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Abstract
Superconducting linacs are capable of producing in-

tense, ultra-stable, high-quality electron beams that have
widespread applications in Science and Industry. Many cur-
rent and planned projects employ 1.3-GHz 9-cell supercon-
ducting cavities of the TESLA design. In this paper we dis-
cuss the transverse-focusing properties of such a cavity and
non-ideal transverse-map effects introduced by field asym-
metries in the vicinity of the input and high-order-mode
radiofrequency (RF) couplers. Specifically, we consider
the case of a cavity located downstream of an RF-gun in a
setup similar to the photoinjector of the Fermilab Accelerator
Science and Technology (FAST) facility. Preliminary exper-
imental measurements of a cavity transverse matrix were
carried out at the FAST facility. The results are discussed
and compared with analytical and numerical simulations.

CAVITY MODELS
Several proposed or operating accelerator facilities in-

clude standing-wave (SW) TESLA-type cavities [1], to ac-
celerate electron, muon, or proton beams, e.g. [2–4]. The
transverse beam dynamics associated to these accelerating
cavities plays a crucial role and has been the object of several
studies [5–7]. The transfer matrix of a π-mode RF resonator
was derived by Chambers [8] and later generalized to accel-
erating field with spatial harmonics [9–11].
The Chambers Model can be derived by considering the

transverse motion of the particle in a standing wave RF field
Ez (z, t) = E0

∑
n an cos (nkz) sin(ωt+∆φ), where E0 is the

average accelerating gradient, k is the wave number associ-
ated with n-th harmonic of amplitude an, ∆φ is the phase
advance of the particle and z is the longitudinal coordinate
along the cavity axis.
The ponderomotive-focusing force is obtained under the

paraxial approximation as Fr = −e(Er − vBφ) ≈ er ∂Ez

∂z
where v ' c is the particle velocity along the axial direc-
tion. Using the identity (1 ± n) cos (x) sin [y(1 ± ny)] +
(1 ± n) sin (x) cos [y(1 ± n)] = (1 ± n) sin [(1 ± n)y ± x],
ref. [11] shows that the force averaged over one RF-period
in the first order of perturbation theory yields the focusing
strength, K̄r = −

(E0e)2

8(γm)2 , for the case of a “pure” standing
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wave resonator. The equation of motion then takes form:

x ′′ +
(
γ′

γ

)
x ′ + K̄r

(
γ′

γ

)2
x = 0, (1)

where x is the transverse coordinate, x ′ ≡ dx
ds , γ

′ ≡
dγ
ds =

eE0 cos (∆φ)/m0c2 ≡ Ḡr f /m0c2 is the normalized energy
gradient (γ is the Lorentz factor). The solution of the Eq. (1)
is of the form x f = Rxi where x ≡ (x, x ′) and the subscript
i (resp. f ) corresponds to the coordinates upstream (resp.
downstream) of the cavity. The 2×2 matrix R is given by [8]

R11 = cos α −
√

2 cos (∆φ) sin α,

R12 =
√

8
γi
γ′

cos (∆φ) sin α,

R21 = −
γ′

γ f



cos (∆φ)
√

2
+

1
√

8 cos (∆φ)


sin α, (2)

R22 =
γi
γ f

[cos α +
√

2 cos (∆φ) sin α],

where α ≡ 1√
8 cos (∆φ)

ln γ f

γi
, and γ f ≡ γi + γ′z is the final

Lorentz factor.
An alternative way of solving Eq. (1) in a piecewise fash-

ion was formulated in [12]. This semi-analytical method
can accommodate arbitrary spatial axial-field profiles.
Note, that the analytical solution of Eq. (1) is obtained

under the assumption of axially symmetric field; it is not
the case in a real RF cavity which includes input-power and
high-order-mode (HOM) couplers needed to respectively
couple the RF power to the cavity and damp the HOM fields
excited by the beam.
To investigate the impact of couplers further, a 3D elec-

tromagnetic model of the cavity − including its auxiliary
couplers − was implemented in hfss [13]. The simulated
3D field map was imported in astra [14] particle-tracking
program. Figure 1 compares the evolution of beam centroid
and envelope with and without including 3D effect in the
cavity. For the 1D case (i.e. without including 3D effect)
astra uses the axial E field Ez (z) derived from the 3D map
and performed a paraxial expansion of for radial Er (z) and
azimuthal Bθ (z) fields. The main impact of the HOM and
input coupler is a slight beam steering. For our beam pa-
rameters, it was found that the transverse emittance was not
significantly affected when the 3D field map was used.
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Figure 1: Evolution of beam centroid (solid traces) for the
paraxial model (green) and the model including the 3D elec-
tromagnetic model of the cavity (the red and blue traces
respectively correspond to horizontal and vertical position).
The shaded area indicates the extent of the rms beam enve-
lope. The simulation was carried out for a 5 MeV 20-pC
bunch.

