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Abstract. The need for computing in the HEP community follows cycles of peaks and valleys 
mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. 
Because of this, the classical method of provisioning these resources at providing facilities has 
drawbacks such as potential overprovisioning. As the appetite for computing increases, 
however, so does the need to maximize cost efficiency by developing a model for dynamically 
provisioning resources only when needed. 

To address this issue, the HEPCloud project was launched by the Fermilab Scientific 
Computing Division in June 2015. Its goal is to develop a facility that provides a common 
interface to a variety of resources, including local clusters, grids, high performance computers, 
and community and commercial Clouds. Initially targeted experiments include CMS and 
NOvA, as well as other Fermilab stakeholders. 

In its first phase, the project has demonstrated the use of the “elastic” provisioning model 
offered by commercial clouds, such as Amazon Web Services. In this model, resources are 
rented and provisioned automatically over the Internet upon request. In January 2016, the 
project demonstrated the ability to increase the total amount of global CMS resources by 
58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de 
Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst 
capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the 
local allocated resources and utilizing the local AWS s3 storage to optimize data handling 
operations and costs. NOvA was using the same familiar services used for local computations, 
such as data handling and job submission, in preparation for the Neutrino 2016 conference. In 
both cases, the cost was contained by the use of the Amazon Spot Instance Market and the 
Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. 

This paper describes the Fermilab HEPCloud Facility and the challenges overcome for the 
CMS and NOvA communities. 

 

1. Introduction 
The computing needs of High Energy Physics are expected to grow by more than a factor of 
ten in the next decade. Experiments such as the High Luminosity LHC (HL-LHC) and 
DUNE, to mention a few, will push computing technology beyond their current limits. 
Preliminary analyses of the HL-LHC data storage needs for the first year, for example, 
estimate an increase of raw and derived data from 130 PB in 2016 to 1.5 EB in 2027, with a 
required 60-fold increase in CPU cycles [1]. The complexity of computing operations will be 
compounded by the fact that utilization will continue to follow the already familiar trends of 
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peaks and valleys of demand, due in part to the schedule of the experiments, with additional 
seemingly stochastic request bursts to satisfy the needs of data analysis. 

The HEP computing facilities need to evolve to cope with these challenges. The report of 
the Particle Physics Project Prioritization Panel (P5) to the US funding agencies [2] 
underlines the importance of the “strategic partnership of national laboratories and 
universities with the industry” to overcome these challenges. In this regard, commercial cloud 
providers offer computing services that look promising for HEP in terms of capabilities and 
costs. National Laboratories with strong HEP programs, such as Brookhaven and Fermilab, 
have started projects to integrate commercial clouds with their facilities. Together with the 
integration of High Performance Computers (HPC), this strategy aims at satisfying the bursts 
of computing demands from the community. 

At Fermilab, the evolution of the computing facility is carried through the HEPCloud 
project. The resulting HEPCloud facility is envisioned as a portal to an ecosystem of diverse 
computing resources, commercial and academic. The facility routes workflows to local or 
remote resources based on workflow requirements, cost, and efficiency of accessing the 
resources. It provides a complete solution to the users, managing costs at commercial 
providers and user allocations at HPC. The pilot project to explore the feasibility and 
capability of HEPCloud was started in fiscal year 2016. The pilot work was funded through 
seed money provided by the industry, initially by Amazon Web Services (AWS). The pilot 
executed workflows from the Compact Muon Solenoid (CMS) and the NOvA experiment. 
The CMS results are discussed elsewhere [3]. This paper focuses on the experience from the 
NOvA experiment. 

2. The NOvA Use Case 
The NOvA experiment has worked as a partner with the Fermilab Scientific Computing 
Division (SCD) to access cloud resources for their production computing since 2014. SCD 
and the NOvA collaboration applied and obtained a research grant from Amazon Web 
Services for $30,000. The grant funds were used to prototype and execute the demonstration 
of commercial clouds described in this paper. The funds in the grant were made available 
through a credited account with AWS. The account was enabled through a procurement 
process that selected DLT as the reseller of AWS services. 

NOvA managed three separate computational campaigns on AWS through the Fermilab 
HEPCloud facility. Each campaign was systematically aimed at accomplishing three 
complementary goals. First, each campaign was designed to explore increasing the scale of 
resources that were provisioned compared to the previous campaign; second, each campaign 
would increase the stability of the system at the new scale and improve operational 
performance in both efficiency and operational support load; third, produce a specific useful 
physics result for the 2015/2016 NOvA oscillation analysis. 

