |10| are discarded. Fits with other randomly assigned prefactor

initial values for such a model are tried until we either find a successful fit, or after a certain

number of trials have been performed without success, we discard the model.

We perform the fit against phenomenological data at the SU(5) unification scale using

values for the six quark and three charged lepton masses from [21]. We use the measured
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values of the three quark mixing angles and phase. The renormalization group flow of the

CKM matrix is governed by the Yukawa couplings, which are small except for the top quark.

According to [23] the running of the matrix elements of the first two families is negligible

and small for the third family. Thus we have neglected the running of the quark mixing

angles and phase. In total we use 13 phenomenological data points.

The phenomenological implications of the models are compared with data by diagonal-

izing the mass matrices to obtain the quark and charged lepton masses and determine the

CKM matrix from the unitary transformations diagonalizing MU and MD. By transforming

the CKM matrix into the standard parametrization, the three mixing angles and the CKM

phase are easily obtained, as we explain in the following.

Since the Dirac matrices MU, MD and ML are generally not Hermitian, we form their

lefthanded Hermitian products and diagonalize them with lefthanded rotations to obtain

positive real eigenvalues as squares of the corresponding masses:

U †UMUM
†
UUU = diag(m2

u,m
2
c ,m

2
t ),

U †DMDM
†
DUD = diag(m2

d,m
2
s,m

2
b),

U †LMLM
†
LUL = diag(m2

e,m
2
µ,m

2
τ ).

(26)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM encodes the mismatch of the mass

and flavor eigenstates of the up- and down-type quarks and is calculated from the unitary

transformations UU and UD:

VCKM = U †UUD. (27)

The CKM matrix in standard parametrization of the Particle Data Group [24] with cij =

cos θij and sij = sin θij is given by

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (28)

A CKM matrix obtained by (27) can be brought into standard form by redefining five

relative phases of quark fields, that are unphysical, or by extracting the three angles and

the phase directly. The angles can be obtained from

θ12 = arctan

(
|V12|
|V11|

)
, θ23 = arctan

(
|V23|
|V33|

)
and θ13 = arcsin (|V13|) . (29)
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To determine the phase we perform a phase rotation of columns one and two such that V ′11

and V ′12 become real, where the prime denotes the rotated columns. We equate the quotient

of the V ′22 and V ′21 elements with the corresponding expression in the standard form

r =
V ′22

V ′21

=
V22

V21

ei(φ11−φ12) =
c12c23 − s12s23s13eiδ

−s12c23 − c12s23s13eiδ
, (30)

where φ11 and φ12 are the phases of V11 and V12, respectively, and solve for the phase δ

yielding

δ = arg

(
c12c23 + rs12c23

s12s23s13 − rc12s23s13

)
. (31)

2. Lepton Sector Fit

Only quark models with a reasonably good fit are extended to include assignments of

the lefthanded conjugate Majorana neutrinos in a loop over all their possibilities. For the

simplest anomaly-free SU(12) model of interest here, since all six non-trivial irreps have been

assigned to the SU(5) 10 and 5 family irreps, the three heavy neutrinos are all assigned

to SU(12) singlets. The MDN and MMN matrices are then determined, and the complex

symmetric light-neutrino mass matrix is obtained via the Type I seesaw mechanism,

Mν = −MDNM
−1
MNM

T
DN. (32)

By convention, the complex symmetric Mν matrix is to be diagonalized by the unitary

transformation

UT
ν MνUν = diag(m1,m2,m3), (33)

to yield positive real eigenvalues mi. This requires a very special unitary Uν transformation,

for in general the eigenvalues will be complex. To acquire the desired result, we form the

Hermitian product M †
νMν and perform the unitary transformation by using (33),

U †νM
†
νMνUν = diag(m2

1,m
2
2,m

2
3), (34)

to obtain positive real eigenvalues, m2
i , and the transformation matrix Uν . Clearly, Eq. (34)

is invariant to a phase transformation Φ from the right together with its conjugate phase

transformation from the left. We now define U ′ν = UνΦ
′ to be the special unitary transfor-

mation, operating on Mν as in Eq. (33), which makes the neutrino mass eigenvalues real for

the appropriate diagonal phase matrix Φ′. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
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matrix [25], VPMNS, follows from U ′ν and the unitary transformation UL diagonalizing the

charged lepton mass matrix ML, according to

VPMNS = U †LU
′
ν . (35)

The PDG phase convention [24] for the neutrino mixing matrix UPMNS follows by phase

transforming the left- and right-hand sides of VPMNS and then writing

VPMNS ≡ UPMNSΦMajorana, (36)

where ΦMajorana = diag(eiφ1/2, eiφ2/2, 1) with Majorana phases φ1 and φ2 is the adjoint of the

required righthanded phase transition matrix, so effectively U ′ν is left untransformed from

the right. The neutrino mixing angles and Dirac phase are determined in analogy with the

CKM matrix.

To accomplish the phase transformations of Eq. (35) in detail, we follow the procedure

as for VCKM in Eqs. (29) – (31) to obtain UPMNS in the PDG convention. To restore the

correct untransformed U ′ν as appears in (35), we then multiply by Φ† on the right to obtain

Eq. (36) with ΦMajorana = Φ†.

The effective mass |〈mee〉| for neutrinoless double beta decay [24] follows from Eq. (36)

according to

|〈mee〉| = |Σi (VPMNS,ei)
2mi|, i = 1, 2, 3. (37)

This assumes that the light neutrino masses are the major contributors to the corresponding

loop diagrams for the effective mass contribution to neutrinoless double beta decay [26].

We fit the lepton sector with recent neutrino data [27] for the mass squared differences

of the light neutrinos |∆21|, |∆31| and |∆32| and the sines squared of the neutrino mixing

angles, sin2 θ12 and sin2 θ13. We do not fit to the Dirac CP phase or sin2 θ23, but discard

models that are not within the bounds of 0.34 ≤ sin2 θ23 ≤ 0.66, since values from current

global fits of neutrino data can only provide this range or smaller. In total we fit to five

data points. Since the MMN matrix is symmetric, and involves the righthanded scale ΛR

as an additional parameter and the MDN matrix is not symmetric, the lepton sector fit

encompasses 16 fit parameters. Initial values for the prefactors are chosen in analogy to the

quark sector fit, and we set the initial value of the righthanded scale to ΛR = 4× 1014 GeV.