EXPERIMENTAL SETUP & METHOD
The preliminary experiment was performed at the FAST

injector [15]. The 5-MeV beam formed in an RF gun was in-
jected in a TESLA cavity (with average accelerating gradient
limited to Ḡr f ' 17 MeV/m and accelerated to a maximum
energy of ∼ 22 MeV; see Fig. 1 (note that CAV1 has been
installed since the test was first performed; comparison to
simulations is shown in Fig. 1). Pairs of electromagnetic
button-style beam position monitors (BPMs) located up- and
downstream of the cavity respectively provide input Xi and
final Xf beam positions and divergences [here X ≡ (x, x ′)T ].
Correspondingly, given the transfer matrix of the cavity

R, we have Xf = RXi. Consider X0i to be some reference
orbit, so that we can rewrite the transformation as Xf =

R(X0i +∆X0i ). It immediately follows that R(X0i +∆X0i ) =
X0f + ∆X0f and therefore ∆X0f = R∆X0i . So any selected
orbit can serve as a reference orbit to find the transformation
R, assuming the set of perturbed trajectories around this
reference are transformed linearly (which is the essence of
the paraxial approximation).

In fact, once a set of perturbations is applied one can prove
that the averaged orbit can be used as a reference orbit. The
reference orbits method therefore mitigates the physical dis-
placement of the BPMs along the beamline. Given a set of
perturbation in initial coordinates ∆Xi,n (where n = 1, ..., N
is an integer), the final coordinates downstream of the cavity
are ∆Xf,n = R∆Xi,n. Impressing a set of N perturbations
results in a system of N equations of the form Ξ f = RΞi
where Ξj ( j = i, f ) are 2 × N matrices containing the posi-
tions and divergence associated to the N perturbations. This
system is inverted via a least-square technique to recover R.
The method can be further extended to the transverse 4D
phase space to yield the 4 × 4 transfer matrix of the cavity.
The beam-trajectory perturbations are applied via small

kicks from beam horizontal and vertical steerers located up-
stream of the cavity. In our experiment kicks were randomly
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Figure 2: Main diagonal block of the transport matrix.
The solid (green) lines represent Chambers’ approximation,
dashed (blue) lines with round markers are obtained from
3D field map simulations, and circular markers correspond
to experimental values.

applied to uniformly populate the transverse (x, x ′, y, y′)
trace space while monitoring the transmitted charge to en-
sure no beam loss occured.

RESULTS
The measurements were made for 7 phases in a range of [-

37,23] degrees. Each time ∼ 800 trajectories were recorded
corresponding to 200 different orbit settings recorded 4 times
to average over possible beam-position jitter and provide sta-
tistical error bars. The comparison of the recovered transfer
matrix element with the Chambers’ model and the one de-
rived from particle tracking with astra in the 3D field map
are presented in Figs. 2, 3, and 4.
First, it should be noted that the slight discrepancies be-

tween the Chambers’ model and the particle tracking results
are attributed to the non-ultra-relativistic nature of the beam
upstream of the cavity [16].

Overall we find some agreement between experiment and
models for the 2 × 2 diagnonal blocks of the experimen-
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Figure 3: Anti diagonal block of the transport matrix. Lines
and markers are as in Fig. 2.
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Figure 4: Transfer matrix determinant, calculated for full
4 × 4 matrix (top) and main diagonal block matrices deter-
minants shown in Fig. 2.

tal transfer matrix; see Fig. 2. Some elements, e.g. R12
have larger discrepancies but our error bars for the present
measurement are significant.

The coupling (anti-diagonal) 2× 2 blocks modeled by the
simulation are very small and seem to be corroborated with
our experimental results, albeit for the large error bars; see
Fig. 3. The latter observation indicates that for the range of
parameters being explored the 3D effects associated to the
presence of the couplers appear to have a very small effect
on the beam dynamics. Finally, we find that determinant
|R| is consistent within the error bars with simulations; see
also [6].

SUMMARY

We reported our progress toward the measurement of the
transfer matrix of a TESLA-type cavity at FAST. Despite
some technical limitations, the presented measurements are
consistent with the results from 3D field map simulations.
Further improvements in the experimental setup were im-
plemented and a refined measurement is planned in the near
future.
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