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Abstract

The present study is addressed to the theoretical descrip-

tion of the ultimate gradient limitation in SRF cavities. Our

intent is to exploit experimental data to confirm models

which provide feed-backs on how to improve the current

state-of-art. New theoretical insight on the cavities limit-

ing factor can be suitable to improve the quench field of

N-doped cavities, and therefore to take advantage of high

Q0 at high gradients.

INTRODUCTION

The ultimate limiting factor of SRF cavities is the pene-

tration of vortexes from the RF surface, causing an abrupt

increase of the surface resistance that consumes all the

RF power in the resonator, quenching the superconductive

state.

The model we present in this study is addressed to the

description of vortex nucleation at the surface. We solve

the Ginzburg-Landau (GL) equations numerically for con-

stant and variable GL parameter κ(= λ/ξ) in order to calcu-

late the lower critical field (Hc1) and the superheating field

(Hsh). In addition we calculate the vortex nucleation bar-

rier for both constant κ and sigmoidal profile of κ, which

simulates the presence of a dirty layer at the surface.

CRITICAL AND SUPERHEATING FIELDS

CALCULATIONS

We calculate Hc1 and Hsh solving numerically the cou-

pled Ginzburg-Landau equations using in both cases a self-

consistent multiple shooting method, where the solutions’

domain is increased every iteration.

In order to obtain Hc1 for arbitrary κ we calculate the

energy per vortex line, and use it to define the magnetic field

at which the Gibbs free energy is equal to zero (i.e. the lower

critical field).

The GL equations that describe a vortex line are defined

in cylindrical coordinates as in [1]. Those were solved in or-

der to obtain the order parameter f (r), the vector potential

a(r) and the magnetic field h(r), all normalized to get adi-

mensional quantities as in [2]. The boundaries conditions
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are the following:

f (r0) = 0 ; f (R) = 1

a(r0) = 0 ; a(R) =
1

κR
,

(1)

where r0 = 10−5 is a small number used to avoid the singu-

larity at zero, R is the extension of the solutions’ domain,

usually larger than 10, and 1/(κR) is the asymptotic solu-

tion for the vector potential.

The energy per single vortex (ǫ) is then defined as [2]:

ǫ =

∫ ∞

0

[

h2(r) +
1

2

(

1 − f 4(r)
)

]

2πrdr. (2)

Equating the Gibbs free energy density in adimensional no-

tation for a single non interacting vortex (g) to zero, we

find the minimum field at which the vortex is thermodi-

namically stable in the material - the lower critical field

(hc1 = Hc1/(
√

2Hc )):

g = ǫ −
4π

k
h = 0 → hc1 =

kǫ

4π
. (3)

In order to calculate the superheating field the mono-

dimensional GL equations in absence of currents were

solved. The same notation considered in [3] was used. The

superheating field corresponds to the maximum field for

which solutions to the GL equations, or “superconductive”

solutions ( f (0) , 0) still exist. The boundary conditions

are:

f ′(0) = 0 ; f (Z ) = 1

a′(0) = h(0) ; a(Z ) = 0,
(4)

where h(0) is the field applied parallel to the surface and Z

the extension of the solutions’ domain.

Both the simulations (hc1 and hsh) were performed with

the software Mathematica for 0.2 ≤ κ ≤ 3. Higher κ were

not considered since the simulation time would have been

substantially longer.

The values obtained for hc1(κ) and hsh (κ) are in agree-

ment with previous calculations [2–6]. The analytic equa-

tions that best fit the trends obtained are:

Hc1 = 0.58
√

2Hc κ
−0.57

Hsh =

√
2Hc

(

0.72 + 0.18κ−1
+ 0.004κ−2

)

,
(5)

where Hc is the thermodynamic critical field, for niobium

Hc ≃ 190 mT.
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Figure 1: Experimental quench data for cavities treated dif-

ferently (EP, 120 C baked, N-doped) and simulated Hc1(κ)

and Hsh (κ) curves. Note that Hc2(κ) =
√

2κHc .

