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Abstract 
The Main Injector (MI) at Fermilab currently produces 

high-intensity beams of protons at energies of 120 GeV for 
a variety of physics experiments. Acceleration of polarized 
protons in the MI would provide opportunities for a rich 
spin physics program at Fermilab. To achieve polarized 
proton beams in the Fermilab accelerator complex, shown 
in Fig.1.1, detailed spin tracking simulations with realistic 
parameters based on the existing facility are required. This 
report presents studies at the MI using a single 4-twist Si-
berian snake to determine the depolarizing spin resonances 
for the relevant synchrotrons.  Results will be presented 
first for a perfect MI lattice, followed by a lattice that in-
cludes the real MI imperfections, such as the measured 
magnet field errors and quadrupole misalignments. The 
tolerances of each of these factors in maintaining polariza-
tion in the Main Injector will be discussed. 

INTRODUCTION 
The Main Injector is a multi-purpose synchrotron [1] 

which ramps up the proton beam from a kinetic energy 
of 8 GeV to 120 GeV. It provides neutrino beams for 
the MINOS, MINERvA and NOvA experiments, as 
well as the future Long-Baseline Neutrino Facility and 
Deep Underground Neutrino Experiment. It will also 
provide muon beams for Fermilab's Muon g-2 and 
Mu2e experiments. It delivers beam to the SeaQuest 
fixed-target experiment and to a dedicated facility for 
testing of detector technologies. 

The acceleration of polarized protons in the MI was ini-
tially studied with the use of two superconducting helical 
dipole Siberian snakes. However, in 2012 it was discov-
ered that there was no longer sufficient space in the MI to 
place two Siberian snakes at opposite sides of the ring [2].  
A solution using one 4-twist Helical Snake in the MI [3] 
was found that seemed promising to provide polarized pro-
ton beams to the experiments.  Spin tracking studies in the 
MI became necessary to reveal if it was possible or not in 
practice to produce and maintain a polarized proton beam 
in the Fermilab accelerators using single Siberian snakes in 
the larger synchrotrons. This report presents studies to de-
termine the intrinsic spin resonance strengths for the rele-
vant synchrotrons using a perfect lattice. This is followed 
by the implementation of various realistic imperfections, 
such as magnet field errors and quadrupole misalignments, 
into the MI lattice to study the tolerances of closed orbit 
corrections in maintaining polarization. All results pre-
sented here assume that the Siberian snake is a point-like 

spin flipper. The simulation using a single 4-twist helical 
dipole and its imperfection will be discussed at a later 
stage.  

 
Fig. 1.1 Main Injector accelerator complex conceptual lay-
out showing equipment needed for polarized proton beam 
(in blue). 

SPIN DANAMIC OF THE POLARIZED 
PROTON 

    For a beam of particles, the polarization vector is defined 
as the ensemble average of spin vectors. The evolution of 
the spin vector of a beam of polarized protons in external 
magnetic fields is governed by the Thomas-BMT equation 
[4] 

where the polarization vector S


 is expressed in the 
frame that moves with the particle. 

⊥B


 and 
//B


 are the 
transverse and longitudinal components of the magnetic 
fields in the laboratory frame with respect to the velocity 

cβ


 of the particle. The vector E


 stands for the electric 
field, G is the anomalous gyromagnetic g-factor, and 2mcγ
is the energy of the moving particle. In a pure magnetic 
field, E


 =0. 

   In the SU(2) representation, the spin vector can be ex-
pressed with two-component spinor T),( 21 ψψψ =  where 

21,ψψ  are complex numbers.  The conversion between 
SU(2) and SO(3) is 

where ),,( 321 σσσσ =
  are Pauli matrices. Due to the 

unitarity of the spin vector, 2
2

2
1 ψψ +=P , P is the polar-

ization. P=1 for a single particle. In spinor notation, the T-
BMT equation can be written as 
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The rotation from θi to θf is expressed by a unitary matrix 
M as 

where n  is the rotation axis, φ is the spin rotation angle. 
iψ  is the initial spin state, fψ  is the final spin state.  