The third campaign was the official (final) reconstruction of neutrino events in the NOvA 
near detector.  This sample was the baseline for performing the extrapolation of neutrino 
signals to the far detector and an essential component in the computation of the final 
systematic uncertainties on the oscillation signal. The workflow processed 56 TB of data 
spread over 57,000 files (average 1 GB/file), representing 114 million events in the near 
detector. The reconstruction time required for this stage of processing consumed 
approximately 4.5 hours per file, constituting a total of  260,000 core hours.  This set of jobs 
produced 124 TB of output data.  

 
 



	
	
	
	
	
	

3. Production Operations and Processes 
The general workflow and data management that was used throughout the campaigns relied 
on a combination of the existing standard tools (used by NOvA computing and the production 
data processing group) and a set of extensions to those tools. These were specifically 
developed to address the integration of the standard data processing environment with the 
specialized environment of commercial clouds provisioned by HEPCloud.  

In this model, the input datasets were specifically pre-staged to predetermined locations on 
the AWS S3 storage service using a combination of the standard SAM4Users tool suite [4] 
and modifications to the migration tools to allow for highly parallel staging of the data. The 
tool uses multiple nodes from an on-premises grid to push files to S3 from Fermilab storage. 
With each node having a 1 Gbps network interface, the peak aggregate upload bandwidth 
saturated at 12 Gbps with a few dozen nodes. This resulted in an average transfer/replication 
time of a few hours for the input datasets used in the campaigns.  

Even though jobs were configured to run on three AWS regions to improve resource 
availability, the input dataset was transferred from Fermilab to only one of the AWS S3 
regions1 (Oregon). The jobs relied on the AWS internal network for data transfers. This 
incurred a data transfer fee that was less expensive than replicating the data two additional 
times. 

Jobs were submitted with the jobsub tool to the FIFE batch submission system [5]. The 
jobs were routed to HEPCloud through an attribute that requested cloud resources explicitly. 
Each job processed multiple files one after the other (typically 5), asking SAM each time to 
transfer an unprocessed file from the dataset. If a job failed because it was preempted (e.g. the 
instance was overbid on the spot market), HEPCloud automatically resubmitted the job, 
which resumed processing the next file in the sequence maintained by SAM. A file that was 
not fully processed because of preemption or application failures, was not transferred again by 
SAM. After the jobs had all finished, therefore, operations typically submitted recovery jobs 
to process all such files in the dataset.  

At the end of each campaign, the SAM4Users tool was used to transfer the files from S3 to 
the Fermilab mass storage system for long-term archiving, using multiple nodes to improve 
transfer rate as in the case of data uploading. 

The production campaigns relied on several supporting services deployed at AWS and at 
Fermilab [3,6]. NOvA used the following services:  

 
Service 
 

Deployed 
at 

Notes 

Squid / CVMFS AWS Local cache for software distribution. We configured the 
service to automatically scale the number of instances 
depending on the load [7]. 

Network Configuration AWS Defines network access for instances running at AWS.  
AWS Limits AWS Defines usage limits for AWS service such as the maximum 

number of VM, storage, etc. 
Spot Market AWS Users bid on the excess VM capacity at AWS. Price is 

reduced several times, but VM may be preempted. 
Accounting and Billing FNAL Resource accounting and monitoring; alarms on spending 

rate thresholds for intrusion detection.  
GlideinWMS FNAL Workload management for FIFE and internal to HEPCloud. 

                                                       	
1 Even though S3 is a global service with a global namespace, AWS organizes S3 data in “buckets” that are 

stored at a given region 



	
	
	
	
	
	

 
In addition, NOvA relied on the FIFE job submission service and SAM data handling, as 

discussed above.  

4. Workflow Performance 
The HEPCloud Facility was configured to provision five types of 8-core and 16-core 
instances2 from AWS in eight Availability Zones covering three AWS Regions. We base our 
statistics on the second submission of the third campaign, because we consider it 
representative of standard operations. This submission consumed 203,000 core hours over a 
period of 48 hours, peaking at 7,300 concurrent jobs on 900 instances for 21 hours (Figure 1).  

In general, the variety of instance types at AWS is key to enabling cost-effective large 
scale computing; NOvA was somewhat limited in their capacity to exploit the diversity of 
resources. NOvA could not run on any of the c3 and c4 instance types, which all have less 
than 2 GB of memory per core, because the application required 2 GB or more. In addition, 
jobs could not run on any 4-core instance types because of the configuration of the FIFE 
factory, which submitted requests to HEPCloud to provision slots only with 8-core and 15 GB 
of RAM. These parameters were difficult to change because the factory was part of ongoing 
FIFE production operations. On the other hand, the 4-core instances were the most popular for 
CMS and were key in enabling the scale of 58,000 cores during the CMS demonstrator of 
HEPCloud. In response, the design of HEPCloud is being reconsidered to enable more 
flexibility in the resource allocation. 