VORTEX NUCLEATION AT THE

SURFACE

As defined by C.P. Bean and J.D. Livingston [7] the phys-

ical explanation of the superheating field is the presence

of a vortex nucleation energy barrier at the superconduc-

tor surface, that prevents the penetration of vortexes above

Hc1, dragging the superconductor in a meta-stable Meiss-

ner state.

In first approximation the energy barrier is described by

the interplay of two forces at the surface: i) the attractive in-

teraction of the vortex with its image anti-vortex on the op-

posite side of the surface, and ii) the repulsive interaction

between the vortex and the penetrating field from the sur-

face. Considering such forces is then possible to calculate

the Gibbs free energy density as composed by three terms:

vortex-anti-vortex interaction (gv−v (x)), vortex-field inter-

action (gv− f ) and the bulk energy (g∞) that does not depend

on the distance from the surface. In adimensional notation

the Gibbs free energy density (g = 4πG(x)/(λHc)2)is:

g(x) = gv− f (x) + gv−v (x) + g∞

= −4π

κ

∫

∂hv(2x)

∂x
−
∂h f (x)

∂x
dx

=

4π

κ

(

h f (x) − hv (2x)
)

+ c.

(6)

When x → ∞, then g(∞) = c, and c = g∞ =

4π/κ (hc1 − h). The Gibbs free energy density is then equal

to:

g(x) =
4π

κ

(

h f (x) − hv (2x) + hc1 − h
)

, (7)

where h f (x) and hv (2x) are the the magnetic field penetrat-

ing from the surface and the vortex magnetic field respec-

tively (h = H/(
√

2Hc )).

EXPERIMENTAL RESULTS AND

SIMULATIONS

Cavities prepared with different recipes were tested at the

FNAL vertical test facility. The normalized quench fields

measured are reported in Fig. 1 as a function of κ, along

with the simulated curves for Hc1(κ) and Hsh (κ). The val-

ues of κ are calculated using λ0 = 39 nm, ξ0 = 38 nm and

the mean free path values reported in [8] (the same cavities

are used in the two works).

Interesting to notice that EP and N-doped cavities show

quench fields lower or equal than Hc1, while 120 C baked

cavities quench above Hc1 in the meta-stable Meissner state.

The ultimate limiting factor of N-doped cavities seems to

be the lower critical field, since no cavities have been seen

quenching above Hc1 yet. On the other hand the same can-

not be said for EP cavities since quenching when the high-

field-Q-slope is present, so the gradient limitation may be

of different nature (e.g. hydrides proximity breakdown).

We calculate the Bean-Livingston barrier for increasing

values of κ and applied field equal to the lower critical field

for that particular κ (shown in Fig. 2). The simulations in

Fig. 2 underlines that the energy barrier height decreases

for increasing κ, which, in first approximation, implies that

the efficiency to exclude thermodynamically stable vortexes

from the material’s bulk decreases as κ increases. Such phe-

nomenon should in principle prevent 120 C baked cavities

to quench above Hc1, since possessing the highest κ among

the cavities studied, but this is not the case as shown in Fig.

1.

So, why do 120 C baked cavities quench in a meta-stable

Meissner state while N-doped cavities do not?

We know from LE-µSR measurements [9] that 120 C

baked cavities near surface presents a strong variation of

mean free path (l) throughout the penetration depth. Such

strong l variation is instead not present in N-doped cavities

which possess a relatively flat mean free path profile within

the penetration depth.

In light of such knowledge we simulate the Bean-

Livingston barrier for various κ profiles varying as a func-

tion of depth. To do so we introduce an analytic sigmoid

form for κ(x) with a variable GL parameter at the surface

(κs), a constant value in the bulk (κ∞ = 1.04), and saddle

point chosen around 20 nm from the surface (the κ profile

considered are showed in the inset of Fig. 3c).