SPIN TRACKING USING PTC 
Tracking Code PTC  

The Polymorphic Tracking Code (PTC) [5] written by 
Étienne Forest is a library of Fortran90 data structures and 
subroutines for integrating the equations of orbital and spin 
motion for particles in modern accelerators and storage 
rings. PTC implements the high energy physics lattices and 
uses the “Fully Polymorphic Package”, FPP, as the engine 
to do the Lie algebraic calculations. FPP implements Tay-
lor maps (aka Truncated Power Series Algebra or TPSA) 
and Lie algebraic operations, which allows it to extract a 
Poincaré map from PTC. FPP also provides the tools to an-
alyze the resulting map. The most common and most im-
portant tool is the normal form: with this at hand, one can 
compute tunes, lattice functions, and nonlinear extensions 
of these and all other standard quantities of accelerator the-
ory. Indeed, the combination of PTC and FPP gives access 
to all of standard perturbation theory on complicated accel-
erator lattice designs. 
 
Normal form for spin on the closed orbit: 0n  
    In PTC, spin is considered as a spectator, the closed or-
bit does not depend on spin.  A map: ),( SmT = , where m 
is an orbital map and S is a spin matrix that depends on 
the orbit. This map acts on a ray z  and a spin vector s  as  
               
             )1.3())(),((),( szSzmszT 

=  
 
The matrix for the spin is evaluated at z  and multiplies 
onto the vector s . If a beam line #1 is followed by beam 
line #2, the spin map for the full beam line is then given 
by  
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The matrix 112 SmS   is simply the product of 12SS  where 

)(2 zS   is evaluated at )(1 zmz 
= with 
),,,,,( 65 zzpypxz yx=

 . If the map is a one-turn map 
around the closed orbit at some position s whose coordi-
nates will be )0,,0,0(0 


= , without loss of generality, it 

is straight forward to raise Ts to a power
))0(,0(),0( sSsT k

s
k

s


= . This simply reflects the fact that on 
the closed orbit, the matrix S for the spin is a constant ma-
trix turn after turn. This matrix is a rotation and thus con-
tains an invariant direction denoted as 0n . We have      

00)0( nnS k
s


= .  Now at some arbitrary position s, the ma-

trix )0(


S can be expressed in terms of 0n  and its rotation 

angle θ0 around 0n :                    

            )3.3()exp()0( 00 LnkS k
s


⋅= θ  

The matrices iL are the usual generator of rotations obey-
ing the commutation relations of the rotation group:                                                           
                    )4.3(],[ kijkji LLL ε=  
They are 
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where ε = -1 is chosen in the FPP package. L1,2,3 are re-
ferred to as Lx,y,z most of the time.  Figure 3.1 gives a pic-
torial view of the algorithms of PTC. The red dot repre-
sents a ray moving in the “real world.” The blue dots rep-
resent the spin.  

 
 

Fig. 3.1 Pictorial view of the algorithms of PTC. 
 
The nonlinear normal form for the invariant 
spin field (ISF): )(zn  
The invariant spin field (ISF) [6] was introduced by Barber 
and his collaborator as follows: there exists a vector ),( szn 

, a 3–vector field of unit length obeying the T–BMT equa-
tion along particle orbits ));(( ssz  and fulfilling the perio-
dicity condition ),(),( sznCszn 

=+ , where C is the cir-
cumference. Thus 
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where );( szm   is the new phase space vector after one turn 
starting at z and s and );(33 szS 

×  is the corresponding spin 
transfer matrix. This equation states that a vector )(zn

whose transformation is under the spin matrix )(zS    is the 
same as its transformation under the map );( szm  . This 

equation can be easily applied to 0n  since it is a constant 
under the application of )0(