Models with prefactors not within the range ±[0.1, 10] are discarded and refit with other

randomly assigned prefactors, as was done for the fits of quark sector models. The leptonic
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fits for satisfactory models are carried out favoring first normal hierarchy (NH) and then

inverted hierarchy (IH). In some cases, satisfactory models for both hierarchies can be

obtained with the same set of mass matrix textures, but with different sets of prefactors of

course.

Quark and Lepton Data Fitted Results

mu (MeV) 0.3963 ± 0.1395 0.3950

mc (GeV) 0.1932 ± 0.0243 0.1932

mt (GeV) 80.4472 ± 2.7643 80.45

md (MeV) 0.9284 ± 0.3796 0.9143

ms (MeV) 17.6097 ± 4.7855 17.60

mb (GeV) 1.2424 ± 0.0599 1.243

me (MeV) 0.3569 ± 0.0003 0.3509

mµ (MeV) 75.3570 ± 0.0713 75.42

mτ (GeV) 1.6459 ± 0.0160 1.646

θq12 13.04 ± 0.05◦ 13.04◦

θq23 2.38 ± 0.06◦ 2.381◦

θq13 0.201 ± 0.011◦ 0.2037◦

δq 68.75 ± 4.584◦ 68.76◦

∆21 (10−5eV 2) 7.50 ± 0.18 7.4

|∆31| (10−3eV 2) 2.45 ± 0.047 2.5 (2.4)

|∆32| (10−3eV 2) 2.45 ± 0.047 2.4 (2.5)

sin2 θ12 0.304 ± 0.012 0.304

sin2 θ13 0.0218 ± 0.001 0.0218

Table I: Phenomenological data with masses at the GUT scale and fitted model results for the

special case illustrated. The NH (IH) results are indicated without (with) parentheses for |∆31| and

|∆32|. The quark data are taken from Ref. [21] and the neutrino data from [27].
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C. Fitting Results for Special Case Illustrated

We begin with the known data, evaluated at the SU(5) GUT scale, which will be fitted

with the five model parameters and prefactors for the five mass matrices. For the quark

and charged lepton sectors, this consists of the nine masses and three CKM mixing angles

and one phase listed in Table I. For the lepton sector, we make use of the three neutrino

mass squared differences and two of the three neutrino mixing angles which are also given

in Table I. The unknown neutrino quantities then involve the mass hierarchy (MH), the

righthanded Majorana scale ΛR fit parameter, the light and heavy neutrino masses, the

octant and values of sin2 θ23 and δ, along with the Majorana phases, and the effective

neutrinoless double beta decay mass.

Following the above scanning and fitting procedures for the special case illustrated

in Sect. IV C., the following matrices have been obtained in terms of the parameters

ε, κ, κ∗, vu, vd, ΛR with the prefactors indicated explicitly. For the quark and charged

lepton mass matrices the results obtained are

MU =


−0.47ε2 0.48(ε2 − 2κε

3
) 0.28ε

−1.0(ε2 + 2κε
3

) 1.9(ε2 − 4κ2

9
) 0.61(ε+ 2κ

3
)

0.67ε 2.5(ε− 2κ
3

) −0.46

 vu,

MD =


−2.8ε2 1.1ε 0.15ε

0.84ε 5.3ε 0.2ε

−1.3ε −0.97 −0.15

 vd,

ML =


1.8ε2 0.85ε −1.2ε

0.55ε 4.6ε 0.37

−0.91ε −1.3ε −1.3

 vd,

(38)

with the parameters found to be ε = 0.01453, κ = 0.02305 ei27.53◦ , vu = 174 GeV, vd =

1.262 GeV.

It turns out for this special model, both NH and IH solutions can be found. With the
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parameters determined as above, the two sets of neutrino mass matrices are given by

MNH
DN =


−1.6ε 1.5ε 3.3ε

−1.5(2ε− κ) 0.43(2ε− κ) 0.76(2ε− κ)

−1.9(2ε− κ) 0.7(2ε− κ) −1.9(2ε− κ)

 vu,

MNH
MN =


0.94 −1.1 −0.16

−1.1 1.5 1.3

−0.16 1.3 −0.38

ΛNH
R .

(39)

for NH and by

M IH
DN =


−2.8ε 2.4ε −1.9ε

1.3(2ε− κ) 1.3(2ε− κ) 0.78(2ε− κ)

1.7(2ε− κ) 1.6(2ε− κ) −1.6(2ε− κ)

 vu,

M IH
MN =


−1.2 0.26 −0.4

0.26 0.62 2.0

−0.4 2.0 0.61

ΛIH
R .

(40)

for IH, where ΛNH
R = 1.5× 1012 GeV and ΛIH

R = 1.3× 1012 GeV.

For the NH case the unknown neutrino mixing parameters and masses are determined to

be

sin2 θ23 = 0.460, δ = −121◦, φ1 = −219◦, φ2 = −67.4◦, |〈mee〉| = 2.45 meV

m1 = 2.76 meV, m2 = 9.03 meV, m3 = 50.0 meV,

M1 = 5.86× 1011 GeV, M2 = 1.76× 1012 GeV, M3 = 4.35× 1012 GeV,

(41)

while for the IH case,

sin2 θ23 = 0.600, δ = −50.2◦, φ1 = −319◦, φ2 = 12.8◦, |〈mee〉| = 47.2 meV,

m1 = 49.3 meV, m2 = 50.0 meV, m3 = 3.39 meV,

M1 = 1.06× 1012 GeV, M2 = 2.26× 1012 GeV, M3 = 3.33× 1012 GeV.

(42)

VI. RESULTS FOR ACCEPTABLE MODELS

We now present the results for acceptable SU(12) neutrino mixing models obtained with

the scanning and fitting procedures outlined in Sect. V. While in general we noted that two

sets of EW Higgs doublets are available for giving Dirac masses to the quarks and leptons,
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(5)12H and (5)495H for the up-type quarks and Dirac neutrinos, and (5)12H and (5)495H

for the down-type quarks and charged leptons, only the Higgs doublet in the (5)495H could

provide a dim-4 contribution to the top quark mass. Thus for simplicity we considered the

(5)12H to contain an inert doublet and to be of no further interest. On the other hand, both

irreps leading to (5) doublets seemed to be possible contributers to the EW VEVs of the

down-type quarks and charged leptons. But the full scan results to be displayed below have

shown that only the (5)12H appeared in successful models for the simplest anomaly-free set.