The full production campaign processed a dataset of about 57,000 files (56 TB).  This was 
organized in multiple job submissions that processed the same input dataset. The second 
submission consisted of 10,000 jobs, the maximum allowed by the FIFE batch submission 
system, processing a maximum of 5 input files per job. This job submission processed 46,858 
files out of 57,000. With an average processing time per file of 5 hours, the expected duration 
of a job was about a day. The remaining files were processed by further recovery submissions, 
together with the files unprocessed due to application failure or preemption. Considering that 
AWS is a highly preemptive environment, this was considered an appropriate and acceptable 
operational practice.  

To give a sense of scale on the amount of preemption that occurred during the run, Figure 2 
shows the total number of virtual machines running and preempted (“overbid”) every hour. In 
total, 1,035 virtual machines were preempted over a period of 2 days. This is a similar scale to 
the number of machines that were not preempted (blue histogram plateau in the figure). 
Overall from the perspective of the jobs, only 37% completed without being preempted and 
38% of the jobs were resubmitted twice by the system. It should be noted that preempted jobs 
are automatically resubmitted by the system and do not necessarily result in a job failure. The 
file that was being processed at the time of preemption, however, was not presented by SAM 
again for processing and had to be recovered.  

 
 

                                                       	
2 The instance types were m3.2xlarge, m4.2xlarge, m4.4xlarge, r3.2xlarge, and r3.4xlarge. An additional  

4-core instance, c3.xlarge, was used only for on-demand Squid servers and not for worker nodes. 



	
	
	
	
	
	

 
Figure 1: Total number of computing slots (top) and of virtual machines per instance types, 

availability zone, and region (bottom)  for the third nova campaign 

 
 

 
Figure 2: The total number of instances running and preempted ("overbid") every hour 

 
Table 1 shows the efficiency of the workflow in terms of wall clock time and CPU time. 

Considering only successful jobs3, the efficiency calculated as CPU time over wall clock time 
was 73% for this campaign submission, although for other campaigns it reached 96%. These 
are considered good efficiencies, considering that the workflow interacts with storage and 
external databases and, thus, is not CPU-bound. It should be noted that despite the large 
                                                       	

3 A limitation of the underlying infrastructure – we were tracking only CPU time for jobs which completed 
successfully.  



	
	
	
	
	
	

difference in wall clock times between all the jobs and the final jobs, in our processing 
scheme preempted jobs can contribute to processing files, as opposed to the CMS use case, 
for example. It would be a mistake, therefore, considering that the inefficiency due to 
preemption, generally calculated as the ratio of the two numbers, ranges to up to ~50%. 

 
 

 

Time 
 

Subsequent  
Recovery 

Sum of all jobs wall clock (h)  202,706   60,059  
Sum of successful jobs wall clock (h)  102,552   45,436  
Sum of successful jobs CPU time (h)  74,958   43,589  

Table 1: Wall clock and CPU time for all jobs and the successful jobs 

5. Costs 
The cost of commercial clouds has steadily decreased in recent years and provisioning burst 
capacity on the cloud is becoming ever more attractive. Cloud costs include prices for the 
computation as well as data storage and movement. In the AWS model, data ingress is free, 
but data egress is charged. For scientific institutions, however, AWS contains the cost by 
waiving the fee of data egress if the monthly data movement cost is 15% or less of the total 
cost [7]. In addition, for the NOvA campaigns, AWS waived all costs of data movement, even 
above the 15% threshold. All data movement costs mentioned in this section are estimates.  

To minimize costs, the data egress waiver billing scheme produces an artificial operational 
incentive to produce data and transfer it back within the calendar month boundary. For 
example, in a single campaign, producing data one month and transferring it the next would 
not take advantage of the waiver.  

The total cost of the second submission of the near detector reconstruction amounted to 
$6,160, broken down as  

• $4,400 of EC2 costs, with $1,300 due to inter-region output transfers and the rest 
due to VM instance allocations 

• $1,000 of S3 costs, with $700 due to inter-region input transfers and the rest to 
storage 

• $530 of AWS support 
As mentioned, this does not include any costs of data egress from S3 to Fermilab. The 

inter-region transfers, charged at $0.02 / GB are incurred by storing the data at one AWS 
region but accessing it and writing from three. This cost was estimated to be less than 
replicating the entire 57 TB input and 124 TB output datasets to all three regions for an 
estimated month of processing at ~$0.03 / GB per month. 

When running at the scale of 7,300 slots, the cost rate was approximately $100 / h. For this 
submission, the total cost of failure was $120. The relatively small amount was mainly due to 
the fast failure mode for most jobs. The total cost of preempted jobs was $2,100, but it would 
be unfair to consider this a total loss since preempted jobs may contribute to processing files. 