S  and the closed orbit is by the 

definition a constant, i.e. 0)0(


=m . For an arbitrary z , Eq. 
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(3.6) implies that if we follow ),( szn   after k turns, the an-

swer is simply kmn  . Thus the Fourier spectrum of 
kmn   will not contain the spin frequency. This object 

behaves as if spin motion did not exist. If viewed as a vec-
tor field, the entire three dimensional field ),( szn 

 is left 
invariant under the action of the full spin-orbital map T. 
Obviously, if a particle at coordinate 

),,,,,( 65 zzpypxz yx=
  starts with a spin slightly different 
from ),( szn  , the actual spin will move around the axis 

),( szn   and its spectrum will contain the spin tune as well 
as the orbital tunes. The chief aspects of the ISF are that:  
1) For a turn–to–turn invariant particle distribution in 
phase space, a distribution of spins initially aligned along 
the ISF remains invariant (in equilibrium) from turn–to–
turn, 2) For integrable orbital motion and away from orbital 
resonances, the ISF determines the maximum attainable 
time averaged polarization                          
                     )7.3(),(lim sznP 

=  
on a phase space torus at each s, where  denotes the av-
erage over the orbital phases, 3) Under appropriate condi-
tions, SnJ s


⋅=  is an adiabatic invariant while system pa-

rameters such as the reference energy are slowly varied.  

SPIN TRACK IN THE MAIN INJECTOR 
    The beam in the MI is injected at M306 (see Figure 1.1) 
from the Recycler Ring at an energy of 8 GeV, and accel-
erated to 120 GeV from 0.413 seconds to 1.08 seconds, 
then slow spilled for another 0.5 seconds to the extraction 
Septum at M522 to the fixed target experiment. The Sibe-
rian snake would be placed at M222, a straight section with 
a more than 10 m long drift space, opposite of the ring to 
M522. For the purpose of spin tracking in the MI, a special 
module called z_fnal_meiqin.f90 was written and added 
into the PTC library. It handles the acceleration of the pro-
ton beam through the γ-transition from a kinetic energy of 
8 GeV at injection to the flat-top of 120 GeV (γ=9.528 to 
128.93). Based on the MI ideal lattice, the transition energy 
γ is 21.619 at a time of 0.568 seconds after injection, as 
calculated by PTC. Furthermore, the real 21Cycle tables of 
the acceleration rate, the tunes and the chromaticity 
changes during the ramp, were also implemented in the 
module. There are 20 RF cavities in the MI for accelera-
tion. They altogether are treated as one thin element at the 
end of the cavity section in PTC. The RF phase is 23.189o 
before the transition and (π-23.189o) right after the transi-
tion. The beam can be assigned by 95% of normalized 
emittance in the transverse planes and momentum devia-
tions (Δp/p) in the longitudinal plane. Longitudinal emit-
tance will then be calculated in the module. 
    With the help of Étienne Forest, a code in Fortran90, 
named fnal_injector_accelerate.f90, was written to do the 
orbit-spin tracking in the MI. We started with the flat out-
put file of the latest MAD lattice of the Main Injector ring. 
The input file of the MAD lattice file was translated with 
Bmad [7] developed by David Sagan, Cornell University. 

Dave Sagan implemented the PTC/FPP library of Étienne 
Forest into his Bmad code. Therefore, they built up an in-
terface between Bmad and PTC. MAD, Bmad and PTC 
agree to within machine precision. 
    After the orbit and spin were tracked for the first turn, 
the One-Turn-Map for both orbital and spin was obtained. 
Then the normal form for spin on the closed orbit: 0n , was 
calculated, which actually is the Invariant Spin Field (ISF) 
on the closed orbit. Then, the spin polarizations of all par-
ticles at injection are chosen to be aligned with 0n . A nu-
merical computation of the ISF by stroboscopic average is 
compared with an evaluation of the normal form ISF of a 
single particle, and was found that there is very little dif-
ference between these two results. 