Hence it suggests that we also consider the (5)495H to contain an inert Higgs doublet.

Concerning the permissible family assignments for the three (10)’s and the three (5)’s

displayed in Eq. (18), along with their permutations, no satisfactory model appeared in-

volving the second (10) assignment, (10)2201, (10)2202, (10)663. The family assignments

leading to acceptable models are labeled I and II for the two remaining (10) choices,

I : (10)4951, (10)2202, (10)663

II : (10)2201, (10)4952, (10)663

(43)

and A, B, and C for the three (5) permutations,

A : (5)121, (5)122, (5)2203

B : (5)121, (5)2202, (5)123

C : (5)2201, (5)122, (5)123

(44)

Table II gives a summary of the models found acceptable by the scanning and fitting pro-

ceedure where the types of models are numbered according to their massive fermion content

labeled MF1, MF2, etc. and their Higgs structure. For simplicity only the irreps are given

with their conjugate irreps understood to be included. The Higgs irreps include (5)495H,

(5)12H, the ∆L = 2 Higgs singlet (1)1H, (24)5148H and (24)5148H in all models. In addi-

tion, it is found that proper models can be constructed either with the minimum number of

Higgs singlets (1)792H and (1)792H in a few cases, or with these singlets plus the (1)66H

and (1)66H pair in the majority of cases as indicated in the Table. In fact, while seven other

sets of Higgs singlets can be added to each model, the results are unmodified, for diagrams

including those additional Higgs irreps all occur with higher-dimensional contributions to

the matrix elements which we choose to neglect. On the other hand, additional 792 and

792 fermions will add extra contributions to the (DNij) Yukawa matrix elements.

25



Family Assignments: I. (10): 4951, 2202, 663 II. (10): 2201, 4952, 663

A. (5): 121, 122, 2203 B. (5): 121, 2202, 123 C. (5): 2201, 122, 123

Run MF1 MF2 MF3 MF4 MF5 (1)Higgs ε κ arg(κ)

IA1: 1 66 220 495 66, 792 -0.0117 0.0436 35.8◦

IA1: 2 66 220 495 792 -0.0470 0.0241 −119◦

IA1: 5 66 220 495 66, 792 -0.0062 0.0464 −164◦

IA2: 1 66 220 495 792 66, 792 -0.0117 0.0436 35.8◦

IA2: 2 66 220 495 792 792 -0.0470 0.0241 −119◦

IA2: 5 66 220 495 792 66, 792 -0.0062 0.0464 −164◦

IA3: 1 12 66 495 66, 792 0.0042 0.0268 76.3◦

IA3: 3 12 66 495 66, 792 -0.0111 0.0070 43.1◦

IA4: 3 12 66 495 792 66, 792 -0.0111 0.0070 43.1◦

IA4: 4 12 66 495 792 66, 792 -0.0077 0.0383 −15.0◦

IA5: 3 12 66 220 495 66, 792 0.0177 0.0742 −171◦

IA5: 5 12 66 220 495 66, 792 0.0114 0.0170 −112◦

IA6: 1 12 66 220 495 792 66, 792 -0.0117 0.0061 40.1◦

IA6: 3 12 66 220 495 792 66, 792 0.0177 0.0742 −171◦

IA6: 5 12 66 220 495 792 66, 792 0.0114 0.0170 −112◦

IB1: 4 66 220 495 66, 792 -0.0051 0.0245 −128◦

IB1: 5 66 220 495 66, 792 0.0116 0.0155 56.6◦

IB2: 4 66 220 495 792 66, 792 -0.0051 0.0245 −128◦

IB2: 5 66 220 495 792 66, 792 0.0116 0.0155 56.6◦

IB3: 4 12 66 495 66, 792 -0.0087 0.0060 119◦

IB4: 1 12 66 495 792 66, 792 -0.0094 0.0230 121◦

IB4: 4 12 66 495 792 66, 792 -0.0087 0.0060 119◦

IB5: 5 12 66 220 495 66, 792 -0.0125 0.0124 121◦

IB6: 3 12 66 220 495 792 792 -0.0244 0.1430 10.2◦

IB6: 5 12 66 220 495 792 792 -0.0125 0.0124 121◦
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Run MF1 MF2 MF3 MF4 MF5 (1)Higgs ε κ arg(κ)