The estimated total cost for running the full reconstruction campaign is $7,900 for 260,000 
core hours. The additional cost of data egress without the waiver is estimated at $9,400 for a 
total output dataset of 124 TB. The estimated ratio of the cost of data egress over the total cost 
is therefore about 54% for this workflow. The egress cost discounted by the 15% waiver 
would be $5,300. In general, workflows with a small data output as compared to their 
computation should be preferred as candidates for execution at AWS. 



	
	
	
	
	
	

6. Cost Comparisons 
The comparison of the costs to run at Fermilab and AWS are summarized in Table 2. The 

cost at Fermilab has been calculated including factors such as the amortization of the cost of 
the computing center building, power and cooling, cost of the hardware (computing, 
networking, etc.) and its lifetime, system administrators, etc. [3] 

The cost for NOvA derives from the cost of support, computing, and storage, including 
inter-region transfers, but not the cost of data egress, as discussed above. The error is derived 
from the distribution of costs on a 6-hour basis.  

 
Fermilab CMS Tier-1 $0.009 ± 25% per core-hour 
CMS at AWS $0.014 ± 12% per core-hour 
NOvA at AWS $0.029 ± 14% per core-hour 
NOvA cost at AWS per consumed file $0.20 per 2,000 events 

Table 2: Cost comparisons between Fermilab and AWS for the NOvA and CMS campaigns 

We did not perform a direct comparison of worker node performance running the same 
NOvA workflows at Fermilab and AWS. We have executed benchmarks on both systems and 
the performance is very similar. We have executed a simulation of a t𝑡 production for the 
CMS experiment to mimic the behavior of a Monte Carlo workflow. The systems at Fermilab 
produced on average 0.0163 events / s per core, while at AWS 0.0158 events / s per core; 
therefore, AWS was nearly equivalent. Benchmarks based on HEPSpec06 produced similarly 
comparable results. Given the similar performance, the cost comparison is based directly on 
the cost of core hours at Fermilab and at AWS. 

As shown in the table, the cost of running at AWS was about three times larger than 
running locally at Fermilab. This premium is generally considered acceptable to achieve large 
burst capacity in case the additional slots could not be provisioned in any other way, e.g. on 
the Open Science Grid (OSG)..  

Running the NOvA workflow at AWS was costlier than running the CMS one. This was 
due to the need to store more data in S3 and because we were unable to access a variety of 
less expensive instances. This was in part because of the larger memory footprint of the 
application and in part because the setup of the production FIFE submission system was more 
difficult to change, and 4-core instances could not be provisioned. These more cost-effective 
4-core instances comprised 60% of the total number of instances in the CMS campaign. 

7. Lessons Learned 
 On AWS, the large scale of affordable resources can be achieved only by a combination of 
instance types, availability zones and regions. To improve on the cost per core hour, there is 
an incentive in lowering the memory footprint of the workflow to gain access to more diverse 
and less expensive instance types. This is in general true also for the OSG environment, 
although the cost implications are less evident. 

For NOvA, the current scale of slots is limited by the FIFE batch submission capacity. That 
is limited to 20,000 running slots for each of two schedulers. This limit affects the overall 
capacity of the system and it is particularly relevant when attempting resource bursts. 

To reduce the risk of preemption, a good strategy is keeping the job short (a few hours). 
With SAM, a good way of achieving this is submitting many jobs (say 10,000, considering 
the limits above) for a given large dataset (say 50,000 files). This way, jobs process only a 
few files in average and finish quickly. In any case, if several jobs are preempted, the 



	
	
	
	
	
	

remaining running ones can continue processing files until the dataset is completed, at which 
time all jobs exit. This simplifies bookkeeping and minimized the need for recovery. 

To simplify operations with the NOvA (SAM) data processing model, the jobs stored data 
to S3 and declaring metadata and file location to SAM immediately. This is an improvement, 
as before files where declared to SAM only after they had been transferred to the Fermilab 
archive, introducing a significant latency in bookkeeping. This change was key to enabling 
rapid turnaround of job recovery, since at the end of the jobs, the status of the processed files 
was up to date in the database. In general, this experience has forced us to evaluate the costs 
of data egress. Workflows that cannot take full advantage of the waiver should be scrutinized 
as to their suitability for cloud computing. 

When running jobs on the AWS spot instance, the efficiency based on the success rate of 
jobs tends to be lower than on local resources, due to the high occurrence of preemption. 
While this increases the overall computing cost for a fixed amount of work, the SAM 
processing model of consuming input files serially reduces the overall impact.  
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