Tracking with an idea lattice 
 Multi-particle tracking was done first by sending 128 

particles uniformly distributed (called “flat distribution” 
here) in vertical and longitudinal phase space, as seen in 
Figure 4.1. These 128 particles represent the beam. Using 
these results, the average polarization for different beam 
distributions can be calculated by integration as follows: 
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Fig. 4.1 Particles distributed in the phase space. 

  For a Gaussian distribution,        
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  First, the particles were tracked with no snake. Figure 
4.2 presents the results of the average polarization. The x-
axis is GeVEoE

E
o

938.0, ==γ , and y-axis is the Polar-

ization, “1” represents 100% polarization aligned with 0n , 
the Invariant Spin Field on the closed orbit.  The black 
line is the result of the initial beam with uniform distribu-
tion (Flat), and the red line represents the result of the ini-
tial beam with Gaussian distribution (cut at 6σ).  Both 
cases show that polarization will be lost soon after the be-
ginning of the acceleration.  
   The particles were then tracked with a single snake 
placed in the ring. The snake is represented by a point-like 
spin flipper.  Figure 4.3 presents the average polarization 



of particles with 14 πmm·mrad (top panel) and 20 
πmm·mrad (bottom panel)  in vertical phase space, respec-
tively.  The momentum spread in both simulations is 
1.25E-3. Polarization can be preserved at more than 90% 
at the end of the acceleration for most phase space distri-
butions, except for the “Flat” distribution, which ends up 
at 88.8%.   Similar results of average polarization were ob-
tained for particles with 20 πmm·mrad in vertical phase 
space and momentum spread of 1.25E-3.  The simulations 
show that the strongest resonance happens at γ=119.69   
(Gγ=215), resulting in a big loss of polarization at the res-
onance, which however recovers in most cases.  All the 
resonances here refer to the intrinsic spin resonances. 

 
Fig. 4.2 Spin tracking with no snake in the ring for beams 
with different distributions in phase space. 

 

 
Fig. 4.3 Spin tracking in an ideal MI lattice, using a point-
like snake to flip the spin. Top panel: the emittance of the 
beam is 14 πmm.mrad. Bottom panel:  the emittance of 
the beam is 20 πmm.mrad. The distributions in phase 
space are flat, Gaussian with 3σ or 6σ cut in y (vertical 
plane) and in time (longitudinal plane).   

Tracking with a realistic lattice 
The measured field errors [8] and the misalignment data 

of all the magnets in the MI ring have been implemented 
into the MI lattice. PTC reads the survey coordinates and 
uses its pointer and patch functions to place each magnet 
into its actual position in the ring. This includes all the mis-
alignment information, such as the shifts in x, y and z, as 
well as the roll and pitch angles.  
   The closed orbit of the MI at injection before correction 
due to the magnetic field errors and misalignment is shown 
in Figure 4.4 
 

 
 

Fig. 4.4 Closed orbit before correction. 
 

 
Fig. 4.5 Closed orbit after correction. 

 
The orbit correction program for MI operation is able to 

correct the orbit to its desired orbit in RMS differences of 
0.18 mm and 0.15 mm in the horizontal and vertical planes, 
respectively. PTC takes the beam position monitor (BPM) 
readings of the machine corrected orbit as the desired orbit, 
and corrects the closed orbit to it with almost no difference.  
    Spin tracking in PTC was performed after various orbit 
corrections have been applied. Just as in tracking with an 
idea lattice, PTC adjusts the tunes and chromaticities  after 
the orbit corrections, and also during the ramp according to 
the ramp table of the MI operation 21 Cycler, the event for 
beams to SeaQuest experiment. 256 particles uniformly 
distributed on the vertical phase space with an emittance of 
20 πmm·mrad   and on the longitudinal phase space with a 
momentum spread Δp/p = 1.25x10-3 were tracked. Figure 
4.6 presents the results. The x-axis is Gγ, with G=1.793 for 
protons, and γ the energy. The blue line represents the po-
larization for a beam with a flat particle distribution, while 
the orange line for a beam with a Gaussian distribution 6σ 



Cut.  The final average polarization remains at 85.2% for 
the flat distribution, and at 88.1% for the Gaussian distri-
bution 6σ Cut. This presents the best results that the MI can 
achieve for closed orbit corrections. 
 