IC1: 1 66 220 495 66, 792 0.0174 0.0262 −130◦

IC1: 4 66 220 495 66, 792 0.0064 0.0272 −97.1◦

IC1: 5 66 220 495 66, 792 -0.0125 0.0080 52.8◦

IC2: 1 66 220 495 792 66, 792 0.0174 0.0263 −130◦

IC2: 4 66 220 495 792 66, 792 0.0064 0.0272 −97.1◦

IC2: 5 66 220 495 792 66, 792 -0.0125 0.0080 52.8◦

IC3: 1 12 66 495 66, 792 -0.0088 0.0381 13.4◦

IC3: 2 12 66 495 66, 792 -0.0066 0.0327 29.6◦

IC3: 3 12 66 495 66, 792 -0.0079 0.0317 18.8◦

IC3: 5 12 66 495 66, 792 -0.0105 0.0035 61.8◦

IC4: 1 12 66 495 792 66, 792 -0.0088 0.0381 13.4◦

IC4: 2 12 66 495 792 66, 792 -0.0066 0.0327 29.6◦

IC4: 3 12 66 495 792 66, 792 -0.0079 0.0317 18.9◦

IC4: 5 12 66 495 792 66, 792 -0.0105 0.0035 61.8◦

IC5: 1 12 66 220 495 66, 792 -0.0149 0.0357 16.7◦

IC5: 4 12 66 220 495 66, 792 0.0145 0.0231 27.5◦

IC6: 1 12 66 220 495 792 66, 792 -0.0149 0.0357 16.8◦

IC6: 4 12 66 220 495 792 66, 792 0.0145 0.0231 27.5◦

IIA1: 2 66 220 495 66, 792 -0.0026 0.0138 77.2◦

IIA1: 4 66 220 495 66, 792 -0.0103 0.0154 58.4◦

IIA2: 2 66 220 495 792 66, 792 -0.0026 0.0138 77.2◦

IIA2: 4 66 220 495 792 66, 792 -0.0103 0.0154 58.4◦

IIA3: 1 12 66 495 66, 792 -0.0150 0.0337 −9.1◦

IIA3: 2 12 66 495 66, 792 -0.0139 0.0087 60.8◦

IIA3: 3 12 66 495 66, 792 0.0119 0.0396 170◦

IIA3: 5 12 66 495 66, 792 0.0157 0.0312 −132◦

IIA4: 1 12 66 495 792 66, 792 -0.0150 0.0337 −9.1◦

IIA4: 2 12 66 495 792 66, 792 -0.0139 0.0087 60.8◦

IIA4: 3 12 66 495 792 66, 792 0.0158 0.0274 84.6◦

IIA4: 5 12 66 495 792 66, 792 0.0119 0.0396 170◦

IIA5: 1 12 66 220 495 66, 792 -0.0113 0.0334 9.3◦

IIA5: 3 12 66 220 495 66, 792 -0.0125 0.0080 79.7◦

IIA6: 1 12 66 220 495 792 66, 792 -0.0113 0.0334 9.3◦

IIA6: 2 12 66 220 495 792 66, 792 0.0079 0.0129 37.7◦

IIA6: 3 12 66 220 495 792 66, 792 -0.0125 0.0080 79.7◦

IIA6: 4 12 66 220 495 792 66, 792 0.0067 0.0225 −124◦

27



Run MF1 MF2 MF3 MF4 MF5 (1)Higgs ε κ arg(κ)

IIB1: 3 66 220 495 66, 792 0.0074 0.0719 52.3◦

IIB2: 3 66 220 495 792 792 0.0318 0.0282 65.7◦

IIB2: 3 66 220 495 792 66, 792 0.074 0.0719 52.3◦

IIB2: 5 66 220 495 792 66, 792 0.0071 0.0221 34.4◦

IIB3: 1 12 66 495 66, 792 0.0102 0.0202 36.1◦

IIB3: 2 12 66 495 66, 792 0.0219 0.0253 34.4◦

IIB3: 3 12 66 495 66, 792 -0.0131 0.0077 37.1◦

IIB3: 4 12 66 495 66, 792 -0.0100 0.0276 27.2◦

IIB4: 1 12 66 495 792 66, 792 0.0102 0.0202 36.1◦

IIB4: 2 12 66 495 792 66, 792 0.0219 0.0253 34.4◦

IIB4: 3 12 66 495 792 66, 792 -0.0100 0.0276 27.2◦

IIB4: 4 12 66 495 792 66, 792 -0.015 0.0387 14.4◦

IIB5: 2 12 66 220 495 66, 792 -0.0080 0.0254 −122◦

IIB5: 3 12 66 220 495 66, 792 0.0147 0.0115 −146◦

IIB5: 4 12 66 220 495 66, 792 -0.037 0.0232 87.4◦

IIB6: 2 12 66 220 495 792 66, 792 -0.0080 0.0254 −122◦

IIB6: 3 12 66 220 495 792 66, 792 0.0044 0.0359 91.0◦

IIB6: 4 12 66 220 495 792 66, 792 -0.0038 0.0232 87.5◦

IIC1: 1 66 220 495 66, 792 0.0111 0.0230 63.3◦

IIC1: 2 66 220 495 66, 792 -0.0037 0.0281 28.6◦

IIC2: 2 66 220 495 792 66, 792 -0.0037 0.0254 57.0◦

IIC2: 5 66 220 495 792 66, 792 0.0072 0.0160 −87.7◦

IIC3: 2 12 66 495 66, 792 0.0028 0.0408 80.3◦

IIC3: 4 12 66 495 66, 792 -0.0053 0.0138 13.4◦

IIC4: 2 12 66 495 792 66, 792 -0.0037 0.0281 28.6◦

IIC4: 4 12 66 495 792 66, 792 -0.0053 0.0138 13.4◦

IIC5: 1 12 66 220 495 792 -0.0575 0.0266 20.9◦

IIC5: 4 12 66 220 495 66, 792 0.0086 0.0223 169◦

IIC6: 1 12 66 220 495 792 792 -0.0575 0.0266 20.9◦

IIC6: 4 12 66 220 495 792 66, 792 0.0086 0.0222 169◦

Table II: Summary of irreps and model parameters for successful SU(12) models found in the five

search and fitting runs. The classes of models are labeled by their SU(5) (10) and (5) family

assignments, while the righthanded Majorana neutrinos all belong to SU(5) and SU(12) singlets.

It is to be understood that the massive fermions and Higgs singlets occur in both unbarred and

barred irreps.
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Also included in Table II are the fit parameters ε, |κ|, and arg(κ) which are adjusted to

help give good fits to the charged lepton masses and to the quark mass and mixing data.

The additional adjusted Higgs VEVs, vu and vd =
√

1742 − v2
u, are found to lie in the range

vd = 1 − 5 GeV and vu ' 174 GeV and are not included in the Table. Recalling that

the initial values for the fit parameters were chosen as ε = |κ| = 1/6.52 = 0.0237, and

arg(κ) = 45◦, we see that the resulting fit parameters for ε and |κ| are reasonably close to

their starting values. In particular, |κ| ∼ (0.5− 5)|ε| in most cases, so that the (24) Higgs

contributions, which serve to split the down quark and charged lepton spectra, and the Higgs

singlet contributions are comparable. To obtain a satisfactory model, we have required that

all prefactors lie in the range ±[0.1, 10], i.e., within a factor of 10 of unity. In most cases,

the range is considerably tighter. Not surprisingly, in all cases the quark mass and mixing

parameters at the GUT scale can be fit accurately with the above model parameters and

the overwhelming number of matrix element prefactors far exceeding the number of data

points.