While the calculation of the penetrating field was carried

out by simply considering κ(x) instead of a constant value,

the vortex field was calculated for every g(x) point, since

Figure 2: Gibbs free energy density for various constant κ

for h = hc1(κ).
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Figure 3: Gibbs free energy density calculated for different κ profiles - shown in the inset - for applied field h equal to (a)

hc1(κs ), (b) hc1(κ∞) and (c) in the range hc1(κ∞) < h < hsh (κs ).

the κ(x) profile seen by the vortex is different for every x

coordinate. In particular, we approximate that the vortex

order parameter and vector potential depend on a κ profile

that is cylindrical symmetric. In other words κ(x−r) varies

from its value at the position x - the vortex center - with in-

creasing concentric constant values for every r till its value

is equal to κs . Such approximation permits us to calculate

hv (2x) with the correct κ profile along x, without solving

non-cylindrically symmetric GL equations.

Because of the introduction of the κ profile, the Gibbs

free energy definition in Eq. 6 considers κ(x) instead of

a constant value, while g∞ depends only κ∞ since defined

in the material bulk. The new Gibbs free energy density

definition then is:

g(x) =
4π

κ(x)

(

h f (x) − hv (2x)
)

+

4π

κ∞
(hc1 (κ∞) − h) . (8)

Figure 3a shows the simulated variation of the Gibbs free

energy for different κ profiles - showed in the inset - for

fixed applied reduced field (h = hc1(κs )). As κs increases,

the Gibbs free energy in the whole material assumes values

larger than zero. In this situation vortexes are not energet-

ically favorable to nucleate in the superconductor bulk nor

at its surface. No quench should therefore happen when

h = hc1(κs ).

If the field is increased till h = hc1(κ∞), then vortexes be-

come thermodinamically stable in the superconductor bulk

(g∞ → 0), but at the surface there still be the energy barrier

to prevent their penetration. In Fig. 3b is shown the energy

barrier at the surface for the κ profiles plotted in the inset

of Fig. 3c. The presence of a dirty layer in the surface af-

fects positively the vortex nucleation barrier at the surface,

increasing its height as κs increases. The meta-stable Meiss-

ner state is therefore stabilized by the presence of the dirty

layer.

Once the field is further increased between hc1(κ∞) and

hsh (κs ) when the dirty layer is present, the barrier is less

affected by the presence of higher field than when κ is con-

stant. Such important effect is clearly shown comparing Fig.

3b to Fig. 3c. This implies that the meta-stable Meissner

state is stabilized and the cavity might reach the superheat-

ing field.

Reconsidering Fig. 2 for a constant GL parameter, we

have shown that the energy barrier decreases as κ increases.

On the other hand if the superficial κs is increased while

the bulk κ∞ is maintained constant, the trend is the opposite

and the barrier increases in height and width with κ. There-

fore, 120 C baked cavities are quenching in the meta-stable

state probably because of the presence of a non-constant κ

profile inside the penetration depth. N-doped cavities on

the contrary show constant κ within distances longer than

the penetration depth (κ can be considered constant), and

their quench at Hc1 might be explained by the suppression

of their energy barrier driven by both the “constant” κ and

superficial defects.

CONCLUSIONS

In this paper we addressed theoretically the ultimate lim-

iting factor of the high gradient quench of 120 C baked cav-

ities and N-doped cavities. The presence of the dirty layer

is beneficial in order to stabilize the meta-stable Meissner

state, and push 120 C baked cavities up to the superheating

field. The lower quench field of N-doped cavities at Hc1

can instead be explained by the suppression of the vortex

nucleation barrier because of a constant κ and by the pres-

ence of defects. Sill, no clear conclusion can be done for EP

cavities since quenching in a different regime where high

surface losses are present.

The model presented is able to give insights for future

developments on high quality factors at high gradients. In-

deed, a superficial dirty layer may improve the gradient, and,

at the same time, may improve the Q-factor, since small

mean free paths (∼ 20 nm) minimize the Mattis-Bardeen

surface resistance. Therefore, by a smart surface engineer-

ing it may be possible to achieve high Q-factors up to high

gradients, allowing future high gradient accelerators to min-

imize their cryogenic losses.
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