 
 
Fig. 4.6 Average polarization after PTC corrected the 
closed orbit to the BPM readings. The RMS values of the 
differences are almost zero.  Note that the RMS values of 
the difference between the BPM readings and the MI de-
sired positions are 0.19 mm in the horizontal and 0.15 
mm in the vertical plane. Final polarization is 85.2% for 
the flat distribution and 88.1% for the Gaussian distribu-
tion 6σ cut. 
 
    The base tune of the MI is 26.425 in the horizontal plane 
and the 25.415 in the vertical plane. The spin depolarizing 
resonances occur when Gγ= mP±υy, where P is the perio-
dicity of the lattice, and υy is the vertical tune with 
υy=25.415. In the presence of magnetic field errors, perio-
dicity is broken, P=1. Therefore, the most imperfect reso-
nances occur for integers closest to ±υy.  The tracking re-
sults show that the most imperfect resonances happen at 
Gγ=59, 94, 95, 146, 206, 209, which is near to M υy, , M=2, 
4, 6, 8.  The strongest resonance in this case is at Gγ= 209.  

To see the effect of vertical orbit errors on the polariza-
tions, we let PTC correct the closed orbit to the MI de-
sired orbit with slightly larger RMS errors. Figure 4.8 
presents the results for three different cases. In the top 
panel, the correction of the RMS error is 0.19 mm in the 
horizontal and 0.21 mm in the vertical planes. Not only 
do the depolarization resonances shown in Fig. 4.7 get 
stronger, but the two moderate resonances near Gγ=125 
combined into one stronger resonance. Similarly, this also 
happened for resonance near Gγ=150 and 175. In the mid-
dle panel, the polarization is lost completely at Gγ=90 
when PTC corrected the closed orbit to the MI desired or-
bit for RMS errors of  0.27  mm in the horizontal plane 
and 0.28 mm in the vertical plane. At Gγ=89.6, the aver-
age polarization drops below 70%.   In the bottom panel,  
RMS errors of  0.43  mm in the horizontal plane and 0.45 
mm in the vertical plane lead to strong imperfect reso-
nance near Gγ=59 and 58.4, resulting in complete loss of 
polarization.  

CONCLUSIONS 
    Spin tracking of polarized protons in the Main Injector 
has been carried out for a “realistic” lattice that includes 
measured magnet field errors and misalignment survey  
     

 
 
Figure 4.7 Average polarization for PTC closed orbit cor-
rections to the desired orbit for various RMS values. 
 
data, as well as various degrees of orbit corrections that 
demonstrate the requirements that are needed to preserve 
significant polarization in the Main Injector.  The simula-
tions have shown that the polarization in the Main Injector 
is very sensitive to the excursions of the closed orbit. RMS 
deviations between the corrected orbit and the desired orbit 
should not be larger than 0.2 mm in both the horizontal and 
the vertical planes. The present MI orbit correction pro-
gram can get closed orbit corrected to the desired orbit with 
RMS excursions of 0.18mm in the horizontal plane and 
0.15mm in vertical plane. The final polarizations in the MI 
after ramping the energy up to 120 GeV can be kept at 
85.2% for a flat beam distribution and 88.1% for a Gauss-
ian beam distribution a 6σ cut using a point-like snake 
(flip-spin).  
    Implementation of a full-size 4-twist helical dipole in-
stead of a point-like snake has started. PTC has success-
fully performed Symplectic integration through a specific 
4-twist helical dipole configuration at various energies. 
Spin tracking studies of polarized protons in the Booster, 
as well as in the transfer lines are underway. This will al-
low to confirm whether polarized protons can be produced 
and maintained in the Fermilab accelerator complex using 
single Siberian snakes in the larger synchrotrons. 
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