To give a more complete picture of the results obtainable for successful models, we have

made five separate complete runs of the scanning and fitting procedure outlined above and

labeled them by their run number in Table II. Due to the Monte Carlo nature of the prefactor

fitting, it is apparent from the table that no successful model assignments were obtained for

all five runs, and in many cases for only two or three of the runs. Nevertheless, the results

are instructive.

For succesful models found in run 4, we present in Table III the predictions for the

neutrino mass and mixing parameters that were obtained with fits of ΛR and the known

neutrino mass and mixing parameters, namely, the three ∆m2
ij’s and the two sine squares

of θ12 and θ13. In particular, we list for each model the neutrino mass hierarchy MH, ΛR,

the unknown heavy righthanded Majorana neutrino masses M1, M2, M3, the light neutrino

masses m1, m2, m3, sin2 θ23, the Dirac leptonic CP phase δ, the Majorana phases φ1 and

φ2, and the effective mass parameter |〈mee〉| for neutrinoless double beta decay. The latter

prediction assumes the light neutrino masses are the major contributors to the corresponding

loop diagrams. Of course there are large spreads in the resulting predictions due to the Monte

Carlo adjusted fit parameters and large number of matrix element prefactors. In a number

of family symmetry cases listed, both normal and inverted hierarchy models are acceptable

with quite different sets of matrix element prefactors and ΛR. Of the 31 models found in
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MH ΛR M1 M2 M3 m1 m2 m3 sin2 θ23 δ φ1 φ2 |〈mee〉|
——– (1014 GeV) ——— —— (meV)—— (meV)

IA4: NH 0.174 0.0569 0.189 0.388 0.116 8.6 49.9 0.387 −1.3◦ 5.6◦ 185◦ 1.39
IH 0.0358 0.0496 0.0583 0.112 49.3 50.0 3.67 0.390 178◦ −174◦ 6.4◦ 18.6

IB1: NH 0.0499 0.0055 0.0371 0.101 1.85 8.79 49.9 0.510 −10.6◦ −132◦ 40.6◦ 2.45
IB2: IH 0.0102 0.0093 0.0182 0.0217 49.2 49.9 1.61 0.545 −12.1◦ 235◦ −133◦ 48.2
IB3: NH 0.0011 0.0002 0.0062 0.0187 14.0 16.5 51.9 0.469 134◦ 167◦ −345◦ 6.48

IH 0.0048 0.0021 0.0094 0.0097 49.2 49.9 1.06 0.647 −121◦ −44.0◦ −64.8◦ 47.7

IB4: NH 0.0152 0.0223 0.0484 0.0496 0.121 8.60 49.9 0.443 17.3◦ −79.8◦ 114◦ 1.65
IH 0.0088 0.0086 0.0128 0.0196 49.2 49.9 0.642 0.426 −158◦ 279◦ 85.6◦ 19.4

IC1: NH 3.38 0.0142 0.0243 10.1 0.0022 8.6 49.9 0.543 82.7◦ 185◦ 219◦ 3.58
IH 0.0009 0.0009 0.0013 0.0059 49.2 49.9 0.394 0.481 −62.6◦ −263◦ 241◦ 23.2

IC2: NH 0.0520 0.0542 0.111 0.145 1.73 8.77 49.9 0.630 97.0◦ −227◦ 341◦ 0.65
IH 0.0187 0.0228 0.0336 0.0544 49.2 49.9 0.269 0.658 81.0◦ −163◦ −316◦ 21.2

IC5: IH 0.013 0.0074 0.242 0.0319 49.2 49.9 0.321 0.560 −90.2◦ 200◦ 172◦ 47.1
IC6: NH 0.0155 0.0057 0.0176 0.0435 2.76 9.03 50.0 0.460 −121◦ −219◦ −67.4◦ 2.45

IH 0.0127 0.0105 0.0226 0.0332 49.3 50.0 3.39 0.600 −50.2◦ −319◦ 12.8◦ 47.2

IIA1: NH 0.0320 0.0069 0.0515 0.0543 0.469 8.61 49.9 0.360 22.8◦ 70.8◦ −86.0◦ 3.2
IH 0.0078 0.0123 0.0159 0.0190 49.2 50.0 2.91 0.578 140◦ −32.5◦ 166◦ 20.0

IIA2: NH 0.313 0.0501 0.250 0.750 0.00027 8.6 49.9 0.590 −152◦ −103◦ 64.0◦ 2.23
IIA6: NH 0.127 0.0307 0.140 0.295 0.0143 8.6 49.9 0.348 11.1◦ 308◦ 317◦ 3.61

IH 0.0252 0.0149 0.0383 0.0507 49.2 49.9 0.317 0.657 −161◦ −251◦ 102◦ 48.2

IIB3: NH 0.0458 0.0635 0.0956 0.107 1.91 8.81 49.9 0.447 −12.4◦ −121◦ −313◦ 2.44
IIB4: NH 0.225 0.0416 0.400 0.438 0.0104 8.6 49.9 0.419 −9.3◦ −135◦ −325◦ 3.61

IH 0.741 0.0532 0.138 1.24 49.2 49.9 0.0041 0.413 −167◦ 134◦ 304◦ 19.0
IIB5: NH 0.0055 0.0051 0.0130 0.0157 13.3 15.8 51.7 0.449 −7.4◦ −324◦ 207◦ 5.46

IH 0.0072 0.0066 0.0182 0.0243 49.3 50.0 3.7 0.504 11.3◦ 310◦ −224◦ 18.9
IIB6: NH 0.0337 0.0261 0.0634 0.0671 2.72 9.02 50.0 0.415 170◦ −146◦ 42.3◦ 1.86

IIC3: NH 0.0071 0.0127 0.0158 0.0215 1.92 8.80 49.9 0.639 177◦ −168◦ 13.2◦ 2.40
IIC4: NH 0.0200 0.0327. 0.0580 0.0717 0.121 8.6 49.9 0.519 −178◦ 353◦ 172◦ 1.39
IIC5: IH 0.0085 0.0161 0.0323 0.0439 50.0 50.7 9.07 0.469 179◦ −177◦ −176◦ 48.9
IIC6: NH 0.191 0.0419 0.216 0.508 0.286 8.6 49.9 0.598 179◦ 2.7◦ −177◦ 1.28

IH 0.196 0.0352 0.0473 0.0492 49.4 50.2 5.01 0.551 −179◦ −182◦ 177◦ 48.5

Table III: Summary of successful SU(12) neutrino models for the 4th run with ΛR as an additional

fit parameter. The models are grouped according to the family assignments listed in Table II.

In many cases, both normal hierarchy NH and inverted hierarchy IH models have been generated

for the same class of family assignment and matrix textures with different sets of matrix element

prefactors and ΛR.
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run 4, it is interesting to note that 17 of them correspond to normal hierarchy, while 14 have

inverted hierarchy. For all five runs with an average of 28 successful models each, 76 have

normal hierarchy while 64 have inverted hierarchy.

In order to better grasp the distributions of results obtained in all five runs, we present

several scatterplots. In Fig. 1, δ is plotted vs. sin2 θ23 for normal hierarchy in (a) and for

inverted hierarchy in (b). The circles and squares for NH (upright and inverted triangles for

IH) refer to the I and II family (10) assignments, respectively, while the shadings distinguish

the family (5) assignments. With regard to the sin2 θ23 distributions, the NH one slightly

prefers the second octant, while the IH one is equally split between the first and second

octants. It is apparent that most of the models favor small leptonic CP violation, for δ

tends to lie near 0◦ or 180◦. The IC6 run 5 model we have illustrated earlier with both NH

and IH variations is among the exceptions.

In Fig. 2 is displayed the effective mass parameter for neutrinoless double beta decay

vs. the lightest neutrino mass, m0 = m1 for NH and m0 = m3 for IH. As expected

the IH points lie higher than the NH ones. The IH |〈mee〉| values cluster around 20

and 50 meV, while the NH ones generally fall below 10 meV with the smallest value

occurring for m1 ∼ 2 meV. The two clusterings occur because the difference of the two

phases φ1 and φ2 for many of the IH models tends to be near 0◦ or 180◦. From this

figure we can conclude that the neutrinoless double beta decay experiments by themselves

must be able to reach down to mee = 10 meV in order to rule out the inverse mass

hierarchy in the framework of three righthanded neutrinos. These results are well within

the ranges found by the PDG in [24], based on a 2σ variation of the best fit values as of 2014.

VII. SUMMARY

To explain quark and lepton masses and mixing angles, one has to extend the standard

model by putting the quarks and leptons into irreducible representations of a discrete group.

We argue that discrete flavor symmetries can be avoided, if we extend the gauge group to the

point where the discrete symmetry is no longer needed. By consolidating flavor and family

symmetries into a single gauged Lie group we eliminate the problems associated with discrete

symmetry, e.g., violation by gravity, domain walls, etc. We have given explicit examples of

models having varying degrees of predictability obtained by scanning over groups and rep-

resentations and identifying cases with operators contributing to mass and mixing matrices
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Figure 1: Scatterplots of the CP δ vs. sin2 θ23 for the NH models in (a) and for the IH models in

(b). The symbols label the sets of models listed in Table II. for both normal and inverted hierarchy.
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Figure 2: Effective mass for neutrinoless double beta decay vs. the lightest neutrino mass for both

NH and IH models. The symbols for the models are the same as in Fig. 1.

that need little fine-tuning of prefactors. Models in SU(12) are particularly interesting.

We have been guided by simplicity. Starting with SM×Gflavor, we let SM→ SU(N) and

increase N until we can eliminate Gflavor and still fit known mass and mixing data. This

process is rather involved. First we place the SM particles in SU(5) irreps. Beginning with

anomaly-free sets of irreps containing three families of fermions, we then assign the family

5̄ and 10 irreps to SU(N) irreps in a way that is consistent with known data. This requires

scanning over fermion assignments and Higgs irreps to allow the necessary Yukawa coupling

terms in the Largangian to generate successful models. The Higgs irreps are also required

to be capable of breaking the symmetry directly from SU(N) to the SM without breaking

SUSY. Since there is an infinity of possible models, the scan is directed and limited in various

ways toward finding the simplest class of examples.

We begin to find satisfactory models that require no discrete Gflavor symmetry at N = 12.

Smaller N is insufficient to fit the data without keeping at least a small discrete flavor group.

Larger N typically gives too many parameters, hence we have focused on N = 12, which
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seems to be the “sweet spot” for model building. In particular, the smallest anomaly-free set

in SU(12) which is 66 + 495 + 2(220) + 2(12) stands out for its simplicity. It contains six

irreps, and it turns out that we can assign a single one of the six to each of the 5̄’s and 10’s in

the three families of SU(5). All other three-family sets in SU(12) have more than six irreps,

hence some of the irreps in the anomaly free sets cannot contain light fermions. We have

limited our focus to this simplest anomaly-free set; however, there are still numerous issues

to consider, e.g., which 5̄ or 10 to assign to each of the SU(12) irreps, which Higgs fields to

include, how to include righthanded fermion singlet neutrinos, etc. To handle these issues we

rely on scans over assignments. As described in the text, the scans systematically consider

models, generate mass and mixing matrices, compare them with data, and those that do not

drop by the wayside are kept, while those that fail tests along the way are eliminated from

consideration. The result is approximately 30 models for each complete scan (labeled I and

II for their 10 assignments, and A, B, and C for the assignment of their 5̄’s) that satisfy our

criteria of providing a fit to all known mass and mixing data which is little fine-tuned, while

providing predictive power that can distinguish amongst our models and also discriminate

between them and other models in the literature. Once the fits of masses and mixings are

complete for our models, they allow us to make further predictions for the neutrino masses

and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana

phases, and the effective mass observed in neutrinoless double beta decay.

Our purpose has been to unify family and flavor symmetries into a single gauge group.

What we have achieved is a demonstration that mass and mixing data can be fit within a

class of models where the only symmetry is a gauged SU(12). Furthermore, these models can

be predictive and distinguished from discrete flavor symmetry models. In addition, N = 12

is small enough that it is conceivable that a model of this type can be contained within a

compactification of the superstring.

Among interesting features that have arisen in finding apparent satisfactory models are

the following. While we have emphasized the simplicity in assigning the three families

of quarks and leptons to irreps of the smallest anomaly-free set of SU(12), the massive

lefthanded conjugate (or righthanded) neutrinos must be placed in singlets of both SU(5)

and SU(12). We have made the conventional choice of three such neutrinos, but it is clear

that one could also have considered only two, or included several additional singlet sterile

neutrinos in the model.
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Two pairs of Higgs doublets appear in the models, (5)495H and its conjugate along with

(5)12H and its conjugate, but only the first of each pair listed here are required to get EW

VEVs in the successful models. The other two Higgs doublets, (5)495H and (5)12H, play

no role in these models and can be considered inert. Note the “mismatch” nature of the pair

that develops VEVs and the other pair which does not.

In order to break the SU(5) GUT symmetry, an adjunct 24 must be present in the model,

but it can not be present in the SU(12) adjunct 143 which would break SUSY at the SU(12)

scale. Instead, two 24’s emerge with the inclusion of 5148H and 5148H and their breakings

at the SU(12) scale. Since they originate from an SU(12) complex pair, a ready means arises

of introducing CP phases in the models. At the same time, their VEVs serve to split the

spectra of the down quarks and charged leptons.

As for the model predictions for the unknown masses and mixing in the neutrino sector,

the successful models favor NH over IH by a ratio of 76 to 64 for the five runs considered.. The

NH models slightly favor the second octant for sin2 θ23, while the IH models are impartial

to the first and second octants. Many models favor small leptonic CP violation, while a

few favor larger violations. Many pairs of successful models with identical Yukawa matrix

textures have both NH and IH solutions due to different prefactors and ΛR scales emerging

in the fitting procedure.

Finally, we have shown for the successful models that the neutrinoless double beta decay

experiments may need to reach down to an effective mass |〈mee〉| ∼ 10 meV, in order to elim-

inate an inverted light neutrino mass hierarchy. We also note that the present cosmological

constraints on the sum of the light neutrino masses [28], Σmν,IH < 0.20 eV, are insufficient

to eliminate any of the apparently successful IH models.
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APPENDIX A. Direct Breaking of SU(12) → SU(5)

Complex irreps of SU(N) all have non vanishing charges in the Cartan subalgebra. If

we give them VEVs, they then break a portion of that subalgebra. This in turn lowers

the overall rank of the remaining symmetry group. Our interest here is in giving VEVs

to antisymmetric irreps of SU(12) to break the gauge symmetry directly to SU(5). These

irreps are all complex except for the antisymmetric tensor with 6 indices which is real. A

scheme for giving VEVs to antisymmetric tensor irreps of SU(N) to reduce rank was devised

in [18, 19] where vanishing total Dynkin weights for the VEVs provides gauge spontaneous

symmetry breaking (SSB) without SUSY breaking.

Here we demonstrate that the direct gauge SSB of SU(12) → SU(5) is possible without

breaking SUSY by providing two solutions, one for the fourth anomaly-free set of Eq. (3),

and the other for the simplest anomaly-free set of Eq. (3).

The first example uses just the supermultiplets of the model where the chiral families

live. There the irreps we have to work with are 66 + 2(495) + 792 + 2(220) + 8(12). Let us

write VEVs with upper indices for the unbarred irreps, e.g., va,b for the 66, and with lower

indices for the barred irreps, e.g., va,b,c,d,e for the 792. (We could instead use an epsilon

symbol with 12 indices to write the 792 with 7 upper indices and likewise for other barred

irreps, but it will not be necessary here.)

One set of chiral superpartner VEVs that breaks SU(12) directly to SU(5) is

v12,11,10,9,8, v12,11,10,9, v9,8,7,6, v7, v6, v9, (45)

where the VEVs can be in three different 12s and in the two different 495s. We take all

VEVs to be of equal magnitude. The corresponding Dynkin weights given in the same order

as the above VEVs are:

[ 1 0 0 0 0 -1 0 0 0 0 0 ]

[ -1 0 0 0 1 0 0 0 0 0 0 ]

[ 0 0 0 -1 0 0 0 1 0 0 0 ]

[ 0 0 0 0 0 1 -1 0 0 0 0 ]

[ 0 0 0 0 0 0 1 -1 0 0 0 ]

[ 0 0 0 1 -1 0 0 0 0 0 0 ]

(46)
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Summing the weights as in vector addition, we get zero total weight so SUSY remains

unbroken. Note that these VEVs give a minimum for the Higgs potential at zero, as required

by SUSY. There could be some flat directions at this minimum, but since there are many

terms in the superpotential this is not the generic situation.

The second example involves the simplest anomaly-free set which is of most interest in

this paper, 66 + 495 + 2(220) + 2(12), with its scalar superpartners which are assumed

to get VEVs, aside from the two 12’s, along with a pair of Higgs singlets 12H and 12H.

With the same tensor notation as above, we can form the following tensor contraction of the

VEVS,

v12,11,10,9 v12,11,10 v9,8,7 v
8 v7,6 v6. (47)

Again with all VEVs equal in magnitude, the ordered Dynkin weights are:

[ 1 0 0 0 -1 0 0 0 0 0 0 ]

[ -1 0 0 1 0 0 0 0 0 0 0 ]

[ 0 0 0 -1 0 0 1 0 0 0 0 ]

[ 0 0 0 0 1 -1 0 0 0 0 0 ]

[ 0 0 0 0 0 1 0 -1 0 0 0 ]

[ 0 0 0 0 0 0 -1 1 0 0 0 ]

(48)

The sum of the Dynkin weights vanishes, so SU(12)→ SU(5) and SUSY remains unbroken.

APPENDIX B. Matrix Element Contributions to the Selected Model

Here we present in Table IV the leading diagrams contributing to the Yukawa matrix

elements for the quark and lepton mass matrices of the special model considered in Sect. IV

C. Several diagrams of the same dimension contribute to a given matrix element in many

cases as listed. These diagrams apply for the IC6 class of models listed in Table II.
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Matrix Element Contributions for Model IC6

Fermions: (10)4951, (10)2202, (10)663, (5)2201, (5)122, (5)123

Massive Fermions: 12, 12, 66, 66, 220, 220, 495, 495, 792, 792

Higgs: (5)495H, (5) 12H, (24)5148H, (24)5148H, (1)1H, (1)66H, (1)66H, (1)792H, (1)792H

Leading Up-Type Diagrams:
Dim 4:

U33: (10)663.(5)495H.(10)663

Dim 5:
U13: (10)4951.(1)66H.(10)66×(10)66.(5)495H.(10)663

U31: (10)663.(5)495H.(10)66×(10)66.(1)66H.(10)4951

U23: (10)2202.(1)792H.(10)66×(10)66.(5)495H.(10)663

U23: (10)2202.(24)5148H.(10)66×(10)66.(5)495H.(10)663

U32: (10)663.(5)495H.(10)66×(10)66.(1)792H.(10)2202

U32: (10)663.(5)495H.(10)66×(10)66.(24)5148H.(10)2202

Dim 6:
U11: (10)4951.(1)66H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)66H.(10)4951

U12: (10)4951.(1)66H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)792H.(10)2202

U12: (10)4951.(1)66H.(10)66×(10)66.(5)495H.(10)66×(10)66.(24)5148H.(10)2202

U21: (10)2202.(1)792H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)66H.(10)4951

U21: (10)2202.(24)5148H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)66H.(10)4951

U22: (10)2202.(1)792H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)792H.(10)2202

U22: (10)2202.(1)792H.(10)66×(10)66.(5)495H.(10)66×(10)66.(24)5148H.(10)2202

U22: (10)2202.(24)5148H.(10)66×(10)66.(5)495H.(10)66×(10)66.(1)792H.(10)2202

U22: (10)2202.(24)5148H.(10)66×(10)66.(5)495H.(10)66×(10)66.(24)5148H.(10)2202

Leading Down-Type Diagrams:
Dim 4:

D32: (10)663.(5)12H.(5)122

D33: (10)663.(5)12H.(5)123

Dim 5:
D12: (10)4951.(1)66H.(10)66×(10)66.(5)12H.(5)122

D21: (10)2202.(5)12H.(5)495×(5)495.(1)792H.(5)2201

D13: (10)4951.(1)66H.(10)66×(10)66.(5)12H.(5)123

D31: (10)663.(5)12H.(5)12×(5)12.(1)66H.(5)2201

D22: (10)2202.(5)12H.(5)495×(5)495.(1)792H.(5)122

D22: (10)2202.(1)792H.(10)66×(10)66.(5)12H.(5)122

D22: (10)2202.(5)12H.(5)495×(5)495.(24)5148H.(5)122

D22: (10)2202.(24)5148H.(10)66×(10)66.(5)12H.(5)122

D23: (10)2202.(5)12H.(5)495×(5)495.(1)792H.(5)123

D23: (10)2202.(1)792H.(10)66×(10)66.(5)12H.(5)123

D23: (10)2202.(5)12H.(5)495×(5)495.(24)5148H.(5)123

D23: (10)2202.(24)5148H.(10)66×(10)66.(5)12H.(5)123

Dim 6:
D11: (10)4951.(1)66H.(10)66×(10)66.(5)12H.(5)12×(5)12.(1)66H.(5)2201

D11: (10)495.(1)792H.(10)220×(10)220.(5)12H.(5)495×(5)495.(1)792H.(5)2201
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Leading Dirac Neutrino Diagrams:
Dim 5:

DN11: (5)2201.(5)495H.(1)792×(1)792.(1)792H.(1)11

DN11: (5)2201.(1)792H.(5)495×(5)495.(5)495H.(1)11

DN12: (5)2201.(5)495H.(1)792×(1)792.(1)792H.(1)12

DN12: (5)2201.(1)792H.(5)495×(5)495.(5)495H.(1)12

DN21: (5)122.(5)495H.(1)792×(1)792.(1)792H.(1)11

DN21: (5)122.(1)792H.(5)495×(5)495.(5)495H.(1)11

DN21: (5)122.(24)5148H.(5)495×(5)495.(5)495H.(1)11

DN13: (5)2201.(5)495H.(1)792×(1)792.(1)792H.(1)13

DN13: (5)2201.(1)792H.(5)495×(5)495.(5)495H.(1)13

DN31: (5)123.(5)495H.(1)792×(1)792.(1)792H.(1)11

DN31: (5)123.(1)792H.(5)495×(5)495.(5)495H.(1)11

DN31: (5)123.(24)5148H.(5)495×(5)495.(5)495H.(1)11

DN22: (5)122.(5)495H.(1)792×(1)792.(1)792H.(1)12

DN22: (5)122.(1)792H.(5)495×(5)495.(5)495H.(1)12

DN22: (5)122.(24)5148H.(5)495×(5)495.(5)495H.(1)12

DN23: (5)122.(5)495H.(1)792×(1)792.(1)792H.(1)13

DN23: (5)122.(1)792H.(5)495×(5)495.(5)495H.(1)13

DN23: (5)122.(24)5148H.(5)495×(5)495.(5)495H.(1)13

DN32: (5)123.(5)495H.(1)792×(1)792.(1)792H.(1)12

DN32: (5)123.(1)792H.(5)495×(5)495.(5)495H.(1)12

DN32: (5)123.(24)5148H.(5)495×(5)495.(5)495H.(1)12

DN33: (5)123.(5)495H.(1)792×(1)792.(1)792H.(1)13

DN33: (5)123.(1)792H.(5)495×(5)495.(5)495H.(1)13

DN33: (5)123.(24)5148H.(5)495×(5)495.(5)495H.(1)13

Leading Majorana Neutrino Diagrams:
Dim 4:

MN11: (1)11.(1)1H.(1)11

MN12: (1)11.(1)1H.(1)12

MN21: (1)12.(1)1H.(1)11

MN22: (1)12.(1)1H.(1)12

MN13: (1)11.(1)1H.(1)13

MN31: (1)13.(1)1H.(1)11

MN23: (1)12.(1)1H.(1)13

MN32: (1)13.(1)1H.(1)12

MN33: (1)13.(1)1H.(1)13

Table IV: Yukawa diagrams for the up and down quark and Dirac neutrino matrices, as well as

the righthanded Majorana neutrino diagrams, for the special model singled out in Sect. IV C.

which belongs to the IC6 class of models of Table II. The diagrams for the charged leptons are the

transpose of the down quark diagrams